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Abstract
Functional traits can have intraspecific and interspecific variations essential in the structure and dynamics of natural com-
munities. These traits may have implications in the germination and seedling establishment phases in seeds. The objective 
of this study was to evaluate the effect of variations in mass, volume, and nutrient content (C, N, and P) on the germination 
of eight species representative of the tropical dry forest (TDF). Our results showed that seed size, both in terms of mass and 
volume, did not predict germination rates or percentages, nor were they related to nutrient content. In contrast, N content was 
the most important trait in the germination phase. Larger seeds did not germinate more or faster, but they could offer better 
resistance against desiccation, since they had higher C/N ratios in their tissues, a characteristic of orthodox seeds. The species 
A. guachapele, B. arborea, H. crepitans, and V. tortuosa presented a high biological potential in terms of their regeneration 
capacity, particularly, because the characteristics of their seeds, as well as the nutrient content, revealed consistent implica-
tions in their reproductive success, promoting high germination percentages in less time. In general, the results obtained in 
this study provide basic knowledge for future research, offering starting points for further exploration of species-specific 
adaptations and how they may be affected by the environment.
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Introduction

Functional traits represent morphological, physiological, 
structural, and phenological adaptations that species have 
developed to survive climatic variations in their inhabited 
ecosystems (Rodríguez-Alarcón et al. 2020). These traits 
can show intraspecific and interspecific variations essen-
tial for the structure and dynamics of natural communities 
(Salgado-Negret 2016; Faccion et al. 2021). For example, 
in Tropical Dry Forest (TDF), species have developed dif-
ferent strategies to cope with prolonged periods of drought. 

Some may be deciduous or modify their leaves into thorns 
to reduce evapotranspiration, while others present adapta-
tions in their stems and roots to conserve water (Pizano and 
García 2014; Chaturvedi et al. 2021). Likewise, phenologi-
cal patterns of leaf production, flowering, and fruiting can 
synchronize with rainy periods, increasing the probability of 
reproductive success (Cárdenas-Henao et al. 2015; Suresh 
and Nanda 2021). Seed morphology traits observed in TDF 
favor seed dispersal by wind or animals, and secondary dor-
mancy in the soil until conditions are suitable for germina-
tion (Vargas 2012; Pérez-Martínez et al. 2014). Similarly, 
morphological traits such as seed size (mass or volume) are 
associated with seed germination rates and seedling viability 
and establishment in these ecosystems (Moles et al. 2005; 
Khurana et al. 2006; Romero-Saritama and Pérez-Ruiz 2016; 
Romero-Saritama and Castillo 2022). It has been observed 
that larger and heavier seeds with high water content and 
the presence of oleosinic proteins are more likely to survive 
dehydration (Plaza and Magnitskiy 2007). However, despite 
these findings, more empirical evidence is needed to support 
the relationships of these morphological traits in TDF.

Communicated by: Łukasz Stępień

 * Jeiner Castellanos-Barliza 
 jcastellanos@unimagdalena.edu.co

1 Grupo de Investigación en Restauración Ecosistémica y 
Ecología Urbana, Facultad de Ciencias Básicas, Universidad 
del Magdalena, Carrera 32#22-08, Santa Marta D.T.C.H., 
470002 Magdalena, Colombia

2 Department of Plant and Microbial Biology, University 
of Minnesota, St. Paul, MN 55108, USA

http://crossmark.crossref.org/dialog/?doi=10.1007/s00114-024-01898-5&domain=pdf
http://orcid.org/0000-0002-3410-7936


