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Abstract The genetic and molecular approaches to het-

erosis usually do not rely on any model of the genotype–

phenotype relationship. From the generalization of Kacser

and Burns’ biochemical model for dominance and epistasis

to networks with several variable enzymes, we hypothe-

sized that metabolic heterosis could be observed because

the response of the flux towards enzyme activities and/or

concentrations follows a multi-dimensional hyperbolic-like

relationship. To corroborate this, we used the values of

systemic parameters accounting for the kinetic behaviour

of four enzymes of the upstream part of glycolysis, and

simulated genetic variability by varying in silico enzyme

concentrations. Then we ‘‘crossed’’ virtual parents to get

1,000 hybrids, and showed that best-parent heterosis was

frequently observed. The decomposition of the flux value

into genetic effects, with the help of a novel multilocus

epistasis index, revealed that antagonistic additive-by-

additive epistasis effects play the major role in this

framework of the genotype–phenotype relationship. This

result is consistent with various observations in quantita-

tive and evolutionary genetics, and provides a model uni-

fying the genetic effects underlying heterosis.

Introduction

Most of the present studies on heterosis, or hybrid vigour,

focus on QTL detection to untangle the genetic effects

underlying the phenomenon (Hua et al. 2003; Meyer et al.

2009), or on the search for non-additive expression of

transcripts or proteins in hybrids to identify possible

molecular mechanisms accounting for heterosis for mac-

roscopic traits (Paschold et al. 2009). Despite the interest of

these descriptive, model-free approaches, they can hardly

provide a general framework to comprehend a universal

phenomenon which has many evolutionary and agronom-

ical implications.

In this paper, we propose a fundamentally different way to

tackle the problem of heterosis, by using a systemic approach

based on metabolic network modelling, which provides a

biologically realistic genotype–phenotype relationship.

As soon as 1934, Wright proposed a general explanation

for the prevalence, in natural populations, of the dominance

of wild alleles upon deleterious alleles. He considered the

relationship between the activity of one enzyme in a linear

metabolic pathway and the steady-state rate of production

of the product of the chain, i.e. the flux. Because the

product of one enzyme is the substrate for the next, the

effect of changing the activity of a particular enzyme

depends on the activities of all the others enzymes of the

pathway. Even though at this time the biochemical theory

of metabolic fluxes was not very developed, he predicted a
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hyperbolic relationship between enzyme activity and flux.

Thus, if the wild-type enzyme activity is at the plateau of

the flux curve and the enzyme activity of the heterozygote

is intermediate, null or deleterious mutations will be

recessive. This idea was brightly confirmed by the theo-

retical developments of Kacser and Burns (1981) for

chains of Michaelian reversible enzymes. They also

showed that epistasis is inherent to this non-linear model

of genotype–phenotype relationship: an allelic substitu-

tion at one locus will change the effect of allelic substi-

tution at all other loci. Actually, the hyperbolic-like

relationship between enzyme activity and flux seems to

be valid for most of the networks, regardless their com-

plexity (see Fiévet et al. 2006, for a discussion). In

addition Fiévet et al. (2006) reconstructed in vitro the first

part of glycolysis, and varied in turn the concentration of

the successive enzymes, the concentrations of the other

enzymes being fixed. In spite of regulation and branching

in the system they used, in all cases they observed a

quasi-hyperbolic ascending curve.

More or less directly, fluxes affect all macroscopic traits,

including agronomically or horticulturally important traits:

seed/fruit weight depends on lipid, starch and/or sugar

content, fruit ripening on ethanol synthesis, resistance

against herbivores is related to glycosinolate profile,

flowering date to hormonal balance, flower colour to

anthocyanins, etc. Therefore fluxes through metabolic

networks can be considered as model quantitative traits,

depending on all the genes coding and/or regulating the

enzymes of the network. In this framework, the genetically

variable enzyme parameters represent the genotype,

whereas the flux is the phenotype. As activity and/or con-

centration of several enzymes may vary together, the

genotype–phenotype relationship can be modelled accord-

ing to a multidimensional hyperbolic surface. Relying on

this biologically realistic modelling, we simulated series of

crosses between parents differing for the concentrations of

enzymes of the upstream part of glycolysis. Best-parent

heterosis was frequently observed, and the decomposition

of the flux into genetic effects revealed a tight relationship

between heterosis and antagonistic (‘‘less-than-additive’’)

additive-by-additive epistasis.

Theoretical developments

The metabolic model

Linear pathways

Let us consider a linear pathway of unimolecular reversible

reactions catalysed by n Michaelian enzymes far from

saturation:

X0 �
E1

S1 �
E2 � � � � Sj�1 �

Ej

Sj � � � � �
En

Xn:

X0 and Xn are respectively the initial substrate and the final

product of the pathway (external metabolites), S1,…, Sj are

the successive substrates of the pathway (internal

metabolites), and E1,…, En are the enzymes. At the

steady state, the flux through the pathway is (Kacser and

Burns 1973):

J ¼
X0 � Xn

K1;n
Pn

j¼1
Kmj

Vj�K1;j

;

where X0 and Xn are respectively the concentrations of X0

and Xn, K1,j (resp. K1,n) is the product of the equilibrium

constants of the reactions from X0 to Sj (resp. Xn), Kmj is

the Michaelis–Menten constant of enzyme j and Vj is the

maximum velocity of enzyme j.

