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Abstract
Interspecific variation in sex-specific contributions to prenatal parental care, including avian nest building, is becoming 
increasingly better understood as we amass more information on more species. We examined whether sex-specific nest build-
ing contributions covary with the colouration of parents and their eggs in 521 species of Western Palearctic birds. Having 
colourful plumage and laying colourful eggs are costly because of the deposition of pigments in feathers and eggs and/or 
forming costly nanostructural substrates in feathers, and so it might be expected that those costs covary with the costs of nest 
building at the level of individuals and/or across species to produce of a suite of codivergent traits. Using a phylogenetically 
informed approach, we tested the hypothesis that species in which females alone invest energy building nests exhibit less 
sexual plumage dichromatism. However, we found comparative support for the opposite of this prediction. We then tested that 
species in which females alone build nests lay more colourful, and costlier, eggs because the dual costs of building nests and 
laying colourful eggs can only be borne by higher quality individuals. As expected, we found that species in which females 
build nests alone or together with males are more likely to lay colourfully pigmented eggs relative to species in which only 
males build nests. Finally, stochastic character mapping provided evidence of the repeated evolution of female-only nest 
building. Interspecific sex differences in plumage colouration therefore covary in a complex manner with female pre- (nest 
building) and post-copulatory (egg production) investment in reproduction.

Keywords Birds · Colour dichromatism · Egg colour · Nest building · Parental care

Introduction

Sex-specific contributions to the care of offspring vary dra-
matically both between and within parental taxa, and inter-
specific variation in the level of investment represents the 

evolutionary outcome of the benefits attained, and the costs 
accrued, from caring for offspring (Clutton-Brock 1991). Our 
understanding of interspecific variation in sex-specific contri-
butions to care for vulnerable and dependent offspring is far 
better than of the building of dens, birthing chambers, or nest 
structures in which offspring are born or hatched and then 
reared (Guillette and Healy 2015). This is surprising because, 
for example, avian nest building is energetically costly (Main-
waring and Hartley 2013), and nest characteristics directly 
impact traits associated with offspring survival and thus also 
of parental fitness (Mainwaring et al. 2014; Guillette and 
Healy 2015). Males and females both contribute to provi-
sioning offspring in most avian species (Clutton-Brock 1991; 
Ketterson and Nolan 1994; Fargevieille et al. 2023) and so 
both sexes may also be expected to contribute to nest building, 
particularly as physiological or anatomical specializations that 
differentially predispose one or the other of the sexes to build 
avian nests appear to be negligible (Clutton-Brock 1991).

Our understanding of interspecific variation in sex-spe-
cific contributions to avian nest building has dramatically 
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increased in recent years (Soler et al. 1998, 2019; Lifjeld 
et al. 2019; Mainwaring et al. 2021). For example, Lifjeld 
et al. (2019) showed that males were less likely to con-
tribute to nest building in species with higher levels of 
promiscuity. Meanwhile, species in which nest building 
is performed by females alone have shorter breeding sea-
sons, higher breeding latitudes, large clutch sizes, and 
more female-only incubation (Mainwaring et al. 2021). In 
addition, female plumage colouration is associated with 
relative male nest building contributions, with male nest 
building occurring more often in species with colourful 
female plumage (Soler et al. 2019). Further, sex-specific 
nest building contributions influence the design of nests 
because species with biparental nest building contribu-
tions build more elaborate nests, possibly because sex-
specific cognitive abilities result in nests built by two 
birds being more elaborate than nests built by one par-
ent (Mainwaring et al. 2021). These studies have pro-
vided new insights into the sex-specific nest-building 
contributions.

Energetic costs may play a role in determining sex-
specific contributions to nest building. This is because 
each of the sexes is expected to invest relatively less in 
the nest-building stage of reproduction, as part of a wider 
evolutionary aim to invest less in reproduction than their 
reproductive partner (Clutton-Brock 1991). When nest 
building is more complex and costly, alternatively, the 
sexes may come together, and both contribute to nest 
building when its production is complex and costly 
(Ketterson and Nolan 1994; Alonso-Alverez et al. 2004; 
Cuthill et al. 2017; Fargevieille et al. 2023). Depending 
on individual quality, across diverse life history traits, 
higher quality individuals may also invest more in spe-
cific components, to generate a suite of positively covary-
ing costly traits. For example, species in which females 
contribute to nest building may also have more colourful 
plumage and accrue costs relative to species with duller 
female plumage. This is because there is larger ener-
getic  investment into greater pigmentation of feathers 
and/or because of the finer-scale arrangement of feather 
materials into nanostructures that adaptively scatter light 
to create bright structural colours and patterns (Fitzpat-
rick 1998; McGraw et al. 2005; Hill 2000; Fargevieille 
et al. 2023; Rincón-Rubio et al. 2023).

