
Abstract The proto-oncogene protein kinase B (PKB),
also known as c-Akt, is a central player in a signaling
pathway of which many components have been linked to
tumorigenesis. Active forms of PKB as well as of its up-
stream activator phosphatidylinositol 3-kinase (PI3K)
have been found to be responsible for the transforming

activities of certain viruses, and the negative regulator of
this pathway, PTEN, is a tumor suppressor. The identifi-
cation of particular downstream targets of PKB has pro-
vided us with new insights into the possible mechanism
of PI3K/PKB-mediated tumorigenicity. Recently a sub-
family of Forkhead transcription factors was identified
as additional targets for PI3K/PKB signaling. This re-
view discusses the studies that have led to this conclu-
sion and the possible implications of this finding for our
understanding of how PI3K/PKB activity could lead to
oncogenesis.
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Abbreviations GSK3 Glycogen synthase kinase 3 ·
HNF3 Hepatic nuclear factor 3 · IGFBP-1 Insulin-like
growth factor binding protein-1 · IGFI Insulin-like
growth factor I · IRE Insulin response element · 
MLL Mixed-lineage leukemia · PDK1 PI(3,4,5)P3-
dependent kinase 1 · PEPCK Phosphoenolpyruvate
carboxy kinase · PI(3,4)P2 Phosphatidylinositol (3,4)
diphosphate · PI(3,4,5)P3 Phosphatidylinositol (3,4,5)
triphosphate · PI3K Phosphatidylinositol-3 kinase · 
PKB Protein kinase B · RAC-PK Related to A and C
protein kinases

Introduction

Several years ago two research groups simultaneously
cloned a gene that displayed high sequence homology to
both the protein kinase C and the protein kinase A fami-
ly of serine/threonine kinases. Based on this characteris-
tic, it was named protein kinase B (PKB) and RAC-PK
(related to A and C protein kinases), respectively [1, 2].
A third research group isolated the same gene in a screen
for cDNAs that show similarity to the v-akt gene of the
transforming AKT8 virus. Closer sequence comparisons
revealed that v-akt cDNA is identical to this new gene
fused to the viral gag sequence, and it was named c-akt
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long was known to be deleted or mutated in several types
of cancer, including mammary, prostate, and brain carci-
nomas (Fig. 1) [23, 24, 25]. The fact that the function of
PTEN has recently been shown to be the dephosphoryla-
tion of PI(3,4)P2 and PI(3,4,5)P3 allows us to speculate
that the suppression of tumor growth by PTEN is due to
the inhibition of PKB-mediated signaling.

Altogether, several lines of evidence suggest that
PI3K-induced signaling is involved in oncogenic trans-
formation, which might at least in part be due to PKB ac-
tivity: (a) A p65 form of the p85 regulatory subunit of
PI3K has been identified and shown to be oncogenic
[26]. (b) A viral oncogene (v-p3k) in the ASV-16 virus is
the catalytic subunit of PI3K, which is a potent trans-
forming gene in cultured chicken embryo fibroblasts.
These transformed chicken embryo fibroblasts contain
high levels of PI(3,4,5)P3 and PKB activity [27]. (c)
Full-length PKB fused to the membrane-targeting gag
sequence is responsible for the transforming actions of
the AKT8 virus and expression of the viral variant of
PKB (v-akt or gagPKB) in mammalian cells results in a
constitutively active kinase that is able to transform fi-
broblasts [3, 28]. (d) Glioblastoma and prostate carcino-
ma cell lines in which the negative regulator of PKB,
PTEN, is deleted or mutated show high amounts of PKB
activity, and the introduction of wild-type PTEN into
these cells results in a reduction in PKB activity and re-
version of the transforming phenotype [21, 29, 30].