With X ¼ X1 � Xn

�
K1;n; and to make apparent the

enzyme concentration Ej, we can alternatively write:

J ¼ X
Pn

j¼1
1

AjEj

; ð1Þ

where Aj ¼ kcat jK1;j

�
Kmj; with kcatj the catalytic constant of

enzyme j. In this paper, we will assume that the Aj’s are not

genetically variable, so all the variability in enzyme

activity is due to the variability on the concentrations Ej.

However the formal developments would be identical if the

Aj’s were genetically variable.

Networks: the general genotype–phenotype relationship

The previous developments do not apply to pathways that

contain non-Michaelian and regulated enzymes, and/or to

branched pathways, which require specific derivations of

flux expressions based on the detailed kinetic equations of

the individual reactions. However, we showed recently that

a simple modification of the previous modelling allowed

reliable predictions of the flux values for regulated and

branched systems (Fiévet et al. 2006). The idea was based

on data from the literature showing that increasing the

concentration of a given enzyme in a system of any com-

plexity, the concentration of other enzymes being fixed,

usually results in quasi-hyperbolic response curve of the

flux (saturation curve). In addition, an experimental system

fully corroborated this view. We reconstructed in vitro the

first part of glycolysis, from hexokinase to glycerol 3-

phosphate dehydrogenase (therefore with the TPI branch-

ing), and included a cycle to regenerate ATP from ADP

with creatine kinase. Increasing from 0 the concentrations

of phosphoglucose isomerase (PGI), phosphofructokinase

(PFK), fructose-1,6-bisphosphate aldolase (FBA) or tri-

osephosphate isomerase (TPI), the concentrations of other
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enzymes being fixed, resulted in all cases in quasi-hyper-

bolic ascending saturation curves (Fiévet et al. 2006).

So we used the following approximate general expres-

sion of the flux:

J ¼ X
Pn

i¼1
1

AjEjþdjEtot

¼ 1
Pn

j¼1
1

XAjEjþXdjEtot

; ð2Þ

where X is a constant, Aj is a parameter accounting for the

kinetic behaviour of enzyme j within the system (therefore

its expression is more complex than previously defined),

and dj is a parameter accounting for the ‘‘dispensability’’ of

enzyme j (if there is branching in the pathway, removing

some enzymes does not drive the flux to 0), and Etot is the

sum of enzyme concentrations Etot ¼
Pn

j¼1 Ej

� �
: Note

that in the Fiévet et al.’s paper, this expression was a

little bit simpler, with the parameter pj = djEtot, i.e. Etot did

not appear explicitly. Here we introduced Etot for more

generality, both to take into account the fact that Etot may

vary (in the cited paper Etot was fixed), and to derive easily

the summation property of the control coefficients (not

shown).

This is the relation we have used for modelling the

genotype–phenotype relationship. The ‘‘phenotype’’ is flux

J and the ‘‘genotype’’ is the vector of enzyme concentra-

tions Ej’s genetically variable. In silico or in vitro, it is thus

possible to simulate genetic variability by varying enzyme

concentrations Ej, and for each genotype to calculate or

measure the flux value from Eq. 2.

Genotype construction and flux computation

To run simulations with realistic values, we considered the

network of the upstream part of glycolysis, with four var-

iable enzymes, and we used the parameter values published

by Fiévet et al. (2006), who estimated XAj and XdjEtot by

hyperbolic fitting of the titration curves obtained by vary-

ing in turn the concentration of each enzyme. The values

were XAPGI = 499.4 s-1, XAPFK = 115.5 s-1, XAFBA =

22.5 s-1, XATPI = 22,940 s-1, XdPGIEtot = 0, XdPFKEtot =

0, XdFBAEtot = 0, XdTPIEtot = 61.8 lM/s. As in these

experiments Etot was equal to 2.82 lM, we get XdTPI =

21.9 s-1. Thus for any set of Ej values, that is to say for any

virtual genotype, a flux (‘‘phenotype’’) value could be

computed from the equation:

J ¼ 1
1

499:4 EPGI
þ 1

115:5 EPFK
þ 1

22:5 EFBA
þ 1

22 940 ETPIþ21:9 Etot

;

ð3Þ

where Etot ¼ EPGI þ EPFK þ EFBA þ ETPI:

Thousand pairs of virtual parental genotypes were cre-

ated. As the total enzyme amount allocated to the system

was variable, but should be necessarily limited to remain

biologically realistic (Lion et al. 2004), we proceeded in

the following way to choose the enzyme concentrations.

