Skip to main content

Advertisement

Log in

Einfluss des knöchernen Alignments auf den Bandapparat des Kniegelenks

Influence of the bony alignment on the ligaments of the knee joint

  • Leitthema
  • Published:
Die Unfallchirurgie Aims and scope Submit manuscript

Zusammenfassung

Die Ausrichtung der unteren Extremitäten im dreidimensionalen Raum wird als Alignment bezeichnet. Biomechanische und klinische Studien konnten in den letzten Jahren zeigen, dass das knöcherne Alignment einen relevanten Einfluss auf den Bandapparat und auf die Stabilität des Kniegelenks hat. Im Fall von ligamentären pathologischen Schäden am Kniegelenk sollte ein mögliches Malalignment daher immer auch diagnostisch beurteilt und ggf. in die Therapieplanung einbezogen werden. Ein varisches Malalignment spielt v. a. im Hinblick auf die Kreuzbänder und die posterolateralen Bandstrukturen eine wichtige Rolle und konnte als Risikofaktor für das Versagen einer Rekonstruktion dieser Bandstrukturen identifiziert werden. Auch für das valgische Malalignment gibt es ähnliche Daten v. a. im Hinblick auf das vordere Kreuzband und den medialen Kapselbandapparat. Abweichungen in der Sagittalebene, und hier v. a. die Inklination der tibialen Gelenkfläche („slope“), sind mittlerweile gut untersucht und haben einen relevanten Einfluss auf die anteroposteriore Stabilität des Kniegelenks und auf die Kreuzbänder. Erste klinische Studien zu operativen Achskorrekturen im selektierten Patientenkollektiv zeigten vielversprechende Ergebnisse mit dem Potenzial, Bandrekonstruktionen vor einem erneuten Versagen zu schützen. Weitere Daten v. a. im Hinblick auf den Stellenwert und die genaue Indikationsstellung einer zusätzlichen Achskorrektur sind jedoch notwendig.

Abstract

In recent years biomechanical and clinical studies have shown that the three-dimensional bony alignment of the lower extremities has a relevant influence on the ligamentous structures of the knee and consequently on the stability of the knee joint. Therefore, in the case of pathological ligamentous damage of the knee joint, a possible malalignment must always be thoroughly evaluated and if necessary, included in the treatment planning. Varus malalignment plays an important role especially with respect to the cruciate ligaments as well as the posterolateral ligamentous structures and has been identified as a significant risk factor for failure after surgical reconstruction of these ligamentous structures. Similar data have also been published for valgus malalignment particularly with respect to its negative influence on the anterior cruciate ligament and the medial capsuloligamentous complex. Alignment deviations in the sagittal plane, especially the inclination of the tibial articular surface (slope), have been extensively investigated in several recent studies. It has been demonstrated that the tibial slope has a relevant influence on the anteroposterior stability of the knee joint and hence on the cruciate ligaments. First clinical studies on the surgical correction of the axis in selected patients showed very promising results with the potential of protecting ligament reconstructions against repeated failure; however, further data especially regarding the importance and the exact indications for an additional alignment correction are necessary.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3

Literatur

  1. Akoto R, Alm L, Drenck TC, Frings J, Krause M, Frosch KH (2020) Slope-correction osteotomy with lateral extra-articular tenodesis and revision anterior cruciate ligament reconstruction is highly effective in treating high-grade anterior knee laxity. Am J Sports Med 48:3478–3485

    Article  PubMed  PubMed Central  Google Scholar 

  2. Bernhardson AS, Aman ZS, DePhillipo NN, Dornan GJ, Storaci HW, Brady AW et al (2019) Tibial slope and its effect on graft force in posterior cruciate ligament reconstructions. Am J Sports Med 47:1168–1174

    Article  PubMed  Google Scholar 

  3. Bernhardson AS, Aman ZS, Dornan GJ, Kemler BR, Storaci HW, Brady AW et al (2019) Tibial slope and its effect on force in anterior cruciate ligament grafts: anterior cruciate ligament force increases linearly as posterior tibial slope increases. Am J Sports Med 47:296–302