Biological functions of PKB

Since it was becoming evident that PKB might play a
role in oncogenic transformation, substantial effort was
made to determine the function of PKB in the cell. The
identification of a direct substrate of PKB gave the first
clue. Cross et al. [31, 32] showed that PKB is directly re-
sponsible for the phosphorylation and inactivation of
glycogen synthase kinase 3 (GSK3), an enzyme involved
in regulating glycogen storage, indicating that PKB is in-
volved in controlling cellular metabolism [31, 32]. Sub-
sequent observations extended such a role for PKB and
showed that PKB regulates the uptake of glucose by re-
cruiting the GLUT4 glucose transporters to the plasma
membrane, and that PKB directly controls the activity of
another glycolysis-regulating enzyme, namely phospho-
fructo-kinase 2 [33, 34]. A role for PKB in protein trans-
lation has also been suggested. PKB mediates the phos-
phorylation of the translational repressor 4E-binding
protein 1, and active alleles of PKB can activate the
p70S6-kinase that phosphorylates the S6 ribosomal sub-
unit and stimulates protein synthesis [14, 35].

Although these functions of PKB could account for a
permissive role of the kinase in tumorigenesis, a more
causative role became apparent with the finding that
PKB activity can antagonize apoptotic signals. It was al-
ready known that nerve growth factor and insulin-like
growth factor I (IGFI) transduce survival signals to the
cell by activating PI3K and thereby opposing apoptotic
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[3, 4]. Below we refer to this protein kinase as PKB.
PKB-like genes have been found in many types of spe-
cies, including Drosophila melanogaster, Caenorhabdi-
tis elegans, and humans [1, 5, 6]. One of the three PKB
genes, PKBβ, has been shown to be amplified in a num-
ber of human ovarian and mammary tumors and in pan-
creatic cancer cell lines and carcinomas with especially
frequent amplifications in undifferentiated tumors [7, 8,
9, 10]. This suggested that this gene has transforming ca-
pabilities and contributes to tumor aggressiveness.

PKB is rapidly activated by treatment of cells with
growth factors, certain cytokines, and some forms of cel-
lular stress (reviewed in [11]). Activation of the tyrosine
kinase activity of the receptors for the various peptide
factors and cytokines results in the activation of the het-
erodimeric phosphatidylinositol-3 kinase (PI3K). PI3K
produces 3’ phosphorylated phosphoinositide lipids
[phosphatidylinositol (3,4) diphosphate, PI(3,4)P2; and
phosphatidylinositol (3,4,5) triphosphate, PI(3,4,5)P3]
that act as second messengers to recruit PKB to the plas-
ma membrane through its N-terminal lipid-binding
pleckstrin homology domain (Fig. 1) ([12] and reviewed
in [13]). Once properly localized, PKB becomes phos-
phorylated on T308 and S473, after which the kinase is
fully active [14, 15, 16]. T308 is phosphorylated by the
PI(3,4,5)P3-dependent kinase 1 (PDK1), which itself is
activated by the lipid products of PI3K activity (Fig. 1)
[17, 18]. The kinase that phosphorylates S473, conve-
niently termed PDK2, has yet to be identified, but a re-
cent study suggests that, by interaction with the PKC-re-
lated kinase 2, PDK1 can acquire PDK2-like activity
[19]. It has also been proposed that the integrin-linked
kinase 4 is PDK2 [20]. The pathway leading to PKB ac-
tivation can be antagonized by a phosphatase that re-
moves the 3’ phosphate from PI(3,4)P2 and PI(3,4,5)P3.
Surprisingly, this phosphatase has been identified as the
tumor suppressor protein PTEN [21, 22], a gene that for

Fig. 1 Schematic representation of growth factor-induced PKB
activation. Receptor tyrosine kinases (RTKs) activate PI3K that 
in turn activates PDK1 and 2 (PDKs) by the production of
PI(3,4,5)P3 lipids. The lipids also recruit PKB to the plasma mem-
brane (PM) by means of its pleckstrin homology (PH) domain and
PKB is subsequently phosphorylated on T308 and S473 by the
PDKs, resulting in fully active PKB



signals that are elicited by stimuli such as growth factor
withdrawal or serum starvation [36, 37]. Shortly thereaf-
ter PKB was shown to transduce the PI3K-mediated sur-
vival signals by directly phosphorylating and inactivat-
ing the pro-apoptotic factors BAD and caspase-9 [38, 39,
41].