For each of the four enzymes, 10 concentration values

evenly distributed from 0 to E/ were defined (excluding of

course these two extreme values), with E/ the sum of the

physiological concentrations of the enzyme estimated in

the yeast strain S288C (Fiévet et al. 2004) (PGI: 9.1 mg/l,

PFK: 10.4 mg/l, FBA: 60.1 mg/l and TPI: 22.3 mg/l). The

proportions of the three remaining enzymes were drawn at

random using beta distributions (a = 1, b ¼ 1�e/
i

e/
i

; with e/
i

the physiological proportion of enzyme i), to cover a large

range of variability of enzyme concentrations. Twenty-five

independent drawings were performed for each concen-

tration of the target enzyme, resulting in 1,000 parental

distributions (4 enzymes 9 10 concentrations 9 25 draw-

ings). Each of them was randomly associated to another

one to get 1,000 pairs of parents. The total enzyme con-

centration varied from 0.07 to 2.73 lM.

The predicted flux of each parental genotype was

computed according to Eq. 3. The flux of the 1,000 hybrids

was computed assuming that (i) there is additivity of all

enzyme concentrations, or (ii) there is positive or negative

non-additivity of concentrations of PFK and/or FBA (FBA

is the most abundant enzyme), with the hybrid concentra-

tions remaining within the range of parental concentrations.

Additivity writes:

8i; Ei1�2 ¼
Ei1 þ Ei2

2
;

so the hybrid flux is:

To analyse non-additivity, we considered five values of

‘‘coefficients of inheritance’’: 1, 0.8, 0.5, 0.2 and 0, defined

respectively as follows:

(i) Ei1�2 ¼ max Ei1;Ei2ð Þ: ‘‘complete positive non-addi-

tivity’’ (the hybrid concentration is equal to the

highest parental concentration).

J1�2 ¼
1

1

499:4
EPGI1

þEPGI2
2

� �þ 1

115:5
EPFK1

þEPFK2
2

� �þ 1

22:5
EFBA1

þEFBA2
2

� �þ 1

22;940
ETPI1

þETPI2
2

� �
þ21:9

Etot1
þEtot2
2

� �
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(ii) Ei1�2 ¼ 0:8 max Ei1;Ei2ð Þ þ ð1� 0:8Þmin Ei1;Ei2ð Þ:
‘‘partial positive non-additivity’’.

(iii) Ei1�2 ¼ 0:5 max Ei1;Ei2ð Þ þ 0:5 min Ei1;Ei2ð Þ: addi-

tivity (reference case).

(iv) Ei1�2 ¼ 0:2 max Ei1;Ei2ð Þ þ ð1� 0:2Þmin Ei1;Ei2ð Þ:
‘‘partial negative non-additivity’’.

(v) Ei1�2 ¼ min Ei1;Ei2ð Þ: ‘‘complete negative non-addi-

tivity’’ (the hybrid concentration is equal to the lowest

parental concentration).

For instance, if for a pair of parents we have

EPFK1
[ EPFK2

and EFBA1
[ EFBA2

; and if in their hybrid we

have EPFK1�2 ¼ EPFK2
(case v, coefficient 0) and EFBA1�2 ¼

EFBA1
(case i, coefficient 1), the hybrid flux will be:

For each cross, the difference between the hybrid flux value

and the higher parental flux value was computed as

H = J1*2 - max (J1, J2). For each pair of parents, the

highest parental flux was noted J2.

Decomposition of the genotypic values in the

multilocus case

In order to decompose the flux values into a sum of genetic

effects, we generalized the Hayman and Mather’s (1955)

approach to any number of bi-allelic loci (Zeng et al. 2005).

For a trait controlled by two biallelic loci A and B, the geno-

typic values G of the nine possible genotypes can be decom-

posed as a sum of nine genetic parameters, according to the

so-called F?-metric model (Van Der Veen 1959):

A1A1 A1A2 A2A2

B1B1 l� aA � aB þ eAB l� aB þ dA � eBdA
lþ aA � aB � eAB

B1B2 l� aA þ dB � eAdB
lþ dA þ dB þ edAdB

lþ aA þ dB þ eAdB

B2B2 l� aA þ aB � eAB lþ aB þ dA þ eBdA
lþ aA þ aB þ eAB

l is the mean of the four homozygous genotypes, aA and aB

are the additive effects of genes A and B, respectively, dA

and dB are the dominance effects of genes A and B,

respectively, eAB is the additive-by-additive epistasis effect

between A and B, eAdB
and eBdA

are the additive-by-domi-

nance epistasis effects and edAdB
is the dominance-by-

dominance epistasis effect. We chose the F?-metric model

rather than the F2-metric model (e.g. Melchinger et al.

2007) because it resulted in equations simpler and easier to

interpret (see Yang 2004; Zeng et al. 2005, for discussions

on these models).