    Article  PubMed  Google Scholar 

  4. Bernhardson AS, DePhillipo NN, Aman ZS, Kennedy MI, Dornan GJ, LaPrade RF (2019) Decreased posterior tibial slope does not affect postoperative posterior knee laxity after double-bundle posterior cruciate ligament reconstruction. Am J Sports Med 47:318–323

    Article  PubMed  Google Scholar 

  5. Bernhardson AS, DePhillipo NN, Daney BT, Kennedy MI, Aman ZS, LaPrade RF (2019) Posterior tibial slope and risk of posterior cruciate ligament injury. Am J Sports Med 47:312–317

    Article  PubMed  Google Scholar 

  6. Beynnon BD, Hall JS, Sturnick DR, Desarno MJ, Gardner-Morse M, Tourville TW et al (2014) Increased slope of the lateral tibial plateau subchondral bone is associated with greater risk of noncontact ACL injury in females but not in males: a prospective cohort study with a nested, matched case-control analysis. Am J Sports Med 42:1039–1048

    Article  PubMed  PubMed Central  Google Scholar 

  7. Brandon ML, Haynes PT, Bonamo JR, Flynn MI, Barrett GR, Sherman MF (2006) The association between posterior-inferior tibial slope and anterior cruciate ligament insufficiency. Arthroscopy 22:894–899

    Article  PubMed  Google Scholar 

  8. Brouwer GM, van Tol AW, Bergink AP, Belo JN, Bernsen RM, Reijman M et al (2007) Association between valgus and varus alignment and the development and progression of radiographic osteoarthritis of the knee. Arthritis Rheum 56:1204–1211

    Article  CAS  PubMed  Google Scholar 

  9. Cantin O, Magnussen RA, Corbi F, Servien E, Neyret P, Lustig S (2015) The role of high tibial osteotomy in the treatment of knee laxity: a comprehensive review. Knee Surg Sports Traumatol Arthrosc 23:3026–3037

    Article  CAS  PubMed  Google Scholar 

  10. Christensen JJ, Krych AJ, Engasser WM, Vanhees MK, Collins MS, Dahm DL (2015) Lateral tibial posterior slope is increased in patients with early graft failure after anterior cruciate ligament reconstruction. Am J Sports Med 43:2510–2514

    Article  PubMed  Google Scholar 

  11. Cooper JD, Wang W, Prentice HA, Funahashi TT, Maletis GB (2019) The association between tibial slope and revision anterior cruciate ligament reconstruction in patients 〈/=21 years old: a matched case-control study including 317 revisions. Am J Sports Med 47:3330–3338

    Article  PubMed  Google Scholar 

  12. Daehlin L, Inderhaug E, Strand T, Parkar AP, Solheim E (2022) The effect of posterior tibial slope on the risk of revision surgery after anterior cruciate ligament reconstruction. Am J Sports Med 50:103–110

    Article  PubMed  Google Scholar 

  13. Dean CS, Liechti DJ, Chahla J, Moatshe G, LaPrade RF (2016) Clinical outcomes of high tibial osteotomy for knee instability: a systematic review. Orthop J Sports Med 4:2325967116633419

    Article  PubMed  PubMed Central  Google Scholar 

  14. Dejour D, Saffarini M, Demey G, Baverel L (2015) Tibial slope correction combined with second revision ACL produces good knee stability and prevents graft rupture. Knee Surg Sports Traumatol Arthrosc 23:2846–2852

    Article  PubMed  Google Scholar 

  15. Ellison AE (1979) Distal iliotibial-band transfer for anterolateral rotatoryinstability of the knee. J Bone Joint Surg Am 61(3):330-337