Plumage colouration, meanwhile, is a widely used way 
in which individuals signal their own quality either via 
melanin pigmented patterns (Fitzpatrick 1998), through 
the possession of costly structural colours (McGraw et al. 
2002), or the presence of carotenoids that create bright 
red, orange, and yellow displays that are widely associ-
ated with signalling behaviours (Alonso-Alverez et al. 
2004; McGraw et al. 2005). It has been argued that carot-
enoid colours are an honest signal of the condition of 

the individual because they provide reliable information 
about their health (Broggi and Senar 2009; Fargevieille 
et al. 2023). This is because the brightness of carote-
noid-based plumage honestly reflects the condition of 
individuals and is therefore a widely used signal of indi-
vidual health in mate selection (Fitzpatrick 1998; Hill 
2000; Alonso-Alverez et al. 2004: McGraw et al. 2005; 
Broggi and Senar 2009; Fargevieille et al. 2023; but see 
McGraw et al. 2002).

Higher quality oviparous individuals may also be 
expected to invest more heavily in laying colourful eggs 
(Moreno and Osorno 2003) together with costs associated 
with other aspects of parental care, including nest building 
(Mainwaring and Hartley 2013; Cuthill et al. 2017). Calcar-
eous reptilian eggs were thought to be white, but as dino-
saurs, and birds, evolved to breed in more exposed locations, 
they laid more pigmented eggs for camouflage, mimicry, or 
individual recognition (Kilner 2006; Wiemann et al. 2018; 
Mainwaring et al. 2023). In extant birds, meanwhile, white 
eggs are typically laid by species breeding in relatively safe 
locations (e.g. cavities), whilst species occupying more vul-
nerable nest sites (e.g. open nests) often lay visually cryptic, 
brown eggs that are maculated (Kilner 2006; Mainwaring 
et al. 2015, 2023).

It has also been suggested, meanwhile, that the evolu-
tion of brightly coloured blue-green eggs is associated with 
female-to-male quality signalling behaviours (Moreno and 
Osorno 2003) or as a parasol against harmful UV rays 
reaching the developing embryo (Lahti and Ardia 2016). 
Depositing pigments into eggs is costly for female birds 
(Hargitai et al. 2016) and so the intensity of eggshell pig-
mentation positively correlates with the health of laying 
females (Moreno and Osorno 2003). Accordingly, many 
studies report that brightly coloured, and thus more pig-
mented, eggs are laid by higher quality females (Soler et al. 
2005; Moreno et al. 2006; Siefferman et al. 2006; Martínez-
de la Puente et al. 2007; Walters and Getty 2010; Hargi-
tai et al. 2016; but see Hanley et al. 2015; Dehnhard et al. 
2015). Furthermore, females laying more colourful eggs 
are often associated with increased levels of care by their 
male reproductive partners (Moreno et al. 2005; English 
and Montgomerie 2011; Walters et al. 2014; but see Krist 
and Grim 2007; Fronstin et al. 2016).

Having colourful plumages and laying colourful eggs 
are thus both costly because of the need for pigment depo-
sition in generating each set of these phenotypes; in turn, 
we hypothesize that these costs can be borne by higher 
quality individuals alongside the costs of nest building. 
To test this positively covarying suite-of-costly-pheno-
type hypothesis, we used data from more than 500 species 
of Western Palearctic birds to test a prediction, namely 
that (i) bird species in which females build nests alone 
will be similarly colourful to males, or in other words 
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they are less likely to be sexually plumage dichromatic. 
We also tested another prediction, namely that (ii) females 
that build nests alone will be more likely to lay colour-
ful (pigmented) eggs to enhance their own sex-specific 
investment across these two early stages of reproductive 
costs. Finally, we used stochastic character mapping to 
examine the evolutionary transitions that likely occurred 
in the sex-specific contributions to nest building behav-
iours in the birds included in our study.