This decomposition can be generalized to L variable loci:

G¼ lþ
XL

i

diaiþ
XL

i

1� d2
i

� �
diþ

XL

i\j

didjeij

þ
XL

i\j\k

didjdkeijk þ � � � þ
XL

i;j

di 1� d2
j

� �
eidj

þ
XL

i;j;k

didj 1� d2
k

� �
eijdk
þ� � � þ

XL

i;j

1� d2
i

� �
1� d2

j

� �
edidj

þ
XL

i;j;k

1� d2
i

� �
1� d2

j

� �
1� d2

k

� �
edidjdk

þ � � � ð4Þ

The indicator variable di takes the value -1 for one of the

homozygous genotypes, ?1 for the other homozygous

genotype, and 0 for the heterozygous genotype. l is the

mean of the homozygote genotypic values, ai is the

additive effect of gene i, di is the dominance of gene i, eij…

is the additive-by-additive epistasis of any order, ei...dj... is

the additive-by-dominance epistasis of any order, and edidj...

is the dominance-by-dominance epistasis of any order; the

suspension points are for all the possible epistasis terms for

the number L of loci considered. This model is completely

determined: the number of parameters is equal to the

number of genotypes (3L), so there is a complete

specification of the genotypic values when the parameters

are given, and vice versa. Let G the vector of the genotypic

values, D the 3L 9 3L matrix of the signs of the genetic

parameters (determined from the indicator variables) and T

the vector of the genetic parameters. We have

G ¼ DT;

therefore

T ¼ D�1G ð5Þ

Thus all the genetic parameters can be determined provided

that all the genotypic values are known.

Determining the genetic effects for the flux

with four variable enzymes in the system

Each pair of parents is defined by two particular distribu-

tions of enzyme concentrations. The parent with the lowest

(respectively highest) flux is given the virtual genotype

J1�2 ¼
1

1

499:4
EPGI1

þEPGI2
2

� �þ 1
115:5EPFK2

þ 1
22:5EFBA1

þ 1

22;940
ETPI1

þETPI2
2

� �
þ21:9

Etot1
þEtot2
2

� �
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A1A1B1B1C1C1D1D1 (respectively A2A2B2B2C2C2D2D2).

With four biallelic loci, there are 81 possible genotypes (34).

For each of them, the flux can be computed from Eq. 3.

For instance, the flux of genotype A1A2B1B1C1C1D1D2 if there

is additivity of enzyme concentrations is

J ¼ 1
1

499:4
EPGI1

þEPGI2
2

� �þ 1
115:5EPFK1

þ 1
22:5EFBA1

þ 1

22;940
ETPI1

þETPI2
2

� �
þ21:9Etot

;

where Etot ¼
EPGI1

þEPGI2

2

� �
þ EPFK1

þ EFBA1
þ ETPI1

þETPI2

2

� �
:

If there is not additivity, the flux is computed using the

coefficients of inheritance as exemplified above.

For each pair of parents, the 81 flux values were com-

puted, from which we derived the 81 genetic effects using

Eq. 5: the mean l, 4 additive effects (aA, aB, aC, aD), 4

dominance effects (dA, dB, dC, dD), 11 additive-by-additive

epistasis effect (6 eAB-type, 4 eABC-type, 1 eABCD), 50

additive-by-dominance epistasis effects (12 eAdB
-type,

12 eABdC
-type, 4 eABDdD

-type, 12 eAdBdC
-type, 6 eABdCdD

-

type, 4 eAdBdCdD
-type) and 11 dominance-by-dominance

epistasis effect (6 edAdB
-type, 4 edAdBdC

-type, 1 edAdBdCdD
-

type). Thus we got 1,000 vectors of genetic effects.

Expressing heterosis in terms of genetic effects

Let J1 and J2 the fluxes of two parents genetically different,

P1 and P2. We assumed that J2 [ J1. There is best-parent

heterosis if the flux of the hybrid, J1*2, is higher than J2, or

if

H ¼ J1�2 � J2ð Þ[ 0:

The difference H can be expressed as a function of the

genetic parameters previously defined. Consider that the

two lines P1 and P2 differ for L genes, and note their

genotypes A1A1B1B1C1C1…L1L1 and A2A2B2B2C2C2…
L2L2, respectively. The genotypic value G2 is, from Eq. 4:

G2 ¼ lþ
XL

i¼1

ai þ
XL

i\j

eij þ
XL

i\j\k

eijk þ
XL

i\j\k\l

eijkl

þ
XL

i\j\k\l\m

eijklm þ
XL

i\j\k\l\m\n

eijklmn þ � � � ;

which depends on the additive effects of the genes and on

the additive-by-additive epistasis effect of any order,

hereafter noted eadd.

The genotype of the hybrid between P1 and P2 is

A1A2B1B2…L1L2, and its genotypic value, noted G1*2, is:

G1�2 ¼ lþ
XL

i¼1

di þ
XL

i\j

edidj
þ
XL

i\j\k

edidjdk

þ
XL

i\j\k\l

edidjdkdl
þ

XL

i\j\k\l\m

edidjdkdldm
þ � � �

G1*2 depends only on dominance and on dominance-by-

dominance epistasis effects of any order, hereafter noted

edom.

