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Abstract
Osteocalcin (OC) is the most abundant non-collagenous and osteoblast-secreted protein in bone. It consists of two forms 
such as carboxylated OC (cOC) and undercarboxylated OC (ucOC). While cOC promotes bone mineralization and increases 
bone strength, ucOC is regarded an endocrinologically active form that may have several functions in multiple end organs 
and tissues. Total OC (tOC) includes both of these forms (cOC and ucOC) and is considered a marker of bone turnover 
in clinical settings. Most of the data on OC is limited to preclinical studies and therefore may not accurately reflect the 
situation in clinical conditions. For the stated reason, the aim of this review was not only to summarize current knowledge 
of all forms of OC and characterize its role in diabetes mellitus, osteoporosis, osteopetrosis, inflammatory joint diseases, 
but also to provide new interpretations of its involvement in the management and treatment of aforementioned diseases. 
In this context, special emphasis was placed on available clinical trials. Significantly lower levels of tOC and ucOC could 
be associated with the risk of type 2 diabetes mellitus. On the contrary, tOC level does not seem to be a good indicator of 
high bone turnover status in postmenopausal osteoporosis, osteoarthritis and rheumatoid arthritis. The associations between  
several pharmacological drugs used to treat all disorders mentioned above and OC levels have also been provided. From this 
perspective, OC may serve as a medium through which certain medications can influence glucose metabolism, body weight, 
adiponectin secretion, and synovial inflammation.

Keywords Osteocalcin · Preclinical and clinical studies · Diabetes mellitus · Osteoporosis · Osteopetrosis · Inflammatory 
joint diseases

Introduction

Osteocalcin (OC) is a major non-collagenous protein in bone 
synthesized by osteoblasts (bone-forming cells), but also by 
odontoblasts and hypertrophic chondrocytes [1]. It contains 

49 amino acids in humans; while in mice it is made up of 
46 amino acids. Overall, OC consists of two forms, such as 
carboxylated (cOC) and undercarboxylated (ucOC), and can 
be measured in the serum separately or as a total OC (tOC) 
[2, 3], which includes both aforementioned forms as well as 
detectable fragments released during bone resorption [4].

When bone is resorbed by osteoclasts (bone-resorbing 
cells), the acidic pH in the resorption lacuna causes the car-
boxyl groups on OC to be removed and ucOC to be released 
into the systemic circulation (Fig. 1). Therefore, circulating 
levels of ucOC are dependent on the rate of bone turnover 
(remodeling) [2, 5]. In general, serum levels of tOC, cOC, 
and ucOC can elevate with increasing bone formation, while 
ucOC level also elevates with increasing bone resorption [6].

The ucOC/tOC ratio is often measured in clinical studies. 
This parameter is higher in older adults compared to young 
individuals [7]. Interestingly, increased ucOC/tOC ratio was 
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associated with reduced muscle function and elevated risk 
of long-term fall-related hospitalizations in elderly women, 
who had worse physical function, mobility, and a greater fear 
of falling. According to Luukinen et al. [8], higher ucOC/
tOC ratio may also predict fracture risk in older men.

Overall, ucOC represents approximately one third of 
tOC. The serum tOC level (less than 50 ng/ml in mice and 
<30 ng/ml in humans) is considered a bone turnover marker 
in clinical conditions and reflects the osteoformation abil-
ity of osteoblasts. In mice, OC levels peak during the day 
and are lowest at night, whereas in humans, levels are very 
low in the morning, begin to increase in the afternoon, and 
peak at night [2, 9, 10]. These alterations may be consistent 
with modulation of glucocorticoid levels. Therefore, when 
extrapolating results from mouse studies to the human set-
tings, the time point at which samples are collected should 
also be taken into account [11].

Generally, ucOC is regarded an endocrinologically 
active form of OC in preclinical studies [12]. The specific 

receptor of ucOC is G protein-coupled receptor class c 
group 6 member A (GPRC6A) [13]. It is broadly expressed 
in various organs, with the exception of the brain [14–17]. 
The G protein-coupled receptor 158 (GPR158) acts as 
ucOC receptor in the brain, and is associated with cogni-
tive function ([18]; Fig. 2).

Based on various investigations, ucOC has been found 
to possess multiple functions, including increasing insulin 
secretion and proliferation of pancreatic β cells as well as 
adiponectin secretion from adipose tissue, thereby improv-
ing insulin sensitivity and reducing fat mass [19], improving 
skeletal muscle exercise capacity [16], enhancing testoster-
one secretion from testis [14], increasing glucagon-like pep-
tide-1 (GLP-1) secretion from the intestine [15], enhancing 
cognitive function in the brain [20]. These various effects 
of ucOC have been suggested to be closely related to glu-
cose metabolism and diabetic complications [10]. Therefore, 
ucOC has been proposed to act as a hormone (osteokine) 
with pleiotropic effects in multiple end organs and tissues, 

Fig. 1  OC biosynthesis and metabolism. Expression of the BGLAP 
gene produces pre-pro-osteocalcin, which contains a signal sequence, 
a pro-peptide, and a chain. The signal sequence is removed in the 
endoplasmic reticulum to form pro-osteocalcin containing a propep-
tide and an osteocalcin chain. Three glutamate residues located in the 
Gla domain can be carboxylated by γ-glutamyl carboxylase. After 
cleavage of the pro-peptide by proprotein convertase, mature OC is 

finally formed and secreted into bone microenvironment. During bone 
resorption by osteoclasts, the acidic pH causes decarboxylation and 
ucOC can be released into the systemic circulation. Circulating OC 
is degraded in the kidney and liver to a more stable N-MID-fragment, 
so intact and fragmented molecules coexist in the serum (created with 
BioRe nder. com)

https://www.biorender.com/
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e.g. muscles, pancreas, male gonads, brain (Fig. 2) to reg-
ulate muscle mass, glucose and energy metabolism, male 
fertility, cognitive functions and behavior [10, 21]. The link 
between the skeleton and exoskeletal organs mentioned 
above demonstrates the importance of the endocrine func-
tion of the skeletal system. However, it is important to keep 
in mind that most of the data obtained has been limited to in 
vitro and animal model studies.

