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Abstract Bread wheat (Triticum aestivum L.) produces

glutenin storage proteins in the endosperm. The HMW

glutenins confer distinct viscoelastic properties to bread

dough. The genetics of HMW glutenin proteins have been

extensively studied, and information has accumulated

about individual subunits, chromosomal locations and

DNA sequences, but little is known about the regulators of

the HMW glutenins. This investigation addressed the

question of glutenin regulators. Expression of the glutenins

was analyzed using QRT-PCR in ditelosomic (dt) Chinese

Spring (CS) lines. Primers were designed for each of 4 CS

glutenin genes and a control, non-storage protein endo-

sperm-specific gene Agp-L (ADP-glucose pyrophos-

phorylase). Each line represents CS wheat, lacking one

chromosome arm. The effect of a missing arm could fea-

sibly cause an increase, decrease or no change in

expression. For each HMW glutenin, results indicated there

were, on average, 8 chromosome arms with an up-regula-

tory effect and only one instance of a down-regulatory

effect. There were significant correlations between orthol-

ogous and paralogous HMW glutenins for effects of

chromosome groups B and D. Some or all the glutenin

alleles shared regulatory loci on chromosome arms 2BS,
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7BS, 4DS, 5DS and 6DS, and Agp-L shared regulatory loci

with glutenins on arms 7AS, 7BS, 2DS, 3DS, 4DS and

5DS. These results suggest a few chromosome arms con-

tain putative regulatory genes affecting the expression of

conserved cis elements of 4 HMW glutenin and Agp-L

genes in CS. Regulation by common genes implies the

regulators have diverged little from the common wheat

ancestor, and furthermore, some regulation may be shared

by endosperm-specific-genes. Significant common regula-

tors have practical implications.

Introduction

Wheat is an allohexaploid crop plant belonging to the grass

(Poaceae) family. Hexaploid wheat consists of three gen-

omes—A, B and D—produced by relatively recent

polyploidization events. Each genome is homoeologous to

the other genomes and consists of very similar orthologous

loci. Gu et al. (2004) suggest the A and D genomes were

derived from a common ancestor after separation of the B

genome species. Subsequently, the A and B genomes were

united when an A genome donor, T. urartu, crossed with an

unknown B genome donor and produced T. turgidum. A

couple hundred thousand years later T. turgidum crossed

with a D genome donor, T. tauschii, and produced T. aes-

tivum (Feldman et al. 1995).

Unusual cytological events resulted in duplicated gen-

omes and loci, including paralogous genes residing on the

same chromosomes as the original loci. Duplicated loci

may facilitate the plasticity and evolution of an organism

by retaining the original function of a gene while allowing

its paralog and ortholog to take on modified or novel

functions (see reviews by RA Veitia 2005; Adams and

Wendel 2005).

Wheat grain consists of starch (70%), protein (11%),

fatty acids (3%), ash (2%), and fiber (1.5%) (Clydesdale

1994). Storage proteins, glutenins and gliadins, are syn-

thesized in the endosperm during the grain-filling period;

they comprise 90% of the protein in the wheat grain

(Huebner and Wall 1974; Pike and MacRitchie 2004). High

molecular weight (HMW) glutenin subunits each contrib-

ute about 2% of the total seed protein (Payne et al. 1984;

Halford et al. 1992) and contribute the unique elastic

properties and quality of bread dough.

The HMW glutenins are encoded by loci on homoeol-

ogous chromosomes 1L. There are two closely linked

paralogous genes, designated Glu-1-1 and Glu-1-2, on

chromosomes 1AL, 1BL and 1DL, resulting from an

ancestral duplication event. The glutenin genes probably

evolved from a single ancestral gene (Kreis et al. 1985).

The Glu-1-1 and Glu-1-2 orthologs share more DNA

sequence homology than the paralogs (Allaby et al. 1999).

The genes Glu-1-1 and Glu-1-2 encode X (high Mr) and Y

(low Mr) glutenins, respectively. Two genes are inactive in

many cultivars; Chinese Spring (cv) has two inactive genes

on chromosome 1AL. The HMW glutenin genes occupying

each locus have been cloned and characterized from each

homoeologous chromosome (see review by Shewry et al.