Therefore H = G1*2 - G2 writes

H ¼
XL

i¼1

di þ
XL

i\j

edidj
þ
XL

i\j\k

edidjdk
þ

XL

i\j\k\l

edidjdkdl

þ � � � �
XL

i¼1

ai �
XL

i\j

eij �
XL

i\j\k

eijk �
XL

i\j\k\l

eijkl

�
XL

i\j\k\l\m

eijklm � � � �

or, in a more condensed writing:

H ¼
X

d þ
X

edom �
X

a�
X

eadd ð6Þ

There is heterosis if H is positive, or if
X

d þ
X

edom [
X

aþ
X

eadd

Thus we had two ways to compute H for the 1,000 crosses:

from Eq. 6 or from the difference J1*2 - J2. We checked

that both values were identical.

A generalized epistasis index

To assess the possible weight of epistasis in heterosis, we

defined a generalized epistasis index derived from the

‘‘interaction index’’ proposed by Keightley (1996) in the

haploid case. Consider two haploid genotypes P1 and P2

differing for only two loci, P1 with the ‘‘low’’ alleles at both

loci, and P2 with the ‘‘high’’ alleles at both loci. The extent and

the type of epistasis will affect the value of the genotypic

difference between the two genotypes, noted Ghh - Gll

(subscripts h and l for high and low, respectively). Define

I ¼ Ghh � Gll

Ghl � Gllð Þ þ Glh � Gllð Þ;

where Ghl and Glh are the genotypic values for genotypes

with one high and one low allele. If I = 1, there is addi-

tivity, i.e. the difference between Ghh and Gll is just

accounted for by the sum of the effects of every individual

allelic substitution on the flux. The epistasis is synergistic

if I [ 1 and antagonistic I \ 1. This index is identically

valid for diploid homozygote genotypes (pure lines), as

considered below.

It is possible to generalize this index to the multilocus case,

with lines defined as particular combinations of ‘‘high’’ and

‘‘low’’ alleles. The genotypic difference between two lines P1

and P2 displaying specific combinations of alleles (G2 - G1,

with G2 C G1) may be compared to the sum of the differences

generated by individually substituting each allele of P1 for the

allele from P2. Thus we defined the index:

Theor Appl Genet (2010) 120:463–473 467

123



I ¼ G2 � G1
PL

t¼1 Gt1 � G1ð Þ
¼ G2 � G1
PL

t¼1 Gt1 � L � G1

; ð7Þ

where Gt1 is the genotypic value of a line with the P2 allele

for gene t and the P1 alleles for all other genes.

From the previous derivations, we get (see Electronic

Supplementary Material)

I ¼
P

aþ
P

eodd
P

aþ
Pk� L�1ð Þ=2

k¼1 2kþ 1ð Þ
P

eodd2kþ1
�
Pk�L=2

k¼1 2k
P

eeven2k

;

ð8Þ

where eodd and eeven stand for additive 9 additive epistasis

of any order involving an odd and an even number of

genes, respectively.

In the particular case where the genotypic value is a flux

through a network, the hyperbolic relation between the flux

and the enzyme parameters results in a necessarily positive

value for I, even if some differences Jt1 � J1ð Þ are neg-

ative (see Electronic Supplementary Material). So there is

synergistic epistasis if I [ 1, antagonistic epistasis if

0 \ I \ 1, and additivity if I = 1.

The I values could be computed either from the flux

values (Eq. 7) or from the genetic effects (Eq. 8). We

checked that they were identical.

Results

A geometric view of heterosis

In the framework of the metabolic model of genotype–

phenotype relationship, we assumed that the response of

flux J with respect to the variations of enzyme concentra-

tions Ej follows a multidimensional hyperbolic surface

(Kacser and Burns 1981; Fiévet et al. 2006):

J ¼ 1
Pn

j¼1
1

ajEjþbjEtot

; ð9Þ

aj and bj are systemic parameters accounting for the kinetic

behaviour of enzyme j in the network, and Etot is the

total enzyme amount of the network (see Theoretical

developments).

In case of additivity of the enzyme concentrations in the

hybrids, the convexity of the surface generates inevitably

mid-parent heterosis for the flux, i.e. the hybrid flux J1*2 is

higher than the mean parental flux (J1 ? J2)/2. This can be

seen geometrically on the two-dimensional hyperbolic flux

response surface obtained for two variable enzymes

(Fig. 1, parents P1 and P2). More interesting, best-parent

heterosis can be observed, i.e. hybrid flux J1*2 is higher

than the best parental flux: J1*2 [ max (J1, J2). Best-parent

heterosis is expected for the flux whenever the parents are

complementary for the ‘‘high’’ and ‘‘low’’ alleles of various

enzymes (Fig. 1, parents P3 and P4).

If there is not additivity, the hybrid point is no more

mid-way on the line relating the parental points, but is on

the part of the surface defined by the upper and lower limits

of enzyme concentrations.

In silico heterosis: data from the upstream part

of glycolysis

The fluxes of 1,000 virtual parents and 1,000 of their

possible hybrids were computed from Eq. 9 for the

upstream part of glycolysis, with four variable enzymes.