Very recently a new target of PKB with potential rela-
tions to tumorigenesis has been identified. PKB has been
placed directly upstream of endothelial nitric oxide syn-
thase, an enzyme involved in the synthesis of the second
messenger nitric oxide (NO) [42, 43]. NO has been im-
plicated in divers physiological processes such as angio-
genesis, regulation of blood glucose levels and mainte-
nance of the heart muscle. By regulating the production
of endothelial nitric oxide synthase and thereby that of
NO, PKB might control processes such as angiogenesis
that strongly influence tumorigenicity.

Transcriptional regulation by PKB

Despite these already diverse functions of PKB, yet an-
other role for PKB activity was found, that of regulating
gene transcription. Several reports had already indirectly
implicated PKB in transcriptional regulation. GSK3 has
been shown to be able to negatively regulate the cAMP-
response element binding protein and activator protein 1
transcription factors by direct phosphorylation, and inhi-
bition of GSK3 by PKB would therefore result in a posi-
tive regulation of these two proteins, although this has
never been shown [44, 45]. PKB has more directly been
implicated in transcriptional control in two ways. One is
the identification of transcription factors that are indi-
rectly controlled by PKB activity. The oncogenic tran-
scription factor c-myc, for instance, has been placed
downstream of PKB activity by two different groups. In
mesenchymal cells the Ras oncogene is able to inhibit c-
myc-induced apoptosis by activating PI3K and PKB,
suggesting that PKB can somehow modulate c-myc ac-
tivity (Table 1) [46]. Furthermore, in BCR/ABL-trans-
formed hematopoietic cells PKB upregulates c-myc ac-
tivity by increasing c-myc protein levels (Table 1) [47].
Although these two reports claim opposite roles for PKB
in c-myc regulation, the contradiction can be explained
by the cell type dependent function of c-myc. In mesen-
chymal cells c-myc induces apoptosis, whereas in hema-
topoietic cells it induces progression through the cell cy-
cle, and PKB actions on c-myc in both cell types result
in a dividing cell population. In addition to c-myc, PKB
has been implicated in regulating the transcription fac-
tors E2F in T lymphocytes, hypoxia-inducible factor 1 in
Ha-Ras transformed NIH3T3 cells, cAMP-response-ele-
ment-binding protein, and nuclear factor κB (Table 1)
[48, 49, 50, 51, 52].

The second way in which PKB has been implicated
directly in transcriptional control is the identification of
genes that are controlled by PKB activity. Until now
three genes that are controlled specifically by PKB have
been identified, and all three are insulin-regulated genes
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involved in maintaining cellular metabolism. First, Liao
et al. [53] showed that the insulin-mediated repression of
cAMP-induced phosphoenolpyruvate carboxy kinase
(PEPCK) gene expression is via the activation of PKB
and that PKB is likely to act through a T(G/A)TTTTG
sequence, also known as the insulin response element
(IRE), in the promoter of the PEPCK gene (Table 1)
[53]. Notwithstanding these observations, a previous
study claimed that, although the authors report that PI3K
is involved, PKB is not downstream of PI3K in the insu-
lin-induced repression of PEPCK [54]. Second, PKB
mediates insulin-regulated expression of the fatty acid
synthase promoter through an IRE (Table 1) [55]. Third,
basal expression of the insulin-like growth factor binding
protein-1 (IGFBP-1) gene can be repressed by insulin,
and it has been found that PI3K and PKB mediate this
effect (Table 1) [56]. Again, the repression by insulin
was through two IREs in the promoter. Although the var-
ious reports convincingly suggest that a pathway from
PKB to a transcription factor that acts on IREs does ex-
ist, there was no clue as to what transcription factor(s)
may lie downstream of PKB. The identity of such IRE-
interacting transcription factors was resolved with the
discovery that a subfamily of the Forkhead superfamily
of winged-helix transcription factors is directly regulated
by PKB activity, and that by regulating this subfamily
PKB can control IRE-mediated gene expression.