2003).

Allelic variation for the active genes translates to HMW

glutenin subunit variation. The various subunits have been

genetically characterized and correlated with quality

characteristics (Payne 1987). Some subunit combinations

have a more favorable effect on quality than other com-

binations. Qualitative factors contributing elastic properties

of bread dough may be the regularly occurring b-turns of

HMW glutenin polypeptides (Shewry et al. 1989) and

tyrosine bonds (Tilley et al. 2001). A quantitative factor

contributing to quality includes the proportion of HMW

glutenins in relation to other endosperm components

(Huebner and Wall 1974; Field et al. 1983; Lawrence et al.

1988). Rooke et al. (1999) analyzed flour from wheat

transformed to produce a higher proportion of HMW

glutenins; results indicated increased dough strength.

Expression of the HMW glutenin genes determines the

content level of subunits. Kolster et al. (1993) analyzed the

expression of alleles for Glu-A1, Glu-B1 and Glu-D1 from

various donors in a common genetic background, near-

isogenic lines, and results indicated the background did

not affect subunit ratios. Genetic background did affect

properties of bread quality in an experiment involving

four doubled haploid wheat populations (Killerman and

Zimmerman 2000). Kolster et al. (1993) suggest glutenin

loci share a common regulatory mechanism. The sugges-

tion of a common mechanism implies common cis and

trans regulators control the expression of glutenin alleles

relatively the same, regardless of the genotype. However,

an investigation by Thiellement et al. (1986) suggested the

duplicated glutenin genes do not share regulation.

The cis regions of the HMW glutenins are conserved

1,200 bp upstream of the start codon and 200–400 bp

downstream of the stop codon (Anderson et al. 1998).

Lamacchia et al. (2001) indicate the promoter sequence of

1,191 bp upstream of the start site regulates endosperm-

specific expression. The upstream promoter regions consist

of elements common to grasses in Poideae, prominently

including an endosperm box—a GCN4-like motif (GLM,

50-ATGAG/CTCAT-30) and a prolamin box (50-
TGTAAAG-30) (Forde et al. 1985)—a AACA motif (Diaz

et al. 2002) and an enhancer element, more specific to

HMW glutenins (Thomas and Flavell 1990). Anderson

et al. (2002) characterized 50 and 30 DNA of HMW

glutenins and identified potential matrix-attachment

regions (MARs), transposable elements (MITEs), and
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retrotransposons (LTR and non-LTR) flanking respective

glutenin genes. Proposed transcription factors recognize

conserved elements of glutenin promoters: the storage

protein activator (SPA), a seed-specific basic leucine zipper

protein, bZIP (Albani et al. 1997), DNA binding with

one finger (Dof) prolamin box binding factor (Vicente-

Carbajosa et al. 1997) and a MYB-protein, possibly inter-

acting with the Dof protein (Diaz et al. 2002). Wheat and

other cereals share cis motifs and trans domains for the

regulation of storage and possibly other proteins.

Approaches to the identification and mapping of regu-

lators have included genetic mapping using aneuploid

wheat (Galili and Feldman 1985; Rogers et al. 1990;

Wanous et al. 2003) and genetic linkage analysis using

wheat populations (Guillaumie et al. 2004). Guillaumie

et al. (2004) genetically mapped SPA to the long arm of

chromosome 1B, and Ravel et al. (2006) mapped Dof to the

long arm of chromosome 5. Wanous et al. (2003) analyzed

HMW glutenin proteins in ditelosomic wheat lines, and

results indicated genes on several chromosome arms

affected the regulation of each glutenin.

Regulation of gene expression may feasibly occur at any

point between transcription and protein functionality. Some

investigations suggest regulation of HMW glutenins occurs

primarily at the transcriptional level (Bartels and Thomp-

son 1986; Sorensen et al. 1989).

