Skip to main content
Log in

Ätiologische Konzepte von gastrointestinalen Fehlbildungen/Atresien

Etiological concepts of gastrointestinal malformations/atresias

  • Leitthema
  • Published:
Monatsschrift Kinderheilkunde Aims and scope Submit manuscript

Zusammenfassung

Die Ursachen der gastrointestinalen Fehlbildungen resp. Atresien sind heterogen. Die meisten Atresien treten sporadisch auf. Bis heute wurden kein Umweltfaktor oder genetischer Defekt identifiziert, der allein einen Großteil der verschiedenen Fehlbildungen ursächlich erklären könnte. Aufgrund der Möglichkeiten moderner Array- und Exomanalysen konnten in den vergangenen 10 Jahren zahlreiche neue Krankheitsgene identifiziert werden. Wir wissen daher, dass sich einzelne ursächliche genetische Risikofaktoren geringfügig überlappen und zum gemeinsamen Auftreten von Fehlbildungen der Speiseröhre und des Enddarms führen, und dass ein großer Anteil der duodenalen Atresien im Rahmen eines zugrunde liegenden Down Syndroms vorkommt. Für die Mehrheit der intestinalen Atresien sind die genetischen Ursachen nach wie vor unklar. Eine humangenetische Beratung sollte epidemiologische Aspekte zum beobachteten Wiederholungsrisiko für die unterschiedlichen Atresien und die Erscheinung der jeweiligen Atresien (syndromal oder nichtsyndromal [isoliert]) berücksichtigen.

Abstract

The causes of gastrointestinal malformations or atresias are heterogeneous. Most atresias occur sporadically. To date, no environmental factor or genetic defect has been identified that alone could causally explain a large proportion of the various malformations. Due to the capabilities of modern array and exome analyses, numerous new disease genes have been identified in the past 10 years. It is known that a small overlap of individual causative genetic risk factors underlies the co-occurrence of malformations of the esophagus and anorectum, and that a large proportion of duodenal atresias occur in the context of an underlying Down syndrome; however, for the vast majority of intestinal atresias the genetic causes remain unclear. The human genetic counselling should consider epidemiological aspects of the observed recurrence risk for the different atresias and the appearance of each atresia (syndromic or non-syndromic, isolated).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Literatur

  1. Vogt EC (1929) Congenital esophageal atresia. AJR Am J Roentgenol 22:463–465

    Google Scholar 

  2. Gross RE (1953) The surgery of infancy and childhood: its principles and techniques. Saunders, Philadelphia

    Google Scholar 

  3. Nassar N, Leoncini E, Amar E et al (2012) Prevalence of esophageal atresia among 18 international birth defects surveillance programs. Birth Defects Res Part A Clin Mol Teratol 94:893–899

    Article  CAS  Google Scholar 

  4. Kyyrönen P, Hemminki K (1988) Gastro-intestinal atresias in Finland in 1970–79, indicating time-place clustering. J Epidemiol Community Health 42:257–265

    Article  PubMed  PubMed Central  Google Scholar 

  5. Di Gianantonio E, Schaefer C, Mastroiacovo PP et al (2001) Adverse effects of prenatal methimazole exposure. Teratology 64:262–266

    Article  CAS  PubMed  Google Scholar 

  6. Felix JF, Steegers-Theunissen RP, de Walle HE, de Klein A, Torfs CP, Tibboel D et al (2007) Esophageal atresia and tracheoesophageal fistula in children of women exposed to diethylstilbestrol in utero. Am J Obstet Gynecol 197:38.e1–38.e5

    Article  PubMed  Google Scholar 

  7. Geneviève D, de Pontual L, Amiel J et al (2007) An overview of isolated and syndromic oesophageal atresia. Clin Genet 71:392–399

    Article  PubMed  Google Scholar 

  8. Choinitzki V, Zwink N, Bartels E et al (2013) Second study on the recurrence risk of isolated esophageal atresia with or without trachea-esophageal fistula among first-degree relatives: no evidence for increased risk of recurrence of EA/TEF or for malformations of the VATER/VACTERL association spectrum. Birth Defects Res Part A Clin Mol Teratol 97:786–791

    Article  CAS  Google Scholar 

  9. Billmyre KK, Klingensmith J (2015) Sonic hedgehog from pharyngeal arch 1 epithelium is necessary for early mandibular arch cell survival and later cartilage condensation differentiation. Dev Dyn 244:564–576