Forkhead transcription factors

The superfamily of Forkhead transcription factors con-
sists of approximately 90 members, with orthologues
expressed in an array of species ranging from yeast to
man (reviewed in [57]). All members of the family
show high sequence homology within their DNA-bind-
ing “winged-helix” domain to the fork head protein of
D. melanogaster, which is involved in the formation of
terminal structures in the early fly embryo [58]. The
prototype of Forkheads in mammals are the α, β, and γ
isoforms of the hepatic nuclear factor 3 (HNF3). HNF3
is a liver-enriched transcription factor that has been
identified as an activator of liver-specific gene expres-

Table 1 Transcription factors and target genes suggested to be
controlled by PKB activity (CREB cAMP response element bind-
ing protein, FAS fatty acid synthase, HIF hypoxia-inducible factor,
IL2 interleukin-2, NFκB nuclear factor κB, VEGF vascular endo-
thelial growth factor)

PKB stimulus Transcription Target Reference
factor gene

v-Ras/hypoxia c-myc ? 46
v-Ras HIF-1 VEGF 49
IL2 E2F ? 48
Insulin ? PEPCK 53
Insulin ? IGFBP-1 56
Insulin ? FAS 55
Serum CREB ? 50
myrPKB NFκB IL2 51
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sion in rat [59]. In vivo, HNF3 proteins have been re-
ported to bind to highly related IREs in both the IGFBP-
1 and PEPCK promoters [60, 61]. Whether insulin is
able to modify this interaction of HNF3 with the IRE
still remains elusive.

A subset of Forkhead transcription factors has been
associated with tumorigenesis. The Forkhead gene qin of
the ASV-31 virus is responsible for the transforming ac-
tivity of the virus and is closely related to the teleen-
cephalon-specific brain factor-1, a Forkhead transcrip-
tion factor of which knock-out mice show severe cere-
bral hemisphere abnormalities [62, 63]. Furthermore, in
acute lymphoid leukemias the vast majority of chromo-
somal translocations that cause the disorder disrupt the
mixed-lineage leukemia (MLL) transcription factor gene
[64]. The proteins resulting from such chromosomal
breaks are fusion proteins consisting of the DNA binding
domain of MLL fused to the transactivation domain of
another transcription factor. Two of those other transcrip-
tion factors are the Forkhead genes AFX and AF6q21
[65, 66]. A similar event occurs in rhabdomyosarcomas.
Here a chromosomal translocation results in a fusion be-
tween the PAX3 DNA-binding domain and the transacti-
vation domain of the Forkhead protein FKHR [67].

A connection between PKB and Forkhead
transcription factors?

The initial clues as to what lies downstream of PKB ac-
tivity in terms of transcription regulation came from stud-
ies performed in the nematode C. elegans. Two groups
independently reported a pathway in the worm that con-
trols dauer formation, a developmental stage of the ani-
mal which ensures survival in adverse conditions by
lowering its metabolism and closing its mouth and anus.
In this way it can live up to ten times longer than a nor-
mal adult. When conditions improve, the worm returns
to the development program and lives a normal 15-week
adult life (reviewed in [68]). Genes that regulate this
dauer formation are called daf genes. It was found by
Ogg et al. [69] and Lin et al. [70] that the pathway con-
trolling this dauer formation is regulated by pheromones
that activate the DAF-16 protein. DAF-16 in turn is neg-
atively regulated by DAF-2 via AGE-1 (also known as
DAF-23). Surprisingly, DAF-2 is a an insulin-receptor-
like protein, AGE-1 is PI3K-like protein, and DAF-16
proved to be a transcription factor of the Forkhead fami-
ly with highest homology to mammalian AFX, FKHR,
and FKHRL1 (Fig. 2) [65, 69, 70, 71, 72, 73, 74]. Later,
also a PKB-like (AKT1, AKT2), a PDK1-like (PDK1),
and a PTEN-like (DAF-18) protein were placed in this
dauer formation pathway, suggesting a fully conserved
signaling route towards PKB activation between worm
and man (Fig. 2) [6, 75, 76]. Intriguingly, DAF-16 As
well as AFX, FKHR, and FKHRL1 contain multiple pu-
tative PKB phosphorylation sites that can be recognized
by the amino acid sequence RXRXXS/T, as determined
by Alessi et al. [65, 71, 74, 77] (Table 2). This could in-

dicate that these transcription factors are direct targets of
insulin-activated PKB.