One objective of this investigation was to analyze HMW

glutenin gene expression in ditelosomic wheat lines and to

correlate these results with a previous study on protein

expression (Wanous et al. 2003) and to determine if

glutenins are regulated mostly at the transcriptional or post-

transcriptional levels. Another objective was to correlate

expression of orthologous and paralogous glutenin genes

affected by the chromosome groups for indications of

common chromosomal locations of glutenin regulation.

The glutenin genes provide a unique set of genes to study

the regulatory effects of duplicated genes in a polyploid

plant. Also, common locations may contain important

regulatory alleles contributing content level variation for

the HMW subunits. Manipulation of this variation with

molecular biological tools may facilitate plant selections

for favorable qualities (Rathmell et al. 2001). A control,

non-storage protein, endosperm-specific gene, Agp-L, was

included for an indication of the specificity—tissue or

protein class—of gene expression.

Materials and methods

Plant material

Sears (1954) produced ditelosomic (dt) Chinese Spring

wheat lines. For chromosome arms where dt lines were

available, dt endosperm was compared to euploid CS seeds

(0 vs. 3 doses in the endosperm). For chromosome arms

where dt lines were not available, tetrasomic endosperm was

compared to euploid CS endosperm (6 vs. 3 doses). CS and

related aneuploid lines were obtained from the University of

Missouri—Columbia. Three replicates of each CS euploid

and aneuploid line were grown in 600-diameter pots filled

with commercial potting soil. The growth chamber condi-

tions were set at 25�C, 14 h of light from incandescent and

metal halide lamps. The soil was saturated with water once a

day and 1.0 g of Osmocote (Maryville, OH, USA) fertilizer

applied to each plant, every 4 weeks.

Seed harvest and RNA extraction

Seeds were harvested 15 days post-anthesis (dpa). The

embryo and pericarp were removed and the endosperm was

placed in a microfuge tube and immersed in liquid N and

subsequently stored at -70�C, until further processing. The

endosperm was ground with mortar and pestle, frozen with

liquid N. RNA was extracted using a modified Trizol

(Invitrogen; Carlsbad, CA, USA) protocol. The RNA sample

was treated with DNase and purified with Qiagen RNeasy kit

(Germany). Samples were quantified and protein contami-

nation estimated using a Hitachi spectrophotometer (Japan)

and separated on a 1% agarose gel for an evaluation of

degradation. Samples were stored at -20�C until analysis.

Primer design

HMW glutenin nucleotide sequences were acquired from

GenBank and aligned using MegAlign software (DNA*,

Madison, WI, USA). Primers were designed for each glute-

nin gene based on nucleotide differences that distinguished

each glutenin from the other three.

Genome specific primer design for the large subunit of

ADP-glucose pyrophosphorylase (Agp-L) was executed by

creating primers from a consensus sequence of Agp-L

GenBank accessions X66080, AF244997, EF405961 and

AF492644. The primers amplified a 649 bp fragment from

diploid wheat progenitors: Triticum monococcum (genome

donor, A), Aegilops speltoides (genome donor, B), and

Triticum tauschii (genome donor, D). Amplicons from the

progenitors were then sequenced.

These sequences were aligned to compare sequences

from each genome. The alignment revealed genome spe-

cific single-nucleotide-polymorphisms (SNPs) for each

genome and provided the basis for the design of an A

genome specific Agp-L primer pair. An Agp-L primer pair

designed for the A genome was confirmed to be genome

specific by comparing presence and absence of amplicons

between euploid CS and Dt1AS. The absence of an

amplicon in the Dt1AS sample suggests the specificity of
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primers and chromosome location of Agp-L within the A

genome, on the long arm of chromosome 1A. Primer

sequences (50–30) for the housekeeping gene, 18S rRNA,

control, Agp-L and HMW glutenins:

Agp-L consensus:

Forward, AAGCGATGAAAGTGGACACC

Reverse, CTTCTTGCACTCCCTCCTTG

(amplicon size = 649 bp)

Agp-L (A-genome specific):

Forward, TATATTGCGTCGATGGGAG

Reverse, ATTCAAACTTTGGAGGCTG

(amplicon size = 229 bp)