    Article  PubMed  Google Scholar 

  10. Li Y, Litingtung Y, Dijke PT et al (2007) Aberrant Bmp signaling and notochord delamination in the pathogenesis of esophageal atresia. Dev Dyn 236:746–754

    Article  CAS  PubMed  Google Scholar 

  11. Fausett SR, Brunet LJ, Klingensmith J (2014) BMP antagonism by Noggin is required in presumptive notochord cells for mammalian foregut morphogenesis. Dev Biol 391:111–124

    Article  CAS  PubMed  Google Scholar 

  12. Szumska D, Pieles G, Essalmani R et al (2008) VACTERL/caudal regression/currarino syndrome-like malformations in mice with mutation in the proprotein convertase Pcsk5. Genes Dev 22:1465–1477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. de Jong EM, Felix JF, de Klein A et al (2010) Etiology of esophageal atresia and tracheoesophageal fistula: “mind the gap”. Curr Gastroenterol Rep 12:215–222

    Article  PubMed  PubMed Central  Google Scholar 

  14. McMullen KP, Karnes PS, Moir CR et al (1996) Familial recurrence of tracheoesophageal fistula and associated malformations. Am J Med Genet 63:525–528

    Article  CAS  PubMed  Google Scholar 

  15. Brosens E, Eussen H, van Bever Y et al (2013) VACTERL association etiology: the impact of de novo and rare copy number variations. Mol Syndromol 4:20–26

    Article  CAS  PubMed  Google Scholar 

  16. Cognet M, Nougayrede A, Malan V et al (2011) Dissection of the MYCN locus in Feingold syndrome and isolated oesophageal atresia. Eur J Hum Genet 19:602–606

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Digilio MC, McDonald-McGinn DM, Heike C et al (2009) Three patients with oculo-auriculovertebral spectrum and microdeletion 22q11.2. Am J Med Genet A 149A:2860–2864

    Article  PubMed  Google Scholar 

  18. Corsten-Janssen N, du Marchie Sarvaas GJ, Kerstjens-Frederikse WS et al (2014) CHD7 mutations are not a major cause of atrioventricular septal and conotruncal heart defects. Am J Med Genet A 164A:3003–3009

    Article  PubMed  Google Scholar 

  19. Brosens E, Marsch F, de Jong EM et al (2016) Copy number variations in 375 patients with oesophageal atresia and/or tracheoesophageal fistula. Eur J Hum Genet 24:1715–1723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Zhang R, Gehlen J, Kawalia A et al (2020) Human exome and mouse embryonic expression data implicate ZFHX3, TRPS1, and CHD7 in human esophageal atresia. PLoS ONE 15(6):e234246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Wang J, Ahimaz PR, Hashemifar S et al (2021) Novel candidate genes in esophageal atresia/tracheoesophageal fistula identified by exome sequencing. Eur J Hum Genet 29:122–130

    Article  CAS  PubMed  Google Scholar 

  22. Gehlen J, Giel AS, Köllges R et al (2022) First genome-wide association study of esophageal atresia identifies three genetic risk loci at CTNNA3, FOXF1/FOXC2/FOXL1, and HNF1B. HGG Adv 3:100093

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Lucky AW, Gorell E (2023) Epidermolysis bullosa with pyloric atresia. In: Adam MP, Everman DB, Mirzaa GM et al (Hrsg) GeneReviews. University of Washington, Seattle, S 1993–2023

    Google Scholar 

  24. Murgia C, Blaikie P, Kim N et al (1998) Cell cycle and adhesion defects in mice carrying a targeted deletion of the integrin beta4 cytoplasmic domain. Embo J 17:3940–3951

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Tan KL, Murugasu JJ (1973) Congenital pyloric atresia in siblings. Arch Surg 106:100–102

    Article  CAS  PubMed  Google Scholar 

  26. Peled N, Dagan O, Babyn P et al (1992) Gastric-outlet obstruction induced by prostaglandin therapy in neonates. N Engl J Med 327:505–510

    Article  CAS  PubMed  Google Scholar 

  27. Morris G, Kennedy A Jr, Cochran W (2016) Small bowel congenital anomalies: a review and update. Curr Gastroenterol Rep 18:1