Methods

Nest building and life history data

We quantified the sex-specific nest building contribu-
tions and the colouration of parents and eggs (Table 1), 
from 521 species from the Birds of the Western Palearc-
tic book series (Cramp and Simmons 1977, 1980, 1983; 
Cramp 1985, 1988, 1992; Cramp and Perrins 1993, 1994a, 
1994b). We focused on the Western Palearctic because it 
was one of the few regions containing a near-complete 
dataset of the traits we examined at the onset of this study, 
and it has a variety of species that differ markedly in their 
sex-specific nest building contributions and plumage and 
egg colour (Nagy et al. 2019; Mainwaring et al. 2021; 
Mainwaring and Street 2021). Nest building contributions 
were classified as ‘male’ if males build alone, ‘female’ if 
females build alone, ‘both’ if both parents contribute and 

‘neither’ if none of the parents contribute (i.e. seabirds 
laying directly onto cliff ledges).

Species building less substantial nests than passerines, 
for example, wading birds including Eurasian oystercatch-
ers (Haematopus ostralegus) and ducks including common 
eiders (Somateria mollissima), were classified into the cat-
egories above because they build nests and so exhibit sex-
specific nest building contributions. Meanwhile, some spe-
cies have nests that are built almost entirely by one sex, but 
the other sex then adds very small quantities of nest material 
at the end as a sexual signal, such as blue tits (Cyanistes 
caeruleus), and we have classified those nests as being built 
by the sex that almost exclusively built the nest (following 
Lifjeld et al. 2019). Finally, species in which males build 
multiple nests, such as the Eurasian wren (Troglodytes 
troglodytes), were classified in terms of their sex-specific 
building contributions to the nest in which eggs were sub-
sequently laid, which therefore excludes their ‘display nests’ 
that are built to attract females and are not suitable for repro-
duction (following Mainwaring et al. 2021).

Sexual plumage dimorphism was classified as being pre-
sent or absent, by assessing colour plates (Cramp and Sim-
mons 1977, 1980, 1983; Cramp 1985, 1988, 1992; Cramp 
and Perrins 1993, 1994a, 1994b). We classified sexual plum-
age dimorphism in a binary manner and so species were clas-
sified as being plumage dimorphic if they had significant 
differences in plumage, whilst species in which females 
were only slightly duller than males were not classed as 
being dimorphic. Those species in which both sexes were 
similar in plumage colouration, were classified as being spe-
cies in which sexual plumage dimorphism was absent. This 
approach relies on the assumption that for most lineages, it is 
the balance of natural and sexual selection that yields plum-
age mono- or dichromatism patterns and not the relative role 
of nest-building and egg-laying.

Meanwhile, we only considered the matured adult plum-
ages of species which means that species with delayed plum-
age maturation (DPM) were grouped according to the ultimate, 
sexually mature plumage’s mono/dichromatism category. This 
is, however, justified as most species with DPM also display 
delayed reproductive investment along their life history trajec-
tories (Hawkins et al. 2012). Thus, even though our approach 
is not as detailed as the approaches advocated by other stud-
ies (e.g. Dale et al. 2015), it still enables us to quantify sex-
specific investment in energetically costly colourful plumage 
and thereby quantify the interspecific variation in the inequality 
of costs associated with having colourful pigmented plumage 
(Hernández et al. 2021). In support of this idea, Hernández 
et al. (2021) showed that colourful ornaments on female birds 
are positively associated with their male-mate preferences, 
clutch sizes, and their immune responses.

Clutch size ranges and the body mass of males and 
females were averaged per species for the analyses. Eggshell 

Table 1  Distribution of species by categories of colouration and nest 
building-related variables analysed in this study

Nest builder sex Total

Neither Male Both Female

Total 34 17 256 214 521
Sexual plumage 

dichromatism
Yes 3 2 29 94 128
No 31 15 227 120 393
Eggshell colour
White 26 11 168 104 309
Brown 4 5 35 26 70
Blue 4 1 53 84 142
Maculation
Yes 19 13 170 148 350
No 15 4 85 66 170
Nest design
Open 11 6 72 16 105
Enclosed 23 11 184 198 416
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colour was determined by inspecting colour plates and 
defined as blue, brown, or white (Table 1). We deemed blue 
or brown but not beige-white as pigmented by predominantly 
biliverdin or protoporphyrin IX, respectively (Hanley et al. 
2015), because these states of human-detectable colour vari-
ation capture not only the pigmentary composition (Verdes 
et al. 2015) but also the physical (Hanley et al. 2015) and 
avian-perceived (Wisocki et al. 2020) variability of eggshell 
colouration. We analysed the binary (yes/no) presence of 
eggshell maculation as a separate predictor in our models. 
Nests were classified as open when exposed as a cup or plat-
form vs. enclosed when the latter was built inside cavities or 
enclosed nests comprising dome, dome and tube or burrow 
nests built in any location (Cramp and Simmons 1977, 1980, 
1983; Cramp 1985, 1988, 1992; Cramp and Perrins 1993, 
1994a, 1994b).