Regulation of Forkhead transcription factors
by PKB

We and others hypothesized that in mammalian cells
growth factors regulate the activity of AFX, FKHR,
and/or FKHRL1 via a PI3K/PKB pathway, and that PKB
does so by direct phosphorylation of the transcription
factors. To this end, epitope-tagged versions of the tran-
scription factors were transiently expressed in a variety
of mammalian cell lines, and the details of growth factor
induced phosphorylation of the Forkheads were investi-
gated. Total phosphorylation of AFX, as measured by in-

Fig. 2 Regulation of DAF-16 in C. elegans. Genetic analysis of
dauer formation in C. elegans has revealed that DAF-16 is nega-
tively regulated by AKT, which in turn is activated by AGE-1 and
DAF-2. Brackets mammalian orthologues of the various nematode
genes

Table 2 PKB consensus phosphorylation sites of known or puta-
tive substrates of PKB (eNOS endothelial nitric oxide synthase,
PFK2 phosphofructo-kinase 2)

PKB substrate PKB phosphorylation site

Known
GSK3 RARTSS9

PFK2 RMRRNS466/RPRNYS483

BAD RGRSRS136

Caspase-9 RRRFSS196

eNOS RIRTQS1177

Putative
AFX RPRSCT28/RRRAAS193/RPRSSS258

FKHR RPRSCT24/RRRAAS256/RPRTSS319

FKHRL1 RPRSCT32/RRRAVS253/RSRTNS315

DAF-16 RDRCNT54/RTRERS24°0/
RERSNT242/RPRTQS314

Standard amino acid single-letter codes are used. Boldface is the
serine (S) or threonine (T) residue that is phosphorylated (known)
by PKB or that lies within a possible PKB phosphorylation site
(putative). Numbers indicate the position of the serine or threonine
residue in the protein
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Fig. 3 Schematic representation of AFX, FKHR, and FKHRL1.
The positions of the PKB consensus sites are indicated by the ser-
ine (S) and threonine (T) residues. Boldface, italic sites that have
been shown to be phosphorylated by PKB. DB DNA-binding do-
main; TA transactivation domain; N amino-terminus; C carboxy-
terminus

corporation of [32P]orthophosphate, was increased upon
insulin treatment of A14 cells [78]. This phosphorylation
is not exclusive for insulin since we have observed phos-
phorylation of AFX upon treatment of A14 and Cos-7
cells with epidermal growth factor and of Rat1 and por-
cine aortic endothelial cells expressing the platelet-de-
rived growth factor receptor with platelet-derived growth
factor (G. Kops and B. Burgering, unpublished observa-
tions). The same approach was taken to show that FKHR
is phosphorylated by insulin in hepatocytes [79]. Two
other studies concerning FKHRL1 and FKHR show that
IGFI increases the phosphorylation of specific sites with-
in the proteins, namely the PKB consensus sites, but it
was not shown whether other sites are phosphorylated
upon growth factor treatment [80, 81]. The involvement
of PI3K in insulin-induced phosphorylation became ap-
parent when the insulin effect on total phosphorylation
of AFX and FKHR was shown to be decreased by pre-
treatment of the cells with the PI3K inhibitor
wortmannin. For AFX it was shown that insulin-activat-
ed PI3K exerts its effect on phosphorylation through ac-
tivation of PKB, since the insulin-induced phosphoryla-
tion is decreased by expression of a dominant-negative
form of PKB [78]. In the case of FKHRL1 and FKHR
the involvement of PKB in PI3K-mediated phosphoryla-
tion of the transcription factors is very likely, although
not formally confirmed. Several reports have shown 
that wortmannin or the functionally similar compound
LY294002 is able to inhibit insulin- or IGFI-induced
phosphorylation of either of the three putative PKB sites
[80, 81, 82]. Yet this leaves the possibility that in FKHR
and FKHRL1 these sites are phosphorylated by PI3K-de-
pendent kinases other than PKB. p70S6-kinase, for in-
stance, is regulated by PI3K and has a recognition se-
quence (RXXS/T) that inherently lies within each PKB
consensus site [83], and moreover the insulin-induced
phosphorylation of FKHR is decreased when hepa-
tocytes are treated with the p70S6-kinase inhibitor rapa-
mycin [79].