  16. Fares A, Horteur C, Abou Al Ezz M, Hardy A, Rubens-Duval B, Karam K et al (2023) Posterior tibial slope (PTS) 〉/= 10 degrees is a risk factor for further anterior cruciate ligament (ACL) injury; BMI is not. Eur J Orthop Surg Traumatol 33:2091–2099

    Article  PubMed  Google Scholar 

  17. Faschingbauer M, Sgroi M, Juchems M, Reichel H, Kappe T (2014) Can the tibial slope be measured on lateral knee radiographs? Knee Surg Sports Traumatol Arthrosc 22:3163–3167

    Article  CAS  PubMed  Google Scholar 

  18. Feucht MJ, Mauro CS, Brucker PU, Imhoff AB, Hinterwimmer S (2013) The role of the tibial slope in sustaining and treating anterior cruciate ligament injuries. Knee Surg Sports Traumatol Arthrosc 21:134–145

    Article  PubMed  Google Scholar 

  19. Giffin JR, Stabile KJ, Zantop T, Vogrin TM, Woo SL, Harner CD (2007) Importance of tibial slope for stability of the posterior cruciate ligament deficient knee. Am J Sports Med 35:1443–1449

    Article  PubMed  Google Scholar 

  20. Giffin JR, Vogrin TM, Zantop T, Woo SL, Harner CD (2004) Effects of increasing tibial slope on the biomechanics of the knee. Am J Sports Med 32:376–382

    Article  PubMed  Google Scholar 

  21. Grassi A, Macchiarola L, Urrizola Barrientos F, Zicaro JP, Costa Paz M, Adravanti P et al (2019) Steep posterior tibial slope, anterior tibial subluxation, deep posterior lateral femoral condyle, and meniscal deficiency are common findings in multiple anterior cruciate ligament failures: an MRI case-control study. Am J Sports Med 47:285–295

    Article  PubMed  Google Scholar 

  22. Grimm NL, Levy BJ, Jimenez AE, Bell R, Arciero RA (2020) Open Anatomic Reconstruction of the Posterolateral Corner: The Arciero Technique. ArthroscTech 9(9):e1409–e1414. https://doi.org/10.1016/j.eats.2020.05.022. Erratum in: Arthrosc Tech. 2021 May 21;10(5):e1409. PMID: 33024684; PMCID: PMC7528654

  23. Group M, Wright RW, Huston LJ, Spindler KP, Dunn WR, Haas AK et al (2010) Descriptive epidemiology of the Multicenter ACL Revision Study (MARS) cohort. Am J Sports Med 38:1979–1986

    Article  Google Scholar 

  24. Gwinner C, Janosec M, Wierer G, Wagner M, Weiler A (2021) Graft survivorship after anterior cruciate ligament reconstruction based on tibial slope. Am J Sports Med 49:3802–3808

    Article  PubMed  PubMed Central  Google Scholar 

  25. Gwinner C, Weiler A, Roider M, Schaefer FM, Jung TM (2017) Tibial slope strongly influences knee stability after posterior cruciate ligament reconstruction: a prospective 5‑ to 15-year follow-up. Am J Sports Med 45:355–361

    Article  PubMed  Google Scholar 

  26. Hashemi J, Chandrashekar N, Mansouri H, Gill B, Slauterbeck JR, Schutt RC Jr. et al (2010) Shallow medial tibial plateau and steep medial and lateral tibial slopes: new risk factors for anterior cruciate ligament injuries. Am J Sports Med 38:54–62

    Article  PubMed  Google Scholar 

  27. Hewett TE, Ford KR, Hoogenboom BJ, Myer GD (2010) Understanding and preventing acl injuries: current biomechanical and epidemiologic considerations – update 2010. N Am J Sports Phys Ther 5:234–251

    PubMed  PubMed Central  Google Scholar 

  28. Hinckel BB, Demange MK, Gobbi RG, Pecora JR, Camanho GL (2016) The effect of mechanical varus on anterior cruciate ligament and lateral collateral ligament stress: finite element analyses. Orthopedics 39:e729–736