When there was additivity of enzyme concentrations, all

hybrids displayed either mid-parent heterosis (600 occur-

rences), or best-parent heterosis (400 occurrences). The

relative heterosis
J1�2�maxðJ1;J2Þ

maxðJ1;J2Þ could reach very high values,

since 55 hybrids had a flux 50% higher than the best-

parental flux, and in two cases the hybrid flux was more

than fourfold higher than the best-parental flux (Fig. 2).

When one enzyme, either PFK or FBA, displayed non-

additive inheritance, the number of cases of heterosis

depended on the direction of the non-additivity. As

expected, more best-parent heterosis was observed with

positive non-additivity and less with negative non-addi-

tivity (Table 1). From complete positive non-additivity to

complete negative non-additivity, the numbers of occur-

rences of best-parent heterosis ranged from 512 to 126 for
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Fig. 1 Heterosis for the flux (J) through a linear metabolic pathway

of Michaelian enzymes far from saturation. The flux is represented as

a function of the activities of two enzymes, with the same arbitrary

values of kinetic parameters. P1 and P2, and P3 and P4, are two pairs

of parents. The hybrids have mid-parental concentration/activity for

both enzymes (points in the middle of the curves relating the parental

points). In the P1*P2 cross, there is only mid-parent heterosis for the

flux because parent P2 has a flux close to the maximum due to high

concentration/activity of both enzymes. In the P3*P4 cross, the hybrid

displays best-parent heterosis because the parents have low flux

values due to low concentration/activity of enzyme 2 (parent P3) or

enzyme 1 (parent P4)
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PFK and from 624 to 96 for FBA (Table 1). For mid-parent

heterosis, the figures were respectively 488 to 372 and 376

to 305. When there was partial or complete negative non-

additivity, some hybrids displayed neither best-parent nor

mid-parent heterosis, but it is worth noting that, even with

complete negative non-additivity of FBA concentration,

more than 30% of the hybrids displayed mid-parent het-

erosis, and almost 10% best-parent heterosis.

When both PFK and FBA had a non-additive inheri-

tance, the number of cases of best-parent heterosis ranged

from 748 (complete positive non-additivity for both

enzymes) to 0 (complete negative non-additivity for both

enzymes), but in the latter case, mid-parent heterosis was

still observed 108 times (Table 1).

Translating flux heterosis into genetic effects: the major

role of epistasis

The heterosis index H = J1*2 - max(J1, J2) can be

expressed as a sum of genetic effects:

H ¼
X

d þ
X

edom �
X

a�
X

eadd

To evaluate the respective parts of the different genetic

effects on heterosis, we calculated for each cross the sum of

the additive effects (
P

a), the sum of the dominance effects

(
P

d), the sum of the dominance-by-dominance epistasis

effects (
P

edom) and the sum of the additive-by-additive

epistasis effects (
P

eadd) (see Theoretical developments),

and analysed their relationship with index H (Fig. 3).

Additivity of enzyme concentrations

In case of additivity of enzyme concentrations, the sum of

additive effects and the sum of additive-by-additive epistasis

effects were negatively correlated to H, and the sum of

dominance effects and the sum of dominance-by-dominance

epistasis effects were positively correlated to H (Fig. 3). Due

to the large number of data, these correlations were all sig-

nificant (p \ 0.001), but there were striking differences

between the R2 values (Table 1). While the R2 was very weak

Fig. 2 Histogram of the relative best-parent heterosis values when

there is additivity of enzyme concentrations

Table 1 Results of the simulations of 1,000 crosses between parents differing for the distribution of concentrations of four glycolytic enzymes

Inheritance Heterosis R2 H [ 0 and
P

eadd \ 0 H [ 0 and I \ 1

PFK FBA No Mid-parent Best-parent
P

a
P

d
P

edom

P
eadd Nb % Nb %

1 0.5 0 488 512 0.24 0.25 0.22 0.7 501 97 447 87

0.8 0.5 0 527 473 0.27 0.2 0.19 0.72 469 99 423 89

0.5 0.5 0 600 400 0.35 0.12 0.13 0.75 398 99 371 93

0.2 0.5 209 516 275 0.51 0.06 0.05 0.66 275 100 266 97

0 0.5 502 372 126 0.57 0.26 0.1 0.31 126 99 126 100

0.5 1 0 376 624 0.09 0.36 0.36 0.73 578 92 508 81

0.5 0.8 0 456 544 0.16 0.26 0.28 0.77 527 97 467 86

0.5 0.5 0 600 400 0.35 0.12 0.13 0.75 398 99 371 93

0.5 0.2 378 396 226 0.55 0.15 0.05 0.47 225 99 218 96

0.5 0 599 305 96 0.55 0.36 0.11 0.21 96 99 96 100

1 1 0 253 747 0.04 0.48 0.5 0.66 618 83 542 73

1 0 510 324 166 0.46 0.41 0.15 0.19 165 99 165 99

0 1 335 410 255 0.35 0.36 0.19 0.28 255 100 255 100

0 0 892 108 0 0.74 0.34 0.03 0.17 0 – 0 –

Columns ‘‘Inheritance’’: coefficients of inheritance for enzymes PFK and FBA. Columns ‘‘Heterosis’’: observed numbers of each type of

inheritance. Columns R2: fraction of explained variance in the regression of H to the sums of the different genetic effects. Last columns: numbers

and percentages of cases where best-parent heterosis corresponded to a negative value of the sum of additive-by-additive epistasis effects