Comparative analyses

We applied phylogenetically controlled generalised linear mixed 
models using Markov chain Monte Carlo techniques (‘MCM-
Cglmm’ package (Hadfield 2010)) to evaluate associations 
between the response variable (nest building contributions, 
with nest builder sex coded numerically with increasing rela-
tive female contributions assumed as 1—neither, 2—male, 3—
both, 4—female) and the predictor variables: sexual plumage 
dimorphism (present/absent: binary-coded), eggshell colour 
(pigmented/not: binary-coded) and maculation (spotted/not: 
binary-coded). We evaluated models with or without controlling 
for body mass and/or clutch size and/or nest design (enclosed/
open: binary-coded) to examine the effect of the life history traits 
upon the performance of the predictors of interest. All predictors 
were centred and scaled prior to being entered into the model.

Ten thousand phylogenetic trees were downloaded from 
BirdTree (http:// birdt ree. org/) based on the ‘Hackett All 
Species’ source. The maximum clade credibility method 
sought a consensus tree in TreeAnnotator v1.8.3 (Rambaut 
and Drummond 2016), and the consensus tree was included 
as an inverted phylogenetic covariance matrix (Hadfield 
and Nakagawa 2010) in each MCMCglmm model. In all 
models, we used Gelman priors (Gelman et al. 2008) for 
the fixed effects and R=(V=1, fix=1), G=(G1=(V=1E−10, 
nu=−1)) priors for the residual and phylogenetic variance, 
respectively.

We ran most of the models for 55,000,000 iterations with 
10% as burn-in and a sampling interval of 25,000 (except 
model 7 and 8—72,000,000 iteration with 20% as burn-in 
and a sampling interval of 40,000 iterations). These settings 
provided >>1000 posterior samples of chains for estimating 
the model parameters, whilst also keeping the autocorrela-
tion level below 0.1 (Hadfield 2021).

To visualise changes in the sex of the nest builder bird 
and the colouration of eggshells, we mapped estimated 

evolutionary transitions on the phylogeny using stochastic 
character mapping (‘phytools’ package (Revell 2012)) of 
the following states: (1) non-exclusively female nest builder 
(neither, male, both) with white eggshell colour, (2) non-
exclusively female nest builder with colourful eggshell, (3) 
female only nest builder with white eggshell colour, and 
(4) female only nest builder with colourful eggshell. We 
conducted a second mapping using data on nest design: (1) 
non-exclusively female nest builder (neither, male, both) 
with open nest, (2) non-exclusively female nest builder with 
enclosed nest, (3) female only nest builder with open nest, 
and (4) female only nest builder with enclosed nest. The 
analyses were performed in R v4.2.2 (R Core Team 2022).

Results

Sexual plumage dichromatism and eggshell colouration 
shows highly significant associations with sex-specific 
nest building contributions, even after controlling for our 
other predictors of body sizes, clutch sizes, or nest designs 
(Table 2, Fig. 1). Contrary to our first prediction, the level of 
female contribution to nest building is significantly higher 
in those species with sexual plumage dimorphism, whereas 
white (unpigmented) eggshells predict a significantly lower 
level of female contribution compared to species laying col-
ourful and thus pigmented (blue or brown) eggs. Meanwhile, 
species are statistically similar in sex-specific nest building 
contributions whether laying maculated eggs or not. Simi-
larly, there is no statistical difference in sex-specific nest 
building contributions in species building open or enclosed 
nests. Although species with varying levels of female con-
tributions to nest building, with regard to species in which 
females build nests alone, together with their male partner or 
contribute nothing, have similar body sizes and clutch sizes, 
larger clutches suggest higher levels of female contribution 
to nest building (p < 0.1 in ¾ of the models including clutch 
size as predictor).