    Article  Google Scholar 

  28. Gray SW, Skandalakis JE (1972) The embryological basis for the treatment of congenital defects. in: embryology for surgeons. Saunders, Philadelphia, PA

    Google Scholar 

  29. Tandler J (1902) Zur Entwicklungsgeschichte des menschlichen Duodenums in frühen Embryonalstadien. Morph 29:187–216

    Google Scholar 

  30. Tröbs R‑B (2019) Duodenal Atresia-Tandler’s “epithelial plug stage” revisited. OJPed 9:103–110

    Article  Google Scholar 

  31. Fairbanks TJ, Kanard R, Del Moral PM et al (2004) Fibroblast growth factor receptor 2 IIIb invalidation—a potential cause of familial duodenal atresia. J Pediatr Surg 39:872–874

    Article  PubMed  Google Scholar 

  32. Kanard RC, Fairbanks TJ, De Langhe SP et al (2005) Fibroblast growth factor-10 serves a regulatory role in duodenal development. J Pediatr Surg 40:313–316

    Article  PubMed  Google Scholar 

  33. Teague WJ, Jones MLM, Hawkey L et al (2018) FGF10 and the mystery of duodenal atresia in humans. Front Genet 9:530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Jones MLM, Sarila G, Chapuis P et al (2020) The role of Fibroblast growth factor 10 signaling in duodenal atresia. Front Pharmacol 11:250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Pequet AR, Watson EH (1959) Duodenal atresia occurring in siblings. Ann Intern Med 25:363–370

    CAS  Google Scholar 

  36. Berant M, Kahana D (1970) Familial duodenal atresia. Arch Dis Child 45:281–282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. van Bokhoven H, Celli J, van Reeuwijk J et al (2005) MYCN haploinsufficiency is associated with reduced brain size and intestinal atresias in Feingold syndrome. Nat Genet 37:465–477

    Article  PubMed  Google Scholar 

  38. Schmedding A, Hutter M, Gfroerer S et al (2021) Jejunoileal atresia: a national cohort study. Front Pediatr 9:665022

    Article  PubMed  PubMed Central  Google Scholar 

  39. Best KE, Tennant PW, Addor MC et al (2012) Epidemiology of small intestinal atresia in Europe: a register-based study. Arch Dis Child Fetal Neonatal Ed 97:F353–F358

    Article  PubMed  Google Scholar 

  40. Blyth H, Dickson JA (1969) Apple peel syndrome (congenital intestinal atresia): a family study of seven index patients. J Med Genet 6:275–277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Stromme P, Andersen W (1997) Developmental aspects in apple peel intestinal atresia—ocular anomalies—microcephaly syndrome. Clin Genet 52:133

    Article  CAS  PubMed  Google Scholar 

  42. Holschneider A, Hutson J, Peña A et al (2005) Preliminary report on the international conference for the development of standards for the treatment of anorectal malformations. J Pediatr Surg 40:1521–1526

    Article  PubMed  Google Scholar 

  43. Cassina M, Fascetti Leon F, Ruol M et al (2019) Prevalence and survival of patients with anorectal malformations: a population-based study. J Pediatr Surg 54:1998–2003

    Article  PubMed  Google Scholar 

  44. van Rooij IA, Wijers CH, Rieu PN et al (2010) Maternal and paternal risk factors for anorectal malformations: a Dutch case-control study. Birth Defects Res Part A Clin Mol Teratol 88:152–158

    Google Scholar 

  45. Zwink N, Rissmann A, Pötzsch S et al (2016) Parental risk factors of anorectal malformations: analysis with a regional population-based control group. Birth Defects Res Part A Clin Mol Teratol 106:133–141

    Article  CAS  Google Scholar 

  46. Correa A, Gilboa SM, Besser LM et al (2008) Diabetes mellitus and birth defects. Am J Obstet Gynecol 199:237.e1–237.e9

    Article  PubMed  Google Scholar 

  47. Mili F, Edmonds LD, Khoury MJ et al (1991) Prevalence of birth defects among low-birth-weight infants. A population study. Am J Dis Child 145:1313–1318

    Article  CAS  PubMed  Google Scholar 

  48. Miyake Y, Lane GJ, Yamataka A (2022) Embryology and anatomy of anorectal malformations. Semin Pediatr Surg 31:151226

    Article  PubMed  Google Scholar 

  49. Li FF, Zhang T, Bai YZ et al (2011) Spatiotemporal expression of Wnt5a during the development of the hindgut and anorectum in human embryos. Int J Colorectal Dis 26:983–988