 The Science of Nature (2024) 111:1919 Page 2 of 10

General patterns in TDF have revealed that traits such as 
seed size are important for increasing the probability of seed-
ling establishment (Khurana et al. 2006; Romero-Saritama 
and Castillo 2022). For example, larger seeds favor higher 
seedling performance on sites with low resource availability, 
whereas small seeds are produced in greater quantity and 
thus favor species recruitment to potentially less stressful 
sites (Pinho et al. 2019). Most species in TDF are consid-
ered orthodox (89%), which are characterized by tolerat-
ing desiccation, presenting small sizes (10 ± 8 mm long and 
6.2 ± 4 mm wide) and not exceeding one gram in weight 
(Romero-Saritama and Pérez Ruiz 2016; Romero-Saritama 
and Castillo 2022). However, there are some notable excep-
tions in some species, such as Hura crepitans, Cavanillesia 
platanifolia, Geoffroea spinosa, and Tabebuia chrysantha, 
which have larger seed sizes (18 mm long and 3 g in weight) 
and have high germination and survival rates (Romero-Sar-
itama and Castillo 2022). It has been proposed that having 
medium or large seeds can be an advantage for plants under 
high water stress conditions, and having small seeds favors 
the reproductive success of plants under moderate water 
stress conditions. This is because the water requirements of a 
small seed are lower and it can germinate at low water levels. 
Large seeds have the ability to synchronize their germina-
tion with periods of rainfall, withstanding drought and pro-
viding seedlings with more resources for growth (Khurana 
et al. 2006). Additionally, traits such as nutrient content in 
seeds play an important role in the physiological processes 
that initiate germination, as these nutrient reserves stimu-
late metabolic processes that provide energy for embryonic 
development in plants (Milberg and Lamont 1997; Lamont 
and Groom 2013; Soriano et al. 2015). This phenomenon 
has been observed in certain species of the Fabaceae family, 
which have developed a symbiotic association with nitrogen 
(N)-fixing bacteria (De Bedout-Mora et al. 2022). In par-
ticular, a positive correlation has been observed between 
the presence of N-fixing nodules and increased nitrogen 
content in seed endosperm tissues, leading to a reduction 
in the time required for germination (Valencia-Díaz et al. 
2015; Mathesius 2022). The effect of nutrient content on 
germination has been previously observed by Soriano et al. 
(2011) in 19 TDF species in northwestern Mexico. These 
results indicated that larger seeds tended to have a lower N 
concentration, showing a proportional increase in dry mass 
allocation to the seed coat. Thus, both traits were associated 
in this study with lower germination rates and stress persis-
tence strategies, including shade tolerance in tropical trees.

Despite the importance of these strategies at the seed 
level for seedling establishment and survival, such traits 
have not been well studied functionally in different habitats, 
especially in the TDF. Therefore, such studies are critical to 
assess the permanence and sustainability of these dry eco-
systems over time. Similarly, seed traits have received much 

less attention than foliar traits or root traits (Liu et al. 2022; 
Visscher et al. 2022). Therefore, it is essential to expand the 
knowledge of seed traits that influence seedling regeneration 
to implement adequate species selection strategies for the 
restoration of TDF in the future.

Consequently, we used seven functional traits of eight 
representative TDF species to evaluate the effect of vari-
ation in mass, volume, and nutrient content (C, N, and P) 
on ex situ seed germination. We hypothesize that, among 
the groups of species studied, those with greater mass and 
volume have high C, N, and P contents. Accordingly, high 
germination percentages and shorter germination times 
for these species are observed. On the contrary, seeds with 
lower mass and volume are associated with lower nutrient 
contents and longer germination times.

This study is expected to generate knowledge that can be 
used to create ex situ conservation and reproduction strate-
gies for tree species and later be implemented in reforesta-
tion plans in the degraded TDF of the Colombian Caribbean 
region.

Materials and methods

Study area

For this study, seeds of native species were collected in three 
fragments of TDF in the department of Magdalena, Colom-
bia (Fig. 1). These forests are characterized by long periods 
of drought that last between 3 and 8 months, with one or 
two periods of annual rainfall and an average precipitation 
between 250 and 2000 mm. The canopy can reach 10–12 m 
in height and is dominated by species of the Fabaceae, Anac-
ardiaceae, and Malvaceae families, such as Machaerium 
goudotii Benth, Pterocarpus acapulcensis Rose, Astronium 
graveolens Jacq., and Pseudobombax septenatum (Jacq.) 
Dugand (Castellanos-Barliza et al. 2022; Londoño-Lemos 
et al. 2022).