    Article  PubMed  Google Scholar 

  29. Hudek R, Fuchs B, Regenfelder F, Koch PP (2011) Is noncontact ACL injury associated with the posterior tibial and meniscal slope? Clin Orthop Relat Res 469:2377–2384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Imhoff FB, Mehl J, Comer BJ, Obopilwe E, Cote MP, Feucht MJ et al (2019) Slope-reducing tibial osteotomy decreases ACL-graft forces and anterior tibial translation under axial load. Knee Surg Sports Traumatol Arthrosc 27:3381–3389

    Article  PubMed  Google Scholar 

  31. Kim SJ, Moon HK, Chun YM, Chang WH, Kim SG (2011) Is correctional osteotomy crucial in primary varus knees undergoing anterior cruciate ligament reconstruction? Clin Orthop Relat Res 469:1421–1426

    Article  PubMed  Google Scholar 

  32. Lee CC, Youm YS, Cho SD, Jung SH, Bae MH, Park SJ et al (2018) Does posterior tibial slope affect graft rupture following anterior cruciate ligament reconstruction? Arthroscopy 34:2152–2155

    Article  PubMed  Google Scholar 

  33. Li Y, Zhang H, Zhang J, Li X, Song G, Feng H (2015) Clinical outcome of simultaneous high tibial osteotomy and anterior cruciate ligament reconstruction for medial compartment osteoarthritis in young patients with anterior cruciate ligament-deficient knees: a systematic review. Arthroscopy 31:507–519

    Article  PubMed  Google Scholar 

  34. Mancini EJ, Kohen R, Esquivel AO, Cracchiolo AM, Lemos SE (2017) Comparison of ACL strain in the MCL-deficient and MCL-reconstructed knee during simulated landing in a cadaveric model. Am J Sports Med 45:1090–1094

    Article  PubMed  Google Scholar 

  35. Marouane H, Shirazi-Adl A, Adouni M, Hashemi J (2014) Steeper posterior tibial slope markedly increases ACL force in both active gait and passive knee joint under compression. J Biomech 47:1353–1359

    Article  CAS  PubMed  Google Scholar 

  36. McLean SG, Oh YK, Palmer ML, Lucey SM, Lucarelli DG, Ashton-Miller JA et al (2011) The relationship between anterior tibial acceleration, tibial slope, and ACL strain during a simulated jump landing task. J Bone Joint Surg Am 93:1310–1317

    Article  PubMed  Google Scholar 

  37. Mehl J, Otto A, Kia C, Murphy M, Obopilwe E, Imhoff FB et al (2020) Osseous valgus alignment and posteromedial ligament complex deficiency lead to increased ACL graft forces. Knee Surg Sports Traumatol Arthrosc 28:1119–1129

    Article  PubMed  Google Scholar 

  38. Mehl J, Paul J, Feucht MJ, Bode G, Imhoff AB, Sudkamp NP et al (2017) ACL deficiency and varus osteoarthritis: high tibial osteotomy alone or combined with ACL reconstruction? Arch Orthop Trauma Surg 137:233–240

    Article  PubMed  Google Scholar 

  39. Noyes FR, Barber-Westin SD (2005) Posterior cruciate ligament revision reconstruction, part 1: causes of surgical failure in 52 consecutive operations. Am J Sports Med 33:646–654

    Article  PubMed  Google Scholar 

  40. Noyes FR, Barber-Westin SD, Albright JC (2006) An analysis of the causes of failure in 57 consecutive posterolateral operative procedures. Am J Sports Med 34:1419–1430

    Article  PubMed  Google Scholar 

  41. Oh YK, Kreinbrink JL, Wojtys EM, Ashton-Miller JA (2012) Effect of axial tibial torque direction on ACL relative strain and strain rate in an in vitro simulated pivot landing. J Orthop Res 30:528–534

    Article  PubMed  Google Scholar 

  42. Oh YK, Lipps DB, Ashton-Miller JA, Wojtys EM (2012) What strains the anterior cruciate ligament during a pivot landing? Am J Sports Med 40:574–583