18S rRNA:

Forward, CTGGGAGGGGCGCATTTATTAGAT

Reverse, CCCGGCCCAAGGTCCAACT

(amplicon size = 463 bp)

Glu-B1-1:

Forward, TAAGCGCCTGGTCCTCTTTG

Reverse, CACCTGTTGGCATGCCTC

(amplicon size = 118 bp)

Glu-B1-2:

Forward, CGACAACCCATACCATGTTAACAC

Reverse, GGGTTGCTGCACCTTTGCC

(amplicon size = 70 bp)

Glu-D1-1:

Forward, GTCGCGGGACAATACGAG

Reverse, GTGCAGGTATTCCCCAAAATATAC

(amplicon size = 118 bp)

Glu-D1-2:

Forward, GCCAAGTGCCGCTCCGTC

Reverse, TGGTCTCACCAGGGTAGAAGGATCC

(amplicon size = 102 bp)

QRT-PCR

A quantitative RT-PCR method estimated Cycle threshold

(Ct) values, using a Cepheid SmartCycler II thermocycler

(Sunnyvale, CA, USA), from the endosperm RNA. The Ct

values of HMW glutenin and Agp-L genes were normalized

with Ct values of 18S rRNA. All samples were replicated

three times. An expression ratio was calculated from the

normalized control, euploid CS, and the normalized samples,

ditelosomic or tetrasomic CS. Significance was determined

with P-values (P \ 0.05) estimated from the ‘‘Pair Wise

Fixed Reallocation Randomization Test,’’ derived from the

‘‘Relative Expression Software Tool’’ (Pfaffl et al. 2001).

Correlation analysis

SPSS 12.1 (Chicago, IL, USA) was used to estimate

Spearman’s correlations (r) of expression between HMW

glutenin alleles.

Results

Quantitative RT-PCR was used to analyze the HMW glu-

tenin gene expression of CS euploid and ditelosomic wheat

lines for an estimate of chromosomal locations having a

significant effect. Expression of HMW glutenins and Agp-L

genes was significantly affected by putative regulatory

genes residing on several chromosome arms (Fig. 1,

Table 1). Expression of the Agp-L and each HMW glutenin

gene was up-regulated by putative genes on 5–13 chro-

mosome arms (Fig. 1; Table 1). In only one instance, for

Glu-D1-2, was expression down-regulated by a gene(s) on

1DS. This observation is consistent with previous studies

indicating the expression of structural genes is commonly

influenced by multiple dosage sensitive regulatory loci

(Guo and Birchler 1994). Gene expression was most sig-

nificantly affected by 1AL, 1BL and 1DL for Agp-L, Glu-

B1 and Glu-D1, respectively, where these loci reside. In a

previous study, Wanous et al. (2003) showed chromosomes

1BL and 1DL had the most significant effects on Glu-B1

and Glu-D1 protein expression. The corresponding results

of these studies and a preceding investigation by Greene

(1983) suggest HMW glutenin RNA transcript levels pre-

dict the final protein concentration and confirm the

consistency and reliability of ditelosomic genetic stocks for

expression analysis.

The HMW glutenin genes shared effects of putative

regulatory loci on groups B and D, based on strong cor-

relations of expression effects of group B and D

chromosome arms. Chromosome arms 2BS, 7BS and 5DS

had significant up-regulatory effects on each of the glutenin

genes; chromosome arm 4DS had significant effects on all

glutenins, except Glu-D1-1; chromosome arm 6DS had

significant effects on the paralogous genes, Glu-B1-1 and

Glu-B1-2; chromosome arm 2DS had significant effects on

the paralogous genes, Glu-B1-1 and Glu-D1-2 (Fig. 1).

Chromosome arms 7BS, 2DS, 4DS and 5DS also had up-

regulatory effects on the control gene, Agp-L (Fig. 1).