Stochastic character mapping reveals that evolutionary 
transitions likely occurred from a non-exclusively female 
nest builder state to female only nest builder state multiple 
times during the evolution of the studied 521 bird species 
(Fig. 2). In Passeriformes, transitions from female only nest 
builder state with white eggshell colour to female only nest 
builder state with colourful eggshell were a common evo-
lutionary pattern, but non-exclusively female nest builder 
state reappeared in some lineages. Evolutionary transitions 
from non-exclusively female nest builder state to female only 
nest builder state were likely to have occurred when nest 
design was linked to nest building contribution (Fig. 3). The 
female only nest builder state with open nest design probably 
evolved only on a few distantly related lineages. Amongst 
passerine species, the non-exclusively female and the female 

http://birdtree.org/
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only nest builder states frequently changed, and these transi-
tions were probably linked to more enclosed nests.

Discussion

We show that species in which females build nests alone 
or together with males are more likely to have less colour-
ful plumage in comparison to species in which females 
contribute less to nest building. This goes against our first 
prediction which was that those species in which females 
build nests alone would have plumage as colourful as males. 
Meanwhile, we also show that species in which females 
build nests alone or with males are more likely to lay mainly 
blue pigmented and, thus, more colourful (or vivid: sensu 
(English and Montgomerie 2011)) eggs, therefore providing 
support for our second prediction which was that species in 
which females invest more by building nests alone would 
also be investing in more colourful eggs. Finally, stochastic 
character mapping revealed that female-only nest building 
contributions repeatedly evolved during the evolution of the 
521 species from the Western Palearctic that were included 
in this study. However, it is prudent to consider that our 
study taxa comprise about 5% of all the world’s bird species 
from a specific geographic region and that we have analysed 
our data using substantially pruned phylogenies. Our study 
will hopefully spur further studies that contain a greater 
portion of the world’s bird species and, thus, also take a 
global perspective, now that global avian nest databases are 
becoming increasingly available (Sheard et al. 2023; Hauber 
et al. 2023).

Species in which females build nests alone or together 
with males are more likely to have duller plumage than their 
male partners, whilst these patterns did not differ between 
species with open and enclosed nests. One possibility for 
these findings is that the greater investment in colourful 
plumage by males means they are less likely to contrib-
ute to nest building because they already invested effort in 
colourful plumage (Ketterson and Nolan 1994; Soler et al. 
1998; Morales et al. 2011). However, the timing of the cost 
incurred by plumage colouration (moult) and nest build-
ing (breeding season) are often widely separated along the 
annual cycle of birds (e.g. Zuberogoitia et al. 2018), suggest-
ing a lack of ecological need for such an energetic trade-off. 
Alternatively, it is prudent to consider that ornamentation 
can have a complex relationship with reproductive success 
(Jones et al. 2017), and some species included in this study 
may be expressing plumage colouration without incurring 
a meaningful cost (Koch et al. 2019). Further studies could 
therefore usefully examine these various possibilities using 
data from a greater portion of the world’s bird species.

An alternative explanation, meanwhile, is that colour-
ful males may be less likely to build nests because their Ta
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colourful plumage means that they are poorly camouflaged 
(Soler et al. 2019; Rincón-Rubio et al. 2023) and their pres-
ence may attract visually guided predators to the nest site 
(Mainwaring et al. 2015), who might return later to prey 
on the nest content when there are eggs or nestlings in it 
(Colombelli-Negrel and Kleindorfer 2010). In this scenario, 
we would have expected species with colourful males to 
build enclosed nests because they provide a greater shield for 
colourful birds from visually guided predators than open cup 

nests (Mainwaring et al. 2015). This, in turn, may explain 
why female, but not male, colouration is strongly determined 
by vegetative cover around nest sites that helps to provide 
camouflage for females (Medina et al. 2017). Although the 
comparative analyses of the type conducted here do not ena-
ble us to ascribe the direction of causation of the identified 
relationships, we nevertheless show that pre-laying repro-
ductive investment can (negatively) covary with parental 
investment patterns, with species in which females invest 

Fig. 1  Posterior means and 
their 95% credible intervals of 
the predictors estimated in each 
MCMCglmm model

Clutch size

Body mass

Nest design

Maculation
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Fig. 2  Visual representation 
of evolutionary changes in the 
relative contribution of the 
sex of the nest builder and the 
colouration of the species’ egg-
shells mapped on the phylogeny 
of 521 bird species, using the 
consensus of the tree sample 
as a backbone for character 
mapping. Legend from top to 
bottom: non-exclusively female 
nest builder (neither, male, 
both) + white eggshell, non-
exclusively female nest builder 
+ colourful eggshell, female 
only nest builder + white egg-
shell, female only nest builder + 
colourful eggshell
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comparatively less in colouration than their male partners 
investing more effort building nests.