PKB can directly phosphorylate all three Forkhead
transcription factors. Various active forms of PKB are
able to phosphorylate bacterially expressed [78, 80, 81,
82, 84] or immunoprecipitated ectopically expressed
Forkhead proteins in vitro [78, 84]. Differences between
the three transcription factors with regard to the specifics
of the sites that are phosphorylated by PKB do exist,
however. As noted above, all three Forkheads contain
three PKB consensus phosphorylation sites (Table 2, Fig.
3), one N-terminal threonine, and two C-terminal ser-
ines. In AFX, PKB phosphorylates both C-terminal ser-
ines but not the N-terminal threonine, whereas in
FKHRL1 all three sites are phosphorylated [78, 80]. For
FKHR the details of PKB-mediated phosphorylation are
the subject of debate. Whereas Rena et al. [81] and Tang
et al. [84] suggest a triple phosphorylation of FKHR,
Nakae et al. [79] claim phosphorylation of only the first
of the C-terminal serines. Whether these differences in
phosphorylation by PKB represent differences in the
function and/or regulation of the Forkheads remains to

be investigated. It is clear, however, that phosphorylation
by PKB on two (AFX) or three (FKHRL1, FKHR) sites
is essential for insulin-induced inhibition of the tran-
scription factors. Bandshift analyses have shown that all
three Forkheads are able to bind IREs, and it was fur-
thermore demonstrated that they are able, via the IREs,
to transactivate a variety of reporter constructs, including
those containing the IGFBP-1 and Fas ligand promoters
[78, 80, 82, 84, 85]. Insulin or IGF1 treatment of cells or
expression of active forms of PKB inhibits this Fork-
head-induced transactivation, and this is due to direct
phosphorylation of the transcription factor by PKB,
since mutants that can no longer be phosphorylated by
PKB are no longer inhibited by insulin, IGFI, or active
PKB.

What is the mechanistic explanation for the transcrip-
tional repression of the Forkheads by PKB? Considering
the position of the two serine phospho-acceptors (Fig. 3),
one might argue that it is either control of DNA-binding
activity or regulation of the function of the transactivat-
ing domain. At present the most important mechanism of
inhibition of the Forkhead transcription factors that are
controlled by PKB seems to be regulation of subcellular
localization. Transiently expressed AFX in A14 cells re-
sides in the nucleus and treatment of the cells with insu-
lin or coexpression of active PKB results in the redistri-
bution of AFX to the cytoplasm in a phosphorylation-de-
pendent manner (G. Kops and B. Burgering, unpublished
observations). The same type of regulation has been ob-
served for FKHRL1 and a mouse orthologue of FKHR,
FKHR1 [80, 82]. As argued for FKHRL1, this redistribu-
tion could be due to phospho-serine dependent interac-
tions with cytoplasmic 14-3-3 proteins causing retention
of the protein in the cytoplasm, but it is also possible that
the phosphorylation of the AFX, FKHRL1, and FKHR1
proteins is required for nuclear export, possibly by bind-
ing nuclear 14-3-3 proteins that contain an nuclear ex-
port signal, such as Rad24 [80, 86]. On the other hand,
all three Forkheads contain a very good consensus nucle-
ar export signal within their primary amino acid se-
quence, and for mouse FKHR1 it has been shown that
this sequence is required for nuclear exclusion of a trun-
cated form of FKHR1. It is still possible, however, that



inhibition of Forkhead activity by PKB occurs at more
levels than redistribution of the protein. None of the re-
ports on PKB-mediated regulation of Forkhead transcrip-
tion factors has tested whether DNA binding is affected
by phosphorylation, although Nakea et al. [79] claim to
have observed a decrease in DNA binding when the
PKB site in the DNA-binding domain (the first of the C-
terminal serines) of FKHR was phosphorylated.