Selected species and seed collection

A total of eight native species of the TDF in the Department 
of Magdalena were selected (Fig. 2): (1) Ceiba pentandra 
(L.) Gaertn. (Fabaceae), (2) Albizia guachapele (Kunth) 
Dugand. (Fabaceae), (3) Cedrela odorata L. (Meliaceae), 
(4) Platypodium elegans Vogel. (Fabaceae), (5) Hura crep-
itans L. (Euphorbiaceae), (6) Myroxylon balsamum (L.) 
Harms. (Fabaceae), (7) Bulnesia arborea (Jacq.) (Zygophyl-
laceae), and (8) Vachellia tortuosa (L.) Seigler y Ebinger. 
(Fabaceae). The composition and quantity of these species 
were selected considering their representativeness in the 
three forest fragments visited, as well as the availability of 
seeds during the collection period (April-March 2021).
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Seeds were collected following the protocol for collect-
ing, processing, and storing wild plant seeds proposed by 
Di Sacco et al. (2020). Approximately 300 seeds of each 
species were manually collected directly from the trees and 
deposited in paper bags. Since certain species, such as C. 
pentandra, A. guachapele, C. odorata, and H. crepitans, 
have dehiscent fruits, we collected ripe fruits characterized 
by their dry appearance and dark brown coloration. They 
were then taken to the laboratory where they were stored in 
semi-hermetic containers to protect them from humidity, air, 
light, and animals and insects to avoid damage and prevent 
a decrease in viability.

Measurement of functional traits

Measurement of seed traits was performed following the 
standardized protocols (Pérez-Harguindeguy et al. 2013). 
Thus, 300 seeds per species were taken and the experimental 

trial was carried out with them. Particularly in the case of M. 
balsamum and P. elegan species, it was decided to measure 
the samaras, since it was difficult to extract the seeds without 
damaging them. Seed mass was calculated as dry weight (g). 
Therefore, three subsamples of seeds were taken from each 
species, which were subjected to the oven at a temperature of 
65 °C until a constant dry weight was obtained. Seed volume 
 (mm3) was calculated according to Eq. 1:

where V is the volume, L1 is the length, L2 is the width, and 
L3 is the thickness.

For determining C, N, and P content, subsamples of 5 to 
50 seeds of each species were taken and ground to obtain 
a minimum of 10 g per species. The crushed seeds were 
packed in zip-lock bags and sent to the laboratory at the 
International Center for Tropical Agriculture in Palmira, 

(1)V = �∕6 × L1 × L2 × L3

Fig. 1  Geographical location of 
the three fragments of TDF in 
Magdalena, Colombia, where 
seeds were collected
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Colombia. Carbon and nitrogen were determined by com-
bustion in an Elemental Analyzer, and the phosphorus con-
tent was determined by atomic absorption and ultraviolet 
visible tests (Murphy and Riley 1962; Sleutel et al. 2007). 
The values were recorded as a percentage of the nutrient. 
Carbon–nitrogen (C/N) and nitrogen-phosphorus (N/P) 
ratios were subsequently calculated with these values.

Germination tests

The collected seeds were examined for any defects and 
properly cleaned. Those with good phytosanitary status, 
i.e., those unaffected by fungi, insects, or morphologi-
cal defects, were selected. Subsequently, these seeds were 
subjected to pre-germinative treatments to break dormancy 
(Abril-Saltos et al. 2017). Hard-coated seeds, such as those 
of A. guachapele, H. crepitans, M. balsamum, P. elegans, 
and V. tortuosa, were scarified and soaked in hot water for 
2 h at a temperature up to 90 °C, while the rest of the seeds 
were only soaked for 2 h. Consequently, 300 seeds of each 
species were sown into bags a nursery at the Universidad del 
Magdalena, Colombia. The substrate for sowing was pre-
pared with soil from one of the TDF sites and sand in a 3:1 
ratio. Seeds were monitored to record germination param-
eters. The time at which the plumule emerged from the soil 
was defined as the germination criterion for this study. The 
germination percentage for each species was calculated as 
the number of germinated seeds divided by the total number 

of seeds multiplied by 100 (Eq. 2). Germination speed (GS) 
was calculated as the reciprocal of the mean germination 
time (AGT, Eqs. 3 and 4; Ranal and De Santana 2006; Sol-
tani et al. 2015).

where AGT (day) is average germination time, Ti is the time 
from the start of the experiment to the i-th observation in 
days, ni is the number of seeds germinated at time i, and k is 
the last day of germination.

where GS  (days−1) is the germination speed.