The regulation of orthologous and paralogous genes

may be shared, independent or both, depending on the

evolution of cis elements and trans factors. There were

significant correlations between orthologous and paralo-

gous HMW glutenins for effects of chromosome groups B

and D (Table 2). The correlations include the effects of all

chromosome arms of a chromosome group, except the

glutenin locus on 1L (Table 2). A correlation between

glutenin gene expression indicates significant correlations

(P \ 0.01) for all possible pairs of Glu-B1 and Glu-D1 for

effects of chromosome group B (Table 2; Fig. 1b). The

orthologs Glu-B1-1:Glu-D1-1 and Glu-B1-2:Glu-D1-2 and

the paralogs Glu-B1-1:Glu-B1-2, Glu-B1-1:Glu-D1-2, Glu-

B1-2:Glu-D1-1 and Glu-D1-1:Glu-D1-2 shared effects of

chromosome group B arms (Table 2). There was one
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Fig. 1 Relative gene expression of HMW glutenins in ditelosomic

wheat revealed chromosome arms where putative regulatory

genes reside. Regulation was estimated as up or down regulated

relative to euploid CS and a housekeeping gene, 18S rRNA. Relative

expression was estimated from an expression ratio 2
ðCt control�Ct sampleÞ
target =

h

2
ðCt control�Ct sampleÞ
reference

i
: Each graph depicts the effects of chromosome arms

1L-7S for each chromosome group—A (graph a) B (graph b) and D

(graph c)—on expression of Glu-B1-1, Glu-B1-2, Glu-D1-1, and

Glu-D1-2 and a control, non-storage protein gene, Agp-L. These

genes are encoded on chromosome 1L, and the graphics for the

effects of these chromosome arms represent up or down regulation of

the loci

Table 1 Relative gene expression of HMW glutenins and Agp-L in ditelosomic wheat revealed chromosome arms where putative regulatory

genes reside

Chromosome Group A
Gene 1L 1S 2L 2S 3L 3S 4L 4S 5L 5S 6L 6S 7L 7S

Glu-B1-1 ns ns ns ns 3.90* ns ns ns ns ns ns 10.0** ns 10.6*
Glu-B1-2 ns ns ns ns ns ns ns ns ns ns ns ns ns ns
Glu-D1-1 ns ns ns ns ns ns ns ns ns ns 40.0** ns ns ns
Glu-D1-2 ns ns ns ns ns ns ns ns ns ns ns ns ns ns

Agp-L locus ns 2.94* ns ns ns ns ns ns ns ns ns ns 5.05*

Chromosome Group B
Gene 1L 1S 2L 2S 3L 3S 4L 4S 5L 5S 6L 6S 7L 7S

Glu-B1-1 locus ns ns 5.90* ns ns ns ns ns ns ns ns 7.00** 27.0**
Glu-B1-2 locus ns ns 5.50* ns ns ns ns ns ns ns ns ns 28.6**
Glu-D1-1 ns ns ns 8.70* ns ns ns ns ns ns ns ns ns 9.70*
Glu-D1-2 ns ns ns 10.5** ns ns ns ns ns ns ns ns ns 19.6**

Agp-L ns ns ns ns ns ns 2.56** ns ns ns 3.78* ns ns 5.29**

Chromosome Group D
Gene 1L 1S 2L 2S 3L 3S 4L 4S 5L 5S 6L 6S 7L 7S

Glu-B1-1 ns ns ns 4.10* 2.80* ns ns 37.0** ns 25.0* 3.40* 16.6* ns ns
Glu-B1-2 ns ns ns ns ns ns ns 14.0** ns 50.0** ns 21.0* ns ns
Glu-D1-1 locus ns ns ns ns ns ns ns ns 18.8* ns ns ns ns
Glu-D1-2 locus 2.41*(down) ns 2.50* ns 3.25* ns 13.0* ns 41.6** ns ns ns ns

Agp-L ns ns ns 3.95* ns 2.74** ns 3.93** ns 12.8* ns ns ns 5.29**

shared regulatory effects between control Agp-L, and glutenin(s)
shared regulatory effects for orthologs and/or paralogs
*Significant at P<0.05
**Significant at P<0.01
ns - no significant effect