In general, OC can be clinically detected using enzyme 
immunoassays, chemiluminescent immunoassays or radio-
immunoassays. Circulating OC has a short half-life (about 
5 minutes) and is degraded in the kidney and liver, so intact 
and fragmented segments coexist in the serum (Fig. 1). The 
heterogeneity of these fragments is believed to limit its use 
[22]. Thus, tOC consists especially of intact OC and N-MID 
(N-terminal mid)-fragment. While intact OC is unstable due 
to protease cleavage between amino acids 43 and 44, the 
N-MID-fragment resulting from the cleavage, is consid-
erably more stable. Therefore, assays usually detect a sta-
ble N-MID-fragment [23, 24]. However, assays detecting 
both the intact OC polypeptide and the N-MID-fragment 
may also be used [25–27]. The ucOC can be measured 
using hydroxyapatite binding assay (uses hydroxyapatite 
to bind cOC that is removed by centrifugation, and ucOC 

is subsequently measured) and direct immunoassays (use 
antibodies against ucOC; however, commercially available 
ucOC antibody can overestimate large ucOC fragments, 
leading to inaccuracies in the determination of ucOC or 
ucOC/tOC ratio) [4, 28, 29]. For this aim, measurement of 
ucOC is not straightforward, and frequently used methods do 
not distinguish the number and position of non-carboxylated 
glutamate residues, and these limitations should be consid-
ered when interpreting the results [4]. In any case, methods 
for the determination of circulating ucOC are nowadays 
gradually increasing [30], but they need to be optimized for 
routine use.

Despite the initial search for information on OC and 
the subsequent abundance of articles, to our knowledge, 
current information on OC with respect to all its forms 
(cOC, ucOC, tOC) as well as its role in most common 
bone-related disorders is scattered. Recent controversies 
regarding the proposed role of OC in skeletal development, 
energy metabolism, male fertility, and nervous system have 
been characterized by Komori [31], Manolagas [5], Wang 
et al. [32] primarily using animal models. Information 
obtained from clinical studies has not been provided. Sev-
eral authors evaluated the associations of serum OC level 
with diabetes mellitus [2, 21, 33]; however, knowledge of 

Fig. 2  Schematic representation of the putative functions of ucOC. 
ucOC is released into the systemic circulation, binds to receptors on 
the cell surface (GPRC6A receptors are found in muscles, pancreas, 

testicles and GPR158 receptor is present in the brain) and can regu-
late muscle function, insulin production, male fertility and brain func-
tion (created with BioRe nder. com)

https://www.biorender.com/
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which type of OC (tOC or ucOC) was analysed in patients, 
was not often specified. Relationships between OC levels 
and other bone-related diseases appear sporadically in a 
few articles [1, 11, 34], but they are not summarized in a 
dedicated review. Therefore, the main aim of this review 
was not only to summarize current knowledge about all 
forms of OC, but also to provide new interpretations of 
its involvement in the management of diabetes mellitus, 
osteoporosis, osteopetrosis and two inflammatory joint 
diseases (osteoarthritis and rheumatoid arthritis). In this 
context, special emphasis was placed on available clinical 
studies and accurate information on the type of OC under 
investigation. Less well-known associations between phar-
macological treatment of all aforementioned disorders and 
OC levels were also provided to demonstrate the poten-
tial of OC to serve as a medium through which certain 
medications can influence some important indicators of a 
particular disease.

Molecular structure of osteocalcin

In humans, OC is encoded by a single BGLAP (bone 
gamma-carboxyglutamate protein) gene, located on chro-
mosome 1 at 1q25-q31. The pre-pro-osteocalcin molecule 
with a length of 100 amino acids is first synthesized by 
gene expression (UniProtKB AC P02818; [35]). The pre-
dicted structure of the pre-pro-osteocalcin molecule with 
the confidence of prediction of individual parts is shown 
in Fig. 3a, c. Like most secreted proteins, OC has a sig-
nal sequence (amino acids 1-23) that is removed in the 
endoplasmic reticulum to form pro-osteocalcin containing 
a 28 amino acid pro-peptide and a 49-residue osteocal-
cin chain. The molecule contains Gla domain with three 
glutamate residues at positions 68, 72 and 75 that can be 
carboxylated (Fig. 3b), which then provide high affinity 
to the hydroxyapatite matrix. This modification is cata-
lyzed by γ-glutamyl carboxylase, and uses vitamin K,  O2,  

Fig. 3  Human OC structure prediction according to AlphaFold Pro-
tein Structure Database [168, 169]. a – 3D visualization of OC struc-
ture prediction with colored per-residue