Data analysis

Seed functional trait means and standard er rors 
(mean ± SE) were calculated. To determine significant 
differences in functional traits among species, Univari-
ate Analysis of Variances (ANOVA) were performed, 
followed by a Tukey’s test when significant differ-
ences were detected (p ≤ 0.05). A Kruskal–Wallis test 
followed by a multiple-contrast Bonferroni test was 

(2)

Germination percentage (%) = No. seeds germinated

∕ No. seeds sown × 100

(3)AGT =
(
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(4)GS = 1∕AGT
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Fig. 2  Seeds of the eight native TDF species studied: A. guachapele (1), B. arborea (2), C. odorata (3), C. pentandra (4), H. crepitans (5), M. 
balsamum, (6), P. elegans (7), and V. tortuosa (8)
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performed when the residuals did not fit a normal dis-
tribution. A principal component analysis (PCA) was 
performed to visualize the associations between traits, 
germination percentage, and germination speed. Spear-
man’s correlations were also performed to observe the 
type of relationships between the functional traits of 
the seeds and the studied germination parameters. In 
addition, multiple linear regression models were fitted 
to determine the most determinant (explanatory) vari-
ables of average speed and germination. The “Stepwise” 
method was applied to identify these variables, which 
consists of eliminating or adding explanatory variables 
step by step. To select the best definitive models, sev-
eral fitting criteria were used, including Durbin-Watson 
(DW), Mean Squares Error (CME), Akaike Information 
Criterion (AIC), and Root Mean Square Error (RMSE). 
These procedures were performed with Statgraphics 
Centurion XVII (StatPoint Technologies, Inc.) and R 
version 4.2.1 (packages: factoextra, stats, olsrr, param-
eters; Hebbali 2020; Lüdecke et al. 2020; Kassambara 
and Mundt 2022; R Core Team 2022).

Results

Functional traits

Significant differences among species were observed in 
seed functional traits (Table 1, gl = 7, p = 0.0001). The spe-
cies P. elegans, H. crepitans, and M. balsamum presented 
higher masses and volumes. In contrary, lower values were 
recorded in C. pentandra, A. guachapele, C. odorata, B. 
arborea, and V. tortuosa. Additionally, high N contents were 
observed in A. guachapele, H. crepitans, and V. tortuosa, 
representing more than 50% of that recorded for the total 
species. High P contents were observed for P. elegans and 
lower for C. pentandra. 

Seed germination

The first germination events were observed three days after 
sowing and were completed after 22 days. The species V. 
tortuosa and A. guachapele had high germination percent-
ages and speeds. B. arborea and H. crepitans showed high 

Table 1  Mean value and standard error of functional seed traits in eight TDF tree species of Magdalena, Colombia

Different letters indicate statistically significant differences between species (p < 0.05)
C carbon, N nitrogen, P phosphorus, C/N carbon-to-nitrogen ratio, N/P nitrogen-to-phosphorus ratio

Species Mass (g) Volume  (mm3) C (%) N (%) P (%) C/N N/P

C. pentandra 0.01 ± 0.000f 51.53 ± 1.656 cd 40.40 ± 1.061a 2.84 ± 0.106de 1.01 ± 0.008a 14.23 ± 0.158ab 2.81 ± 0.085 g
A. guachapele 0.05 ± 0.001d 31.61 ± 0.891de 39.19 ± 2.998a 6.07 ± 0.019a 0.44 ± 0.004de 6.45 ± 0.473e 13.90 ± 0.180a
C. odorata 0.01 ± 0.000 g 90.97 ± 5.645bc 42.75 ± 1.467a 4.36 ± 0.189c 0.69 ± 0.026b 9.81 ± 0.089c 6.36 ± 0.037f
P. elegans 1.07 ± 0.018a 8252.82 ± 174.026a 42.25 ± 0.689a 3.18 ± 0.060d 0.25 ± 0.004f 13.20 ± 0.468b 12.75 ± 0.053b
H. crepitans 0.96 ± 0.007a 1278.14 ± 51.885ab 46.49 ± 1.775a 5.39 ± 0.133b 0.71 ± 0.002b 8.61 ± 0.117 cd 7.64 ± 0.163e
M. balsamum 0.16 ± 0.006b 1386.99 ± 44.179ab 43.16 ± 2.542a 2.66 ± 0.092e 0.40 ± 0.023e 16.30 ± 1.523a 6.69 ± 0.157f
B. arborea 0.13 ± 0.005c 118.73 ± 4.944b 42.36 ± 1.153a 4.11 ± 0.011c 0.48 ± 0.011 cd 10.30 ± 0.307c 8.58 ± 0.225d
V. tortuosa 0.04 ± 0.001e 20.55 ± 0.750e 42.03 ± 0.764a 5.77 ± 0.001ab 0.52 ± 0.004c 7.28 ± 0.134de 11.20 ± 0.081c