The roles of PI3K and PKB have been well estab-
lished in the regulation of AFX, FKHR, and FKHRL1.
In the case of AFX, however, the PI3K/PKB pathway is
not the only route mediating the phosphorylation in-
duced by insulin. Treatment of cells with wortmannin or
expression of dominant-negative PKB decreases but
does not abolish insulin-induced total phosphorylation of
AFX [78]. Although not stated explicitly, a similar par-
tial effect by PI3K inhibition was observed for insulin-
induced phosphorylation of FKHR and IGFI-induced
phosphorylation of FKHRL1. Insulin-induced 32P-ortho-
phosphate incorporation into FKHR was only partly in-
hibited by wortmannin [79], and an IGFI-induced mobil-
ity shift of FKHRL1 was only partly inhibited by
LY294002 [80]. Furthermore, peptide maps of mouse
FKHR1 show phosphorylated residues apart from the
PKB-mediated phosphorylation sites although it is not
shown of which ones the phosphorylation is growth fac-
tor induced [82]. Altogether, this indicates the existence
of multiple routes that mediate the growth factor induced
phosphorylation of the Forkhead factors. In our study of
insulin-mediated phosphorylation of AFX, the pathway
in addition to PI3K/PKB from the insulin-receptor was
identified and shown to consist of Ras signaling to the
Ral GTPase. Activation of this pathway, as with the
PI3K/PKB pathway, resulted in phosphorylation and in-
activation of AFX [78]. It will be interesting to deter-
mine whether activation of this pathway also results in
the phosphorylation and inactivation of the other Fork-
heads, as for DAF-16 it has already been suggested that
an AGE-1/AKT-independent pathway originates from
the DAF-2 receptor [6].

New perspectives on PKB function

Until now the effect of PKB on diverse processes such as
metabolism, protein synthesis, and apoptosis has been
thought to be by directly affecting proteins involved in
these processes, such as GSK3, 4E-binding protein 1,
and BAD, respectively (Fig. 4). Identification of the
Forkhead transcription factors as direct downstream tar-
gets of PKB further refines this view of how PKB regu-
lates cellular events. In addition to direct regulation by
phosphorylation, PKB apparently regulates these pro-
cesses by a seemingly indirect mechanism, namely tran-
scription. The Forkheads have already been functionally
implicated in the regulation of metabolism and apoptosis
(Fig. 4). In the insulin-responsive A14 and HepG2 cell
lines, AFX and FKHR can regulate the IGFBP-1 pro-
moter [78, 85]. We and others have furthermore ob-
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served that AFX and FKHR can bind to IREs from the
PEPCK and tyrosine amino-transferase genes (G. Kops
and B. Burgering, unpublished observations and [87]).

Overexpression of FKHRL1 and FKHR results in
apoptotic cell death [80] [84]. In the event of FKHRL1-
induced apoptosis, a target gene suggested to be able to
mediate this effect is the Fas ligand gene (FasL), but oth-
er genes involved in Forkhead-induced apoptosis may
have yet to be identified (Fig. 4 and [80]). In the same
cell type as used for the FKHRL1 study, however, AFX
does not seem as potent as FKHR and FKHRL1 in in-
ducing apoptosis (R. Medema, G. Kops, and B. Burgering,
unpublished observations). This may represent a func-
tional difference between the Forkheads with respect to
target genes, but it could also indicate a cell type specific
expression difference. AFX expression especially is
quite restricted, with the clearest expression of mRNA in
muscle cells and hematopoietic cells [65, 88], whereas
FKHR and FKHRL1 seem to be expressed more ubiqui-
tously [71, 74]. This variance in expression between
AFX, on the one hand, and FKHR and FKHRL1, on the
other, may possibly explain potential functional differ-
ences.