The HMW glutenin, Agp-L and 18S rRNA genes are depicted in the first column to the left and are repeated in three groups, one for each

chromosome—A, B and D. Significant regulatory effects of a chromosome arm are depicted as a factor of increased or decreased expression

caused by a putative regulator residing on the chromosome arm. Significant regulatory effects on paralogs or orthologs and shared by Agp-L are

highlighted in gray. Regulation was up or down relative to euploid CS and a housekeeping gene, 18S rRNA. Relative expression was estimated

from an expression ratio 2
ðCt control�Ct sampleÞ
target =2

ðCt control�Ct sampleÞ
reference

h i
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significant correlation (P \ 0.01) for effects of chromo-

some group D on the paralogs Glu-B1-1 and Glu-B1-2 and

on the glutenin gene, Glu-D1-2, and the control gene, Agp-

L (Table 2; Fig. 1c). There were no significant correlations

for any gene pairs for effects of chromosome group A or

for effects of homoeologous chromosome groups—A:B,

A:D or B:D—though there were instances of shared

expression effects of 2BS:2DS, 3AL:3DL, 6AL:6DL,

6AS:6DS and 7AS:7BS on some glutenin genes (Table 1),

and there were some instances of individual, non-shared

effects of chromosome arms—3AL, 7BL, 1DS, 3DL and

3DS—on single glutenin genes (Table 1).

Discussion

The HMW glutenin gene expression on chromosomes 1BL

and 1DL corresponds with the protein expression results

(Wanous et al. 2003), confirming the methods of protein

and mRNA quantification. There were no overall correla-

tions (P [ 0.05) between glutenin genes and proteins for

effects of respective chromosome groups on expression;

chromosome arms of each chromosome group uniquely

affected gene and protein regulation. The difference

between the putative regulatory genes for protein and gene

expression are summarized for up and down regulation:

glutenin protein expression was up-regulated by putative

trans regulators on 10 chromosome arms and down-regu-

lated by regulators on 5 chromosome arms, on average

(protein data from Wanous et al. 2003); glutenin genes

were up-regulated by putative trans regulators on 8, on

average, and down-regulated by 1, only, chromosome

arm(s). However, about 29% of the positive effects seen at

the protein level (Wanous et al. 2003) also showed positive

effects on transcript abundance in this study. These inter-

actions include the positive effects of 2DS on Glu-B1-1 and

Glu-D1-2; 2BS on Glu-B1-2, Glu-D1-1 and Glu-D1-2; 5DS

on Glu-B1-1 and Glu-D1-1; 6DS on Glu-B1-2; 6DL on

Glu-B1-1; 6AL on Glu-D1-1; and 7BS on Glu-D1-2. These

differences suggest HMW glutenin regulation occurs at

various points between gene transcription and protein

function; the HMW glutenin proteins probably undergo

translational and post-translational control.

Ancient and relatively recent cytological events were

responsible for the duplication of HMW glutenin genes

resulting in paralogs and orthologs. One objective of this

study was to compare the expression patterns of ortholo-

gous and paralogous HMW glutenin genes for implications

of shared regulatory elements. Results indicate cis and

trans elements on chromosome groups B and D are shared

Table 2 Bivariate correlations for the expression of HMW glutenin (Glu-B1-1, Glu-B1-2, Glu-D1-1 and Glu-D1-2) and Agp-L gene expression

in CS wheat

Gene Glu-B1-1 Glu-B1-2 Glu-D1-1 Glu-D1-2 Agp-L Glu-B1-1 Glu-B1-2 Glu-D1-1 Glu-D1-2 Agp-L Glu-B1-1 Glu-B1-2 Glu-D1-1 Glu-D1-2 Agp-L
Chr. Group A A A A A B B B B B D D D D D

Glu-B1-1 A 0.00 -0.14 0.00 0.39 0.27 0.39 0.39 0.39 0.27 0.10 0.14 -0.14 -0.20 0.08