Fig. 3  Germination percentage 
(a) and germination speed (b) of 
seeds in eight tree species of the 
TDF of Magdalena, Colombia
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germination but a low germination speed (Fig. 3a, b). Over-
all, P. elegans showed the lowest germination percentage 
and germination speed in the study. Conversely, seeds of C. 
pentandra and C. odorata species did not germinate.

Effect of traits on seed germination

Generally, seed traits showed a clear significant relation-
ship with species germination (Fig. 4 and Table 2). In par-
ticular, the speed and percentage of germination (GS and 
GP) were positively related to mass (r = 0.52), N content 
(r = 0.41), and N/P ratio (0.70) and negatively with C/N 
ratio and P (r =  − 0.41). On the other hand, N and P con-
tents were negatively associated with mass (Ms) and vol-
ume (Vol), respectively (Table 2). The results of this study 
indicated that 39.1% of the total variability was explained 
by the first principal component (PC1) and 31.6% by the 
second component (PC2) (Fig. 4). The first three PCA com-
ponents explained 80.9% of the total variation in the data. 
The first component was associated with the variables, C/N 
(r =  − 0.52), GP (r = 0.29), N (r = 0.55), and GS (r = 0.37). 
The second component was associated with Ms (r =  − 0.47), 
N/P (r =  − 0.50), P (r = 0.44), and Vol (r =  − 0.54).

Two regression models were fitted and indicated the effect 
of some traits on seed germination of the species studied 
(Table 3). Although Model 1 was significant, it explained 
only 21% of the seed germination data (GP, R2). Specifi-
cally, N content was the most significant variable in this 
model. Specifically, Model 2 presented a better fit and was 
significant (p < 0.00; R2 = 42%). According to this model, 
the combined effect of volume and N/P ratio explained the 
speed of seed germination (Table 3).

Discussion

The present study reveals the importance of measuring func-
tional traits to assess seed germination in several species 
found in TDF. Currently, there is limited information avail-
able (Visscher et al. 2022). Therefore, a better understanding 
of the functional characteristics of each species will enhance 
our knowledge of their biology, as well as their dynamics 
in natural regeneration and successional trajectories over 
time in these forests (Prado-Junior et al. 2017; Chaturvedi 
et al. 2021). Consequently, this advance not only enriches 

Fig. 4  Principal component 
analysis (PCA) of functional 
traits and seed germination in 
eight TDF tree species of Mag-
dalena, Colombia. Ms: mass, 
Vol: volume, C: carbon, N: 
nitrogen, P: phosphorus, C/N: 
carbon–nitrogen ratio, N/P: 
nitrogen-phosphorus ratio, GP: 
germination percentage, and 
GS: germination speed

Table 2  Spearman’s 
correlations between functional 
traits, speed and average 
germination of eight TDF 
tree species of Magdalena, 
Colombia

AG average germination, GS germination speed
* Significant at 0.05 level; ** Significant at 0.01 level; *** Significant at 0.001 level

Mass Volume N P N/P C/N AG GS

Mass 0.78***  − 0.18  − 0.53** 0.46* 0.13 0.52** 0.35
Volume  − 0.64**  − 0.43*  − 0.07 0.60** 0.07  − 0.12
N 0.26 0.47*  − 0.95*** 0.46* 0.41*
P  − 0.54**  − 0.19  − 0.28  − 0.41*
N/P  − 0.58** 0.48* 0.70***
C/N  − 0.38  − 0.41*
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our scientific understanding but also allows the design of 
appropriate management strategies for the ecological conser-
vation of these tropical dry ecosystems, which is a priority 
for their sustainability.