The way in which PKB activity contributes to cellular
transformation is generally thought to be by the inhibit-
ing apoptosis. In agreement with this, expression of
PTEN restores the susceptibility of PTEN-deficient cells

Fig. 4 Pathway leading to inactivation of AFX, FKHR, and
FKHRL1. Insulin - or IGFI - receptor-activated PI3K leads to the
activation of PKB which directly inactivates the Forkhead tran-
scription factors. By inactivating the Forkheads PKB might affect
cellular survival, metabolism and/or cell cycle progression



from PTEN knock-out mice to agonist-induced apoptosis
[22]. Nonetheless, in PTEN-negative human glioma cells
the reintroduction of a wild-type PTEN allele suppresses
the growth of the cells, however, not by an increase in
apoptosis but rather by inhibiting their progression
through the cell cycle at the G1 phase [89]. This observa-
tion revealed a surprising new role for PKB in cell
growth regulation, but no targets of PKB have yet been
identified that can transduce the effect of PKB activity
on the cell cycle. The Forkhead transription factors may
be mediators of this effect (Fig. 4).

Tumor suppression by Forkhead transcription
factors?

AFX and FKHR contribute to chromosomal transloca-
tions that lead to leukemias and rhabdomyosarcomas, re-
spectively. Interestingly, the PAX3-FKHR fusion product
resulting from the t(2;13) translocation upregulates the
receptor tyrosine kinases platelet-derived growth factor
receptor and MET, although neither gene is a target for
FKHR or PAX3 separately [90, 91]. Both growth factor
receptors are very potent activators of PI3K (reviewed in
[92]), which in turn is able to inactivate FKHR. This
process thereby would have effects on cellular survival.
This suggests that the t(2;13) translocation that already
knocks out one allele of FKHR can inactivate the second
allele by upregulating PI3K-activating receptor tyrosine
kinases. The transforming capability of the PAX3-FKHR
fusion product could therefore at least in part be due to
its ability to inactivate FKHR or even any of the other
two Forkheads.

In a similar manner, the way in which the t(X;11)
translocation that creates the MLL-AFX fusion protein
contributes to the onset of leukemia can be viewed in a
new light. In this particular case, the translocation may
also have a double function, yet one slightly different
from that which creates PAX3-FKHR. The AFX gene
lies on the X chromosome, indicating that males have
only one allele [65]. A translocation of the AFX gene to
chromosome 11 would therefore result not only in the
potent transcriptional activator MLL-AFX, but also in
the functional knock-out of AFX itself in males. This lat-
ter effect could then conceivably contribute to the leuke-
mia, providing that AFX is indeed involved in cell
growth inhibiting processes such as apoptosis and cell
cycle arrest.

Conclusions

Over the past year many groups have shown the control
of a subfamily of Forkhead transcription factors by PKB.
These studies have completed a pathway to the nucleus
that is initiated by the insulin or IGFI receptor and is me-
diated by PI3K and PKB. Genetic complementation
studies had earlier suggested this route to exist in the
nematode C. elegans. The biochemical evidence for the

same route in mammalian cells provides a unique exam-
ple of a complex regulatory cascade that is totally con-
served between worm and man. In the future it will be of
great interest to determine the target genes of the Fork-
heads, which can give insight into the functions and
specificity of the transcription factors. For DAF-16 one
target gene has already been identified, namely the cyto-
solic catalase [93]. This protein is likely to be involved
in reducing the amount of free radicals in the dauer lar-
vae, thereby contributing to the extended life span that
results from the dauer phenotype. Although no cytosolic
catalase has been found in mammals, it will be interest-
ing to see what genes are regulated by AFX, FKHRL1,
and FKHR, and whether these genes can contribute to an
extended life span, for instance, by regulating metabolic
processes or by regulating the cell cycle. Come what
may, the identification of the subfamily of Forkhead
transcription factors as downstream targets of PKB sig-
naling sheds new light on the mechanism by which the
proto-oncogenic kinase induces may induce cellular
transformation.
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