(
P

eadd), or where best-parent heterosis corresponded to a value of the epistasis index I lower than unity
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for the sum of dominance effects and the sum of dominance-

by-dominance effects (R2 = 0.12 and 0.13 respectively), it

was moderate for the sum of additive effects (R2 = 0.35), and

quite high for the sum of additive-by-additive epistasis effects

(R2 = 0.75) (Fig. 3d). With only two exceptions, the 400

positive H values (i.e. best-parent heterosis) corresponded to

negative values of the sum of the additive-by-additive epis-

tasis effects. Plotting the H value against the novel, general

epistasis index we defined revealed that antagonistic epistasis

is the main factor explaining best-parent heterosis, since 93%

(371/400) of the positive H values corresponded to an epistasis

index between 0 and 1 (Fig. 4).

Non-additivity of enzyme concentrations

These results were quite robust with regard to non-addi-

tivity of concentration of one enzyme. In no case the sum

of dominance effects and the sum of dominance-by-dom-

inance epistasis effects had the highest R2 values. The sum

of additive-by-additive epistasis effects kept the highest

values when there was positive non-additivity, and also

when there was partial negative non-additivity of PFK

(Table 1). More importantly, the association between best-

parent heterosis and additive-by-additive epistasis was

consistently very high: 92–100% of the cases of best-parent

heterosis corresponded to negative
P

eadd values, and 81%

to 100% corresponded to antagonistic epistasis.

When there was non-additive inheritance for both

enzymes, the highest R2 was observed for
P

eadd when there

was complete positive non-additivity for both enzymes;

otherwise the highest R2 was obtained for the sum of additive

effects. But again, the association between best-parent heter-

osis and additive-by-additive epistasis was very strong, with

83% to 100% of the cases corresponding to negative
P

eadd

values, and 73% to 100% to antagonistic epistasis (Table 1).

Discussion

The classical linear genotype–phenotype relationship of

quantitative genetics has been very powerful for plant and

animal breeding, but it is biologically questionable. Find-

ing an explicit function to describe this relationship is of

course out of reach, given the cellular complexity and the

dramatic increase of the number of parameters with the size

of the systems. For that reason, various modelling efforts

based on conceptual shortcuts have been proposed to

simulate complex cellular behaviours from a limited

amount of biological data. In this connection, the metabolic

control theory (MCT) proved to be quite powerful (Fell

1992, for a review). One of the outcomes of MCT has been

to show that if the concentration/activity of an enzyme

changes while the parameters of all other enzymes in the

pathway are fixed, the flux displays a saturation curve
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Fig. 4 Relationship between heterosis index H and epistasis index I
(truncated at 5, the highest value being 16.82). The values on the left
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epistasis. The positive H values correspond to best-parent heterosis
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(Kacser and Burns 1973; Heinrich and Rapoport 1974).

Even though there are exceptions (see discussion in Fiévet

et al. 2006), there are innumerable examples of such a

behaviour (e.g. Kacser and Burns 1981; Fell 1997; Nie-

derberger et al. 1992; Cronwright et al. 2002; Koebmann

et al. 2005, etc.). Actually, as argued by Fiévet et al.

(2006), the hyperbolic-like relationship between enzyme

activity and flux could well be valid also for complex

networks. These authors reconstructed in vitro a small

network with regulation and branching, and observed such

a relationship for the four enzymes the concentration of

which was modified. More importantly, the hyperbolic-like

relation can also be observed at other levels of cell/indi-

vidual organization, from transcription to integrated phe-

notype. Rossignol et al. (2003) showed that the deleterious

effects of a mitochondrial mutation were accounted for by

a saturation curve at various levels of the expression of the

mutation: translation, enzyme complex activity, respiratory

flux, cell growth and clinical manifestations. Therefore,

modelling the genotype–phenotype relying on a hyper-

bolic-like relationship could be biologically relevant for a

large range of macroscopic traits.

To analyse heterosis in this framework, we approxi-

mated the flux through a network using a multidimensional

hyperbolic modelling in which the kinetic behaviour of

each enzyme was described by two systemic parameters.

We decomposed the flux into genetic effects, and examined

the relationships between these genetic effects and heter-

osis for glycolytic flux in a series of 1,000 virtual crosses

between parents differing for their distribution of enzyme

concentrations. We varied the concentrations because the-

oretical studies (Pettersson 1989) and experimental data

suggested that enzyme concentrations are more likely to

vary than their catalytic properties (Bulfield et al. 1978;

Eanes et al. 1990; Tarun et al. 1998). In any case, intro-

ducing kinetic variable systemic parameters into the model

is possible, and would not modify the theoretical frame-

work. Concerning inheritance of enzyme concentrations,

additivity is supported by classical observations (Kacser

and Burns 1981). However, proteomic studies have shown

that even though protein concentrations are indeed in

majority additive, there are cases of non-additive inheri-

tance (Leonardi et al. 1991; Kollipara et al. 2002; Hoecker

et al. 2008). So we performed simulations assuming on the

one hand additivity, on the other hand positive and nega-

tive non-additive inheritance for PFK and/or FBA, the

latter being the most variable enzyme among the parents.