The results of this study partially supported our hypoth-
esis, as not all seeds with greater mass and volume recorded 
high germination rates and percentages. On the contrary, 
these seeds showed lower nutrient contents (N and P) and 
more harder tissues (high C/N ratio, indicator of the quality 
of organic materials that may be resistant to decomposition 
in soil, e.g., tissues with high lignin, suberin, and polyphenol 
content) (Castellanos-Barliza and León-Peláez 2011; Gal-
lagher et al. 2013). In this same sense, studies have indi-
cated that hard-seedness may favor maintaining the embryo 
to prevent desiccation in long periods of dormancy in the 
seed bank, as well as protecting against mechanical impacts, 
insect attacks and pathogens until environmental conditions 
promote germination (Pacheco et al. 2007; Plaza and Mag-
nitskiy 2007; Vargas-Figueroa 2015; Salvador et al. 2022).

Additionally, traits such as seed weight and volume have 
been associated with the dispersal ability, growth form and 
life history of the species (Leishman and Westoby 1994; 
Galindo-Rodriguez and Roa-Fuentes 2017; Chaturvedi 
et al. 2021). Similarly, patterns observed in TDF suggest 
that seeds with less weight (0.0016–0.8721 g) are a typical 
feature in the life cycles of early successional pioneer spe-
cies such as Eugenia procera (Sw.) Poir., Guazuma ulmifolia 
Lam., and Chiococca alba (L.) Hitchc., which can disperse 
more easily and germinate quickly in open spaces (Otálora 
2017; Prado-Junior et al. 2017). In our study, 88% (7 sp) 
of the species were intermediate pioneers, which presented 
generally low seed weights (≤ 1 g; according to Romero-
Saritama and Pérez-Ruiz 2016), and 63% (5 sp) presented/
had high germination percentages.

In this study, traits such as seed mass and seed volume did 
not predict germination speed or germination percentages, 
nor were they related to nutrient content (Fig. 4, Tables 2 
and 3). Likely, seeds with greater mass and volume are 
more associated with dispersal processes and tolerance to 
dehydration (Galindo-Rodriguez and Roa-Fuentes 2017). 

In contrast, N content was the most important trait for the 
germination phase in this study (Table 3). These results are 
consistent with previous findings indicating that nutrient 
contents, particularly N and P, are more closely related to 
rapid seedling germination (Soriano et al. 2011; Veselá et al. 
2022). However, most of the evaluated species are wind-
dispersed and presented seeds with orthodox characteristics 
(≤ 1 g in weight), i.e., with hard and impermeable seed coats 
(Cárdenas-Salgado and Pizano 2019). A. guachapele, H. 
crepitans, and V. tortuosa species presented low C/N ratios 
and high N and P contents, suggesting fewer hard tissues 
and more N and P cycling. These high N contents favored 
high germination rates and percentages, particularly for 
A. guachapele and V. tortuosa. The higher nitrogen con-
tent could be attributed to their legumes' ability to associ-
ate with nitrogen-fixing bacteria. This association provides 
the advantage of accumulating more significant amounts of 
atmospheric nitrogen in their tissues, in the form of glyco-
proteins, amino acids, and tannins (Castellanos-Barliza and 
León-Peláez 2010; Corby et al. 2011; Soriano et al. 2015; 
Mathesius 2022). Similar results were observed by Soriano 
et al. (2011, 2015) in nine tree species of the Fabaceae fam-
ily in a dry tropical forest in northwestern Mexico. High 
N contents (6.4–7.3%) in seeds were positively related to 
germination rates, attributed to the elevated mobilization of 
nitrogen compounds during the initial stages of germination.

In tropical forests, N and P are highly demanded ele-
ments in plant growth and development (Zhang et al. 2022). 
Therefore, during the early stages, large amounts of N are 
consumed in protein formation to generate rapid growth of 
stems and leaves (Nunes-Nesi et al. 2010). Likewise, P con-
tent is involved in root system development; therefore, larger 
P reserves in the seeds allow seedlings to be established 
faster (White and Veneklaas 2012; Novoa et al. 2018). We 
found that out of the eight species evaluated, H. crepitans, 
M. balsamum, and B. arborea had a low N/P ratio, which 
points to an adequate P content and likely an appropriate 
cycling of this element, which was reflected in high values 
in their germination rates (Fig. 2). On the other hand, C. 
odorata and C. pentandra did not germinate despite having 