    Article  PubMed  PubMed Central  Google Scholar 

  43. Renstrom P, Ljungqvist A, Arendt E, Beynnon B, Fukubayashi T, Garrett W et al (2008) Non-contact ACL injuries in female athletes: an International Olympic Committee current concepts statement. Br J Sports Med 42:394–412

    Article  CAS  PubMed  Google Scholar 

  44. Rozinthe A, van Rooij F, Demey G, Saffarini M, Dejour D (2022) Tibial slope correction combined with second revision ACLR grants good clinical outcomes and prevents graft rupture at 7‑15-year follow-up. Knee Surg Sports Traumatol Arthrosc 30:2336–2341

    Article  PubMed  Google Scholar 

  45. Salmon LJ, Heath E, Akrawi H, Roe JP, Linklater J, Pinczewski LA (2018) 20-year outcomes of anterior cruciate ligament reconstruction with hamstring tendon autograft: the catastrophic effect of age and posterior tibial slope. Am J Sports Med 46:531–543

    Article  PubMed  Google Scholar 

  46. Sharma L, Chang AH, Jackson RD, Nevitt M, Moisio KC, Hochberg M et al (2017) Varus thrust and incident and progressive knee osteoarthritis. Arthritis Rheumatol 69:2136–2143

    Article  PubMed  PubMed Central  Google Scholar 

  47. Sharma L, Chmiel JS, Almagor O, Felson D, Guermazi A, Roemer F et al (2013) The role of varus and valgus alignment in the initial development of knee cartilage damage by MRI: the MOST study. Ann Rheum Dis 72:235–240

    Article  PubMed  Google Scholar 

  48. Sharma L, Song J, Dunlop D, Felson D, Lewis CE, Segal N et al (2010) Varus and valgus alignment and incident and progressive knee osteoarthritis. Ann Rheum Dis 69:1940–1945

    Article  PubMed  Google Scholar 

  49. Shelbourne KD, Benner RW, Jones JA, Gray T (2021) Posterior tibial slope in patients undergoing anterior cruciate ligament reconstruction with patellar tendon Autograft: analysis of subsequent ACL graft tear or Contralateral ACL tear. Am J Sports Med 49:620–625

    Article  PubMed  Google Scholar 

  50. Shelburne KB, Kim HJ, Sterett WI, Pandy MG (2011) Effect of posterior tibial slope on knee biomechanics during functional activity. J Orthop Res 29:223–231

    Article  PubMed  Google Scholar 

  51. Song GY, Ni QK, Zheng T, Zhang ZJ, Feng H, Zhang H (2020) Slope-reducing tibial osteotomy combined with primary anterior cruciate ligament reconstruction produces improved knee stability in patients with steep posterior tibial slope, excessive anterior tibial subluxation in extension, and chronic meniscal posterior horn tears. Am J Sports Med 48:3486–3494

    Article  PubMed  Google Scholar 

  52. Sonnery-Cottet B, Archbold P, Cucurulo T, Fayard JM, Bortolletto J, Thaunat M et al (2011) The influence of the tibial slope and the size of the intercondylar notch on rupture of the anterior cruciate ligament. J Bone Joint Surg Br 93:1475–1478

    Article  CAS  PubMed  Google Scholar 

  53. Sonnery-Cottet B, Mogos S, Thaunat M, Archbold P, Fayard JM, Freychet B et al (2014) Proximal tibial anterior closing wedge osteotomy in repeat revision of anterior cruciate ligament reconstruction. Am J Sports Med 42:1873–1880

    Article  PubMed  Google Scholar 

  54. Spahn G, Fritz J, Albrecht D, Angele P, Fickert S, Aurich M et al (2017) Coincidence and therapy of dysalignments and degenerative knee cartilage lesions. Results from the German cartilageregistry DGOU. Z Orthop Unfall 155:457–467