    Article  PubMed  Google Scholar 

  50. Wang C, Gargollo P, Guo C et al (2011) Six1 and Eya1 are critical regulators of peri-cloacal mesenchymal progenitors during genitourinary tract development. Dev Biol 360:186–194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Dworschak GC, Zwink N, Schmiedeke E et al (2017) Epidemiologic analysis of families with isolated anorectal malformations suggests high prevalence of autosomal dominant inheritance. Orphanet J Rare Dis 12:180

    Article  PubMed  PubMed Central  Google Scholar 

  52. Moore SW (2013) Associations of anorectal malformations and related syndromes. Pediatr Surg Int 29:665–676

    Article  PubMed  Google Scholar 

  53. Rasmussen SA, Olney RS, Holmes LB, National Birth Defects Prevention Study et al (2003) Guidelines for case classification for the national birth defects prevention study. Birth Defects Res Part A Clin Mol Teratol 67:193–201

    Article  CAS  Google Scholar 

  54. Schramm C, Draaken M, Bartels E et al (2011) De novo microduplication at 22q11.21 in a patient with VACTERL association. Eur J Med Genet 54:9–13

    Article  PubMed  Google Scholar 

  55. Dworschak GC, Draaken M, Marcelis C et al (2013) De novo 13q deletions in two patients with mild anorectal malformations as part of VATER/VACTERL and VATER/VACTERL-like association and analysis of EFNB2 in patients with anorectal malformations. Am J Med Genet A 161A:3035–3041

    Article  PubMed  Google Scholar 

  56. Dworschak GC, Draaken M, Hilger AC et al (2015) Genome-wide mapping of copy number variations in patients with both anorectal malformations and central nervous system abnormalities. Birth Defects Res Part A Clin Mol Teratol 103:235–242

    Article  CAS  Google Scholar 

  57. Zhu Z, Peng L, Chen G et al (2017) Mutations of MYH14 are associated to anorectal malformations with recto-perineal fistulas in a small subset of Chinese population. Clin Genet 92:503–509

    Article  CAS  PubMed  Google Scholar 

  58. Quan L, Smith DW (1973) The VATER association. Vertebral defects, anal atresia, T‑E fistula with esophageal atresia, radial and renal dysplasia: a spectrum of associated defects. J Pediatr 82:104–107

    Article  CAS  PubMed  Google Scholar 

  59. Saisawat P, Kohl S, Hilger AC et al (2014) Whole-exome resequencing reveals recessive mutations in TRAP1 in individuals with CAKUT and VACTERL association. Kidney Int 85:1310–1317

    Article  CAS  PubMed  Google Scholar 

  60. Hilger AC, Halbritter J, Pennimpede T et al (2015) Targeted resequencing of 29 candidate genes and mouse expression studies implicate ZIC3 and FOXF1 in human VATER/VACTERL association. Hum Mutat 36:1150–1154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Kolvenbach CM, Felger T, Schierbaum L et al (2022) X‑linked variations in SHROOM4 are implicated in congenital anomalies of the urinary tract and the anorectal, cardiovascular and central nervous systems. J Med Genet. https://doi.org/10.1136/jmg-2022-108738

    Article  PubMed  Google Scholar 

  62. Belanger Deloge R, Zhao X, Luna PN et al (2022) High molecular diagnostic yields and novel phenotypic expansions involving syndromic anorectal malformations. Eur J Hum Genet. https://doi.org/10.1038/s41431-022-01255-y

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heiko Reutter.

Ethics declarations

Interessenkonflikt

H. Reutter gibt an, dass kein Interessenkonflikt besteht.

Für diesen Beitrag wurden vom Autor keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.

Additional information

Redaktion

Fred Zepp, Mainz

Oliver J. Muensterer, München

figure qr

QR-Code scannen & Beitrag online lesen

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reutter, H. Ätiologische Konzepte von gastrointestinalen Fehlbildungen/Atresien. Monatsschr Kinderheilkd 171, 497–506 (2023). https://doi.org/10.1007/s00112-023-01751-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00112-023-01751-5

Schlüsselwörter

Keywords

Navigation