Table 3  Regression models 
created using stepwise method 
of variable addition and 
elimination to explain the 
patterns between germination 
and functional traits in seeds of 
eight tree species in the TDFs of 
the department of Magdalena, 
Colombia

DW Durbin-Watson, MSE mean squares of error, AIC Akaike information criterion, RMSE root mean 
squared error, GP germination percentage, GS germination speed
*Significant at 0.05 level; ***significant at 0.001

Model 1. Average germination Variable Added/removed R2 AIC RMSE
1 N Added 20.80 26.72 0.39
Model 2. Germination speed

  1 N/P Added 27.10 29.02 0.12
  2 Vol Added 42.00 32.49 0.11

Adjusted models MSE R2 DW p-value
Model 1. GP =  − 0.23 + 15.11N 0.15 20.80 1.80 0.03*
Model 2. GS =  − 0.109 + 0.027NP − 0.0000216Vol 0.31 42.30 1.87 0.00***
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a high N and P content; it is likely that these seeds quickly 
lost their viability when stored at room temperature or enter 
a stage of secondary dormancy (Pugnaire and Valladares 
2007; Solberg et al. 2020), in which the seed is induced to 
enter a state of suspension of its development, remaining 
on standby until specific environmental factors such as the 
availability of water, light, temperature and soil moisture 
are conducive to the activation of the germination process 
(Baskin and Baskin 2004; Moles and Westoby 2006; Sautu 
et al. 2006; Garwood 1983; Rubio de Casas et al. 2017; Buijs 
2020). Studies have reported that the probability of germi-
nation of C. odorata can vary between 10 and 70% due to 
specific requirements related to light availability and sub-
strate temperature (Quinto et al. 2009; Alvarez and Rendón 
2016). For C. pentandra, germination has been reported to 
occur between 18 and 41 days after sowing, with percentages 
ranging between 8 and 90%, depending on the time elapsed 
between harvest and sowing (Zamora-Cornelio et al. 2010).

Functional traits can generally predict processes in the 
dynamics of natural regeneration and seed germination in 
TDF ecosystems (Asanok et al. 2013; Faccion et al. 2021). 
However, the influence of these traits may vary according 
to the particular characteristics of each species and the eco-
system being evaluated. In this study, although N content 
was the best predictor of seed germination in all species 
(Table 3), the significant association observed between vol-
ume and C/N ratio (Table 2), reveals that seeds with higher 
volume presented more resistant tissues that retarded ger-
mination rates. Thus, functional traits such as the presence 
of thick testa and high values in the C/N ratio (hard tissues) 
could reveal the potential of some species to resist desicca-
tion and persist in the seed bank until optimal conditions for 
their establishment as seedlings are present (Rahayu et al. 
2022; Salvador et al. 2022). Consequently, these functional 
traits can determine a species’ reproductive success in the 
face of possible climate change and forest fire scenarios 
(Cárdenas-Salgado and Pizano 2019; Badano and Sánchez-
Montes de Oca 2022).

Conclusions

According to the observations of this study, the results did 
not clearly support our hypothesis, as larger seeds with 
higher mass and volume did not reflect higher nutrient con-
tents favoring germination speed and germination percent-
ages. On the other hand, functional traits such as nutrient 
content were more determinant seed mass and volume dur-
ing the germination process, as in the case of A. guachapele, 
B. arborea, and H. crepitans. These species presented high 
N and P contents, resulting in their germination being high 
and fast. For this reason, evaluating several traits allows 
us to better assess the predictions and assumptions drawn 

from dynamic and vital processes like seed germination. 
The species A. guachapele, B. arborea, H. crepitans, and V. 
tortuosa demonstrated a high biological potential in terms 
of their regeneration capacity, particularly, because the char-
acteristics of their seeds, as well as the nutrient content, 
revealed consistent implications in their reproductive suc-
cess, promoting high germination percentages in less time. 
In general, the results obtained in this study provide basic 
knowledge for future research, offering starting points for 
further exploration of species-specific adaptations and how 
they may be affected by the environment. This more detailed 
focus on intraspecific variation in seed traits will contribute 
to our overall understanding of regeneration dynamics in 
tropical dry forests.
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