    PubMed  Google Scholar 

  55. Tischer T, Paul J, Pape D, Hirschmann MT, Imhoff AB, Hinterwimmer S et al (2017) The impact of osseous malalignment and realignment procedures in knee ligament surgery: a systematic review of the clinical evidence. Orthop J Sports Med 5:2325967117697287

    Article  PubMed  PubMed Central  Google Scholar 

  56. van de Pol GJ, Arnold MP, Verdonschot N, van Kampen A (2009) Varus alignment leads to increased forces in the anterior cruciate ligament. Am J Sports Med 37:481–487

    Article  PubMed  Google Scholar 

  57. Vivacqua T, Thomassen S, Winkler PW, Lucidi GA, Rousseau-Saine A, Firth AD et al (2023) Closing-wedge posterior tibial slope-reducing osteotomy in complex revision ACL reconstruction. Orthop J Sports Med 11:23259671221144786

    Article  PubMed  PubMed Central  Google Scholar 

  58. Voos JE, Suero EM, Citak M, Petrigliano FP, Bosscher MR, Citak M et al (2012) Effect of tibial slope on the stability of the anterior cruciate ligament-deficient knee. Knee Surg Sports Traumatol Arthrosc 20:1626–1631

    Article  PubMed  Google Scholar 

  59. Webb JM, Salmon LJ, Leclerc E, Pinczewski LA, Roe JP (2013) Posterior tibial slope and further anterior cruciate ligament injuries in the anterior cruciate ligament-reconstructed patient. Am J Sports Med 41:2800–2804

    Article  PubMed  Google Scholar 

  60. Weiler A, Berndt R, Wagner M, Scheffler S, Schatka I, Gwinner C (2023) Tibial slope on conventional lateral radiographs in anterior cruciate ligament-injured and intact knees: mean value and outliers. Am J Sports Med 51:2285–2290

    Article  PubMed  PubMed Central  Google Scholar 

  61. Wink AE, Gross KD, Brown CA, Guermazi A, Roemer F, Niu J et al (2017) Varus thrust during walking and the risk of incident and worsening medial tibiofemoral MRI lesions: the Multicenter Osteoarthritis Study. Osteoarthritis Cartilage 25:839–845

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Winkler PW, Wagala NN, Hughes JD, Lesniak BP, Musahl V (2022) A high tibial slope, allograft use, and poor patient-reported outcome scores are associated with multiple ACL graft failures. Knee Surg Sports Traumatol Arthrosc 30:139–148

    Article  PubMed  Google Scholar 

  63. Won HH, Chang CB, Je MS, Chang MJ, Kim TK (2013) Coronal limb alignment and indications for high tibial osteotomy in patients undergoing revision ACL reconstruction. Clin Orthop Relat Res 471:3504–3511

    Article  PubMed  PubMed Central  Google Scholar 

  64. Yoon KH, Park SY, Park JY, Kim EJ, Kim SJ, Kwon YB et al (2020) Influence of posterior tibial slope on clinical outcomes and survivorship after anterior cruciate ligament reconstruction using hamstring autografts: a minimum of 10-year follow-up. Arthroscopy 36:2718–2727

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julian Mehl.

Ethics declarations

Interessenkonflikt

J. Mehl führt beratende Tätigkeiten für Arthrex GmbH und Ormed GmbH durch. S. Siebenlist ist Berater für Arthrex GmbH, medi Gmbh & Co. KG sowie KLS Martin Group.

Für diesen Beitrag wurden von den Autoren keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.

Additional information

Redaktion

Sebastian Siebenlist, München

Julian Mehl, München

figure qr

QR-Code scannen & Beitrag online lesen

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mehl, J., Siebenlist, S. Einfluss des knöchernen Alignments auf den Bandapparat des Kniegelenks. Unfallchirurgie 127, 27–34 (2024). https://doi.org/10.1007/s00113-023-01363-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00113-023-01363-4

Schlüsselwörter

Keywords

Navigation