Skip to main content
Log in

Snake fangs from the Lower Miocene of Germany: evolutionary stability of perfect weapons

  • Short Communication
  • Published:
Naturwissenschaften Aims and scope Submit manuscript

Abstract

There is a general consensus that most of today’s nonvenomous snakes are descendants of venomous snakes that lost their venomous capabilities secondarily. This implies that the evolutionary history of venomous snakes and their venom apparatus should be older than the current evidence from the fossil record. We compared some of the oldest-known fossil snake fangs from the Lower Miocene of Germany with those of modern viperids and elapids and found their morphology to be indistinguishable from the modern forms. The primary function of recent elapid and viperid snake fangs is to facilitate the extremely rapid, stab-like application of highly toxic venoms. Our findings therefore indicate that the other components of the venom-delivery system of Early Miocene vipers and elapids were also highly developed, and that these snakes used their venom in the same way as their modern relatives. Thus, the fossil record supports the view that snakes used their venoms to rapidly subdue prey long before the mid-Tertiary onset of the global environmental changes that seem to have supported the successful radiation of venomous snakes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Fry BG (2005) From genome to “venome”: molecular origin and evolution of the snake venom proteome inferred from phylogenetic analysis of toxin sequences and related body proteins. Genome Res 15:403–420

    Article  PubMed  CAS  Google Scholar 

  • Fry BG, Wüster W (2004) Assembling an arsenal: origin and evolution of the snake venom proteome inferred from phylogenetic analysis of toxin sequences. Mol Biol Evol 21:870–883

    Article  PubMed  CAS  Google Scholar 

  • Fry BG, Lumsden NG, Wüster W, Wickramaratna JC, Hodgson WC, Kini RM (2003) Isolation of a neurotoxin (alpha-colubritoxin) from a nonvenomous colubrid: evidence for early origin of venom in snakes. J Mol Evol 57:446–452

    Article  PubMed  CAS  Google Scholar 

  • Fujimi TJ, Kariya Y, Tsuchiya T, Tamiya T (2002) Nucleotide sequence of phospholipase A2 gene expressed in snake pancreas reveals the molecular evolution of toxic phospholipase A2 genes. Gene 292:225–231

    Article  PubMed  CAS  Google Scholar 

  • Holman JA (2000) Fossil snakes of North America. Indiana University Press, Bloomington

    Google Scholar 

  • Ivanov M (2000) Snakes of the lower/middle Miocene transition at Vieux Collonges (Rhône, France), with comments on the colonisation of western Europe by colubroids. Geodiversitas 22:559–588

    Google Scholar 

  • Jackson K (2002) How tubular venom-conducting fangs are formed. J Morphol 252:291–297

    Article  PubMed  Google Scholar 

  • Jackson K (2003) The evolution of venom-delivery systems in snakes. Zool J Linn Soc 137:337–354

    Article  Google Scholar 

  • Kardong KV (1996) Snake toxins and venoms: an evolutionary perspective. Herpetologica 52:36–46

    Google Scholar 

  • Kardong KV (2002) Colubrid snakes and Duvernoy’s “venom” glands. J Toxicol Toxin Rev 21:1–19

    Google Scholar 

  • Kinkelin F (1892) Ein fossiler Giftzahn. Zool Anz 15:93–94

    Google Scholar 

  • Kochva E (1987) The origin of snakes and the evolution of the venom apparatus. Toxicon 25:65–106

    Article  PubMed  CAS  Google Scholar 

  • Kochva E, Nakar O, Ovadia M (1983) Venom toxins: plausible evolution from digestive enzymes. Am Zool 23:427–430

    CAS  Google Scholar 

  • Kuch U, Mebs D (2002) Envenomations by colubrid snakes in Africa, Europe, and the Middle East. J Toxicol Toxin Rev 21:159–179

    Google Scholar 

  • Mein P (1989) Updating of MN Zones. In: Lindsay EH, Fahlbusch V, Mein P (eds) European Neogene Mammal Chronology. Plenum, New York, pp 73–90