If there is additivity of enzyme concentrations, the

convexity of the response of the flux towards enzyme

concentrations makes mid-parent heterosis inevitable and,

depending on the distribution of the parental enzyme

concentrations, may result in best-parent heterosis. If there

is partial dominance of the low allele, heterosis is no more

inevitable. In all cases, the sum of the additive-by-additive

epistasis effects, and in a lesser extent the sum of the

additive effects, were negatively correlated to the differ-

ence between hybrid flux and the best-parent flux (H).

Best-parent heterosis (H [ 0) corresponded in almost all

cases to negative values of the sum of the additive-by-

additive epistasis effects. By contrast, and unexpectedly,

the dominance and dominance-by-dominance epistasis

effects did not seem to play a large role. Actually, this

apparent paradox can be explained in the following way.

As shown geometrically Fig. 1, dominance is sufficient to

have mid-parent heterosis (parents P1 and P2), while both

dominance and additive-by-additive epistasis are required

to get best-parent heterosis (parents P3 and P4). It is mainly

the level of additive-by-additive epistasis that drives the H

value (Fig. 3d). The novel and general epistasis index we

defined (I) does not include any dominance or dominance-

by-dominance epistasis effect. When there was best-parent

heterosis, index I took usually a value lower than unity,

indicative of antagonistic (less-than-additive) epistasis. In

other words, when the phenotypic difference between two

parents is below the sum of the effects of every individual

allelic substitution in the lowest genotype, their hybrid

usually exhibits a high phenotypic value.

It is possible to set up a bridge between our general

approach of heterosis and a classical result of Mendelian

genetics. As underlined by Phillips (2008) in his recent

review on epistasis, it was very early shown (Bateson et al.

1905), and repeatedly illustrated in many plants (Sinnott and

Dunn 1939; Dooner et al. 1991, etc.), that crossing two

individuals with colourless flowers may result in hybrids with

purple flowers. The explanation is well known: the parents

have each a mutation inactivating a particular enzyme of the

anthocyanin biosynthesis pathway, which disrupts the flux,

and in the hybrid the flux is restored because both enzymes

are active. In more formal terms, consider two biallelic loci

A/a and B/b, a and b being recessive, and leading to a flux

equal to zero when homozygous. We get the following table

of possible phenotypic values (0 and 1 for absence and

presence of flux, respectively):

AA Aa aa

BB 1 1 0

Bb 1 1 0

bb 0 0 0

The cross between AAbb and aaBB, which have no flux,

will produce the hybrid AaBb, with a restored flux. This

situation represents the simplest possible case for deter-

mining the genetic effects and indices we defined. We have

H = 1 (best-parent heterosis),
P

eadd = eAB = -0.25 and
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I = 0 (maximum antagonistic epistasis). In an F2 progeny,

this case corresponds to the classical 9:7 segregation,

where dominance and epistasis occurs (with dominance

alone, we would have a 9:6:1 segregation).

Heterosis appears as an emergent property of the system,

because the properties of each enzyme separately are not

sufficient to account for the phenomenon. With total

enzyme amount half-way between its parents, hybrids can

display best-parent heterosis, which corresponds to a better

exploitation of cell resources than in the parents. This

conclusion is consistent with the negative correlation

between energy cost of growth and mean individual

heterozygosity classically described in marine animals

(e.g. Koehn 1991; Bayne and Hawkins 1997; Danzmann

et al. 1987).

Antagonistic epistasis, which is supposed to be favoured

by natural selection (Desai et al. 2007), is commonly

observed in populations, as attested by experiments of

accumulation of mutations which show that the decrease of

fitness with the number of mutations is ‘‘less-than-addi-

tive’’ (e.g. Maisnier-Patin et al. 2005; Silander et al. 2007).

Antagonistic epistasis has also been evidenced from the

comparison of chromosome substitution strains, in plants

and animals, which have revealed that the sum of the

individual chromosomal effects often dramatically excee-

ded the difference between the parental strains (Redden

1991; Shao et al. 2008). Finally, marker-based studies have

revealed less-than-additive interactions between QTL

(Eshed and Zamir 1996; Ming et al. 2001). All these data

are consistent with the frequent occurrence of heterosis

observed in all species.

We may speculate that the common occurrence of both

antagonistic epistasis and heterosis in natural populations

reflects the non-linearity of the genotype–phenotype rela-

tionship for the vast majority of the phenotypic traits.

Any evolutionary process that may stabilize the favourable

epistatic interactions, su£ch as gene duplications or con-

straint on the recombination rate, should be selected as

it reduces the genetic load inherent to heterosis in

populations.
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