Meanwhile, species with nests built by females alone or 
by males and females together were more likely to lay blue, 
and thus more colourful, eggs than the beige-white (unpig-
mented) eggs in nests where females contribute less to nest 
building. This suggests that females were also not balancing 
the costs of nest building and of having colourful plumage. 
It is possible that females signal their quality or condition to 
their male partners both via investment in laying pigmented 
and, thus, colourful eggs (Soler et al. 2005; Moreno et al. 
2006; Siefferman et al. 2006; Martínez-de la Puente et al. 
2007; Walters and Getty 2010; Hargitai et al. 2016) and 
via their nest building contributions. If so, then nest build-
ing contributions and egg characteristics are likely to have 
evolved in concert with each other, which is characterised by 
positively correlated evolution (Nagy et al. 2019). Further, 
if the nest building contributions by males enable females 
or even both parents to invest more effort into incubating 
their eggs, then the fewer visitation bouts to and from nests 
may mean that the eggs require less crypsis against visually 
guided predators and brood parasites (Kilner 2006; Morales 
et al. 2010).

Alternatively, the detected pattern may have also occurred 
if our original assumption was incorrect and pigmented eggs 
were not more expensive to produce than unpigmented white 
eggs (e.g. Hanley and Doucet 2009; Honza et al. 2011; 

Krištofík et al. 2013; D’Arpa et al. 2022). Such possibilities 
are worthy of further research because, despite the correla-
tive, comparative relationships between eggshell coloura-
tion and reproductive investment revealed here, their causal 
determinants remain largely unclear. Further, stochastic 
character mapping revealed that evolutionary transitions 
towards female-only nest building occurred multiple times 
during the evolution of the birds included in this study. It is 
likely, therefore, that female-only nest building contributions 
are beneficial to birds (Soler et al. 2019; Mainwaring et al. 
2021), although the benefits are presently unclear and are 
worthy of further research attention.

We have shown both that female birds’ contributions to 
nest building and having a colourful plumage are strongly 
negatively related and that females of species investing in 
nest building are more likely to lay colourful eggs. Our 
understanding of interspecific variation in sex-specific con-
tributions to nest building is dramatically increasing (Soler 
et al. 1998, 2019; Lifjeld et al. 2019; Mainwaring et al. 2021, 
Fargevieille et al. 2023), and our study further shows that 
investment in colouration also covaries with sex-specific 
nest building contributions at the interspecific level amongst 
birds from the Western Palearctic region.

Nevertheless, the causal ultimate and proximate mecha-
nisms underlying these evolutionary patterns remain unclear 
and so future studies could usefully examine the mechanisms 
underlying the comparative patterns that we have outlined 

Fig. 3  Visual representation 
of evolutionary changes in the 
relative contribution of the sex 
of the nest builder and the nest 
design mapped on the phylog-
eny of 521 bird species, using 
the consensus of the tree sample 
as a backbone for character 
mapping. Legend from top to 
bottom: non-exclusively female 
nest builder (neither, male, 
both) + open nest, non-exclu-
sively female nest builder + 
enclosed nest, female only nest 
builder + open nest, female only 
nest builder + enclosed nest
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here. Pertinently, it is prudent to remember that our study 
contained data from one region of planet earth and from about 
5% of all extant bird species and so further studies that take a 
global approach may help confirm our findings. In this regard, 
studies that examine such patterns from different regions, such 
as the tropics, or from a global perspective may yield different 
results because the colouration of eggshells (Wisocki et al. 
2020) and of birds (Cooney et al. 2022) varies over broad 
latitudinal gradients and may thus influence sex-specific nest 
building contributions as well. Further, intraspecific studies 
of species in which both parents contribute to nest building 
would be informative. Pertinently, quantifying sex-specific 
nest building contributions in relation to the experimentally 
altered colouration of their reproductive partners would help 
elucidate the proximate mechanisms underlying the compara-
tive patterns observed in this study.
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