    Google Scholar 

  • Ménez A, Bontems F, Roumestand C, Gilquin B, Toma F (1992) Structural basis for functional diversity of animal toxins. Proc R Soc Edinb B 99:83–103

    Google Scholar 

  • Parmley D, Holman JA (2003) Nebraskophis Holman from the late Eocene of Georgia (USA), the oldest known North American colubrid snake. Acta Zool Cracov 46:1–8

    Google Scholar 

  • Rage J-C (1984) Handbuch der Paläoherpetologie, Part 11. Serpentes. Gustav Fischer, Stuttgart

  • Rage J-C, Augé M (1993) Squamates from the Cainozoic of the western part of Europe. A review. Rev Paléobiol vol spéc 7:199–216

    Google Scholar 

  • Rage J-C, Buffetaut E, Buffetaut-Tong H, Chaimanee Y, Ducrocq S, Jaeger JJ, Suteethorn V (1992) A colubrid snake in the late Eocene of Thailand: the oldest known Colubridae (Reptilia, Serpentes). CR Acad Sci (II) 314:1085–1089

    Google Scholar 

  • Rage J-C, Bajpai S, Thewissen JGM, Tiwari BN (2003) Early Eocene snakes from Kutch, Western India, with a review of the Palaeophiidae. Geodiversitas 25:695–716

    Google Scholar 

  • Savitzky AH (1980) The role of venom-delivery strategies in snake evolution. Evolution 34:1194–1204

    Article  Google Scholar 

  • Sawai Y, Honma M, Kawamura Y, Saki A, Hatsuse M (2002) Rhabdophis tigrinus in Japan: pathogenesis of envenomation and production of antivenom. J Toxicol Toxin Rev 21:181–201

    Google Scholar 

  • Scanlon JD, Lee MSY, Archer M (2003) Mid-Tertiary elapid snakes (Squamata, Colubroidea) from Riversleigh, northern Australia: early steps in a continent-wide adaptive radiation. Geobios 36:573–601

    Article  Google Scholar 

  • Slowinski JB, Lawson R (2002) Snake phylogeny: evidence from nuclear and mitochondrial genes. Mol Phylogenet Evol 24:194–202

    Article  PubMed  CAS  Google Scholar 

  • Szyndlar Z, Böhme W (1993) Die fossilen Schlangen Deutschlands: Geschichte der Faunen und ihrer Erforschung. Mertensiella 3:381–431

    Google Scholar 

  • Szyndlar Z, Rage J-C (2002) Fossil record of the true vipers. In: Schuett GW, Höggren M, Douglas ME, Greene HW (eds) Biology of the vipers. Eagle Mountain, Eagle Mountain, pp 419–444

    Google Scholar 

  • Underwood G, Kochva E (1993) On the affinities of the burrowing asps Atractaspis (Serpentes: Atractaspididae). Zool J Linn Soc 107:3–64

    Article  Google Scholar 

  • Vidal N (2002) Colubroid systematics: evidence for an early appearance of the venom apparatus followed by extensive evolutionary tinkering. J Toxicol Toxin Rev 21:21–41

    Google Scholar 

  • Vidal N, Hedges SB (2002) Higher-level relationships of caenophidian snakes inferred from four nuclear and mitochondrial genes. C R Biol 325:987–995

    Article  PubMed  CAS  Google Scholar 

  • Vidal N, Hedges SB (2004) Molecular evidence for a terrestrial origin of snakes. Proc R Soc Lond B (Suppl) 271:226–229

    Article  Google Scholar 

  • Young BA, Zahn K, Blair M, Lalor J (2000) Functional subdivision of the venom gland musculature and the regulation of venom expulsion in rattlesnakes. J Morphol 246:249–259

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We wish to thank R. Reisz (Toronto) and W. Kuch (Berlin) for reading earlier drafts of the manuscript and D. Scott (Toronto) for technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johannes Müller.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kuch, U., Müller, J., Mödden, C. et al. Snake fangs from the Lower Miocene of Germany: evolutionary stability of perfect weapons. Naturwissenschaften 93, 84–87 (2006). https://doi.org/10.1007/s00114-005-0065-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00114-005-0065-y

Keywords

Navigation