Glu-B1-2 A 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Glu-D1-1 A -0.11 -0.14 -0.11 -0.11 -0.11 0.52 0.19 -0.14 -0.07 -0.12 -0.20

Glu-D1-2 A 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Agp-L A 0.39 0.50 0.50 0.50 0.39 -0.33 -0.21 -0.11 -0.17 0.21

Glu-B1-1 B 0.78** 0.78** 0.78** 0.27 -0.16 -0.26 -0.14 -0.01 0.38

Glu-B1-2 B 1.00** 1.00** 0.39 0.00 -0.21 -0.11 0.09 0.59

Glu-D1-1 B 1.00** 0.39 0.00 -0.20 -0.11 0.09 0.59

Glu-D1-2 B 0.39 0.00 -0.20 -0.11 0.09 0.59

Agp-L B -0.16 -0.26 -0.14 -0.22 0.08

Glu-B1-1 D 0.77** 0.42 0.59 0.41
correlation of expression:

Glu-B1-2 D orthologous 0.62 0.53 0.39
paralogous

Glu-D1-1 D with control, Agp-L 0.52 0.52

Glu-D1-2 D **Significant at p<0.01 0.75**

Agp-L D

Expression as depicted in Fig. 1 and Table 1 (except data for chromosomes 1L because the structural gene effects overwhelm the detection of

some correlations of expression on other chromosome arms) was correlated in all possible combinations. Significant correlations are depicted in

bold with asterisks. Expression ratios for each gene were correlated with each other in all possible combinations using Spearman’s correlation.

The expression data for each glutenin and Agp-L gene analyzed for all chromosome arms of a chromosome group—A, B and D—were included

in each correlation. Significant correlations are highlighted in bold with backgrounds of white or gray
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between paralogous and orthologous glutenins. There is no

indication from this data that one duplication type was

more conserved. Previous investigations have shown the

orthologs are more highly conserved than the paralogs

(Allaby et al. 1999; Anderson et al. 2002). Correlations

between all combinations of glutenins and the control

genes suggest chromosome group B has a common regu-

latory effect on glutenin paralogs and orthologs but not the

control; group D had a common effect on Glu-B1-1:Glu-

B1-2 and Glu-D1-2:Agp-L. The same chromosome group,

rather than homoeologs, was involved with common reg-

ulatory effects; trans elements of one chromosome group

had similar effects on the cis elements of several paralogs,

orthologs and between one glutenin and Agp-L. Duplica-

tion of trans regulators on homoelogous chromosome arms

was suggested for five chromosome arms—2S, 3L, 6L, 6S

and 7S—but shared regulation between homoeologs was

minimal.

It has been hypothesized that aneuploid conditions

may reduce vigor of an organism due to an imbalance of

gene products expressed from the affected chromosome.

Guo and Birchler (1994) conclude transcript levels for

most genes maintained a constant level regardless of the

chromosome dosage; regulatory genes were probably

involved with the compensation of transcript levels of

structural genes affected by chromosome dosage,

increase or decrease. Guo and Birchler (1994) suggest

the imbalance is a result of an altered regulatory system.

In maize, Guo and Birchler (1994) identified 4 chro-

mosomal regions with significant regulatory effects on

the storage protein, Zein and 8 chromosomal regions

with effects on Shrunken 1, Sucrose Synthase. The many

regulators are part of a strict spatial and temporal

development of specialized tissues. For example, Glu-B1-

1 and Agp-L were differentially expressed in the root

compared with the grain tissue (Laudencia-Chingcuanco

et al. 2006).

A conserved promoter sequence (Anderson et al. 1998)

elicited a common response to putative regulators on

certain chromosome arms; in many instances, putative

regulators had an up-regulatory effect on an ancestral cis

element retained by each orthologous and paralogous

glutenin and Agp-L. Potential cis elements include the

endosperm box, an AACA motif and an enhancer element

(Forde et al. 1985; Thomas and Flavell 1990; Diaz et al.

2002). The common effect on the retained cis elements

was initiated by putative trans factors residing on chro-

mosomes 2BS, 7BS, 4DS, 5DS and 6DS. Potential

transcription factors include the SPA, a seed-specific basic

leucine zipper protein, bZIP, Dof prolamin box binding

factor and a MYB-protein, possibly interacting with

the Dof protein (Albani et al. 1997; Vicente-Carbajosa

et al. 1997; Diaz et al. 2002). Trans factors on the

homoeologous chromosome arms did not produce the

same effects (though there are other, minor examples in

Table 1—2BS:2DS, 3AL:3DL, 6AL:6DL, 6AS:6DS and

7AS:7BS—of possible shared homoeologous trans regu-

lators). After polyploidization, most orthologous trans

factors may have been silenced due to an inefficient

redundancy (see review by Wolfe 2001). Kashkush et al.

(2002) analyzed F1 intergeneric Triticeae hybrids for

alterations of gene structure and expression: results indi-

cate genetic and epigenetic changes occurred at the F1

stage, causing gene loss, silencing and activation. Gu

et al. (2004) elucidated possible mechanisms of gene

silencing in wheat and concluded retrotransposon inser-

tions were a primary cause. After gene duplication events,

wheat has retained the functionality of some genes and

silenced others. Anderson et al. (2002) identified trans-

posable element and retrotransposon sequences in the

flanking regions of HMW glutenins and suggest these

were a mechanism of sequence divergence after the initial

duplication event. The HMW glutenin and Agp-L genes

have revealed shared regulation of duplicated and tissue-

specific genes: hypothetically, cis regulatory elements of

the glutenin paralogs, orthologs and Agp-L share the

recognition of trans regulators on several chromosome

arms (Fig. 1; Table 1).

Results of this investigation suggest a few chromosome

arms contain regulatory genes affecting expression of 4

HMW glutenin and Agp-L genes. Regulation by common

genes implies the work involved with identification of

important regulatory genes is simplified and worthwhile.

Notably, putative genes on chromosomes 2BS, 7BS and

5DS controlled a significant level of regulation for each

paralogous and orthologous glutenin gene. Putative genes

on 4DS and 6DS controlled regulation for some paralogous

and orthologous glutenins. Genes controlling expression

may be identified in a mapping study that isolates regions

of these chromosome arms conferring variation for glute-

nin protein. Previous investigations have identified the

chromosomal location of storage protein regulators

(Guillaumie et al. 2004; Prasad et al. 1999; Colas des

Frances and Thiellement 1985). Guillaumie et al. (2004)

mapped SPA to chromosome group 1L, the same chro-

mosomal arm as the HMW glutenin structural genes.

Perretant et al. (2000) mapped bread-making quality and

identified QTLs for dough strength on chromosomes 5D,

1A and 3B. Ravel et al. (2006) mapped Dof on chromo-

some 5L. Putative regulator(s) on chromosome 5DS were

important for expression of all the HMW glutenins. The

isolated regions may reveal candidate regulatory genes in

the bin maps available at GrainGenes. Candidate genes and

molecular markers may be used in breeding programs to

improve the glutenin protein and, possibly, starch compo-

sition of wheat.
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Evolutionary duplication events produced novel Triti-

cum species with multiple loci of HMW glutenin genes.

These genes have been well characterized and provide a

unique opportunity to investigate gene expression effects

of a polyploid genome on orthologous and paralogous

genes. Hypothetically, there are several potential cis and

trans regulatory adaptations, and this study provides

insight into an example of how a polyploid plant conserved

cis regulatory elements of active orthologs and paralogs

(two previously investigated inactive glutenins on 1AL

were caused by a relatively recent genetic or epigenetic

alteration) and silenced redundant trans factors on most

homoeologous chromosome arms. There were a few

instances of independent regulators affecting the expres-

sion of one glutenin gene, and in most instances, putative

regulators from one chromosome arm were shared by

orthologs and paralogs. Shared regulation between glute-

nins and other endosperm-specific genes—Agp-L-residing

on different genomes—B or D—implies the cis and trans

regulators did not diverge extensively from the common

ancestor through the evolution and development of modern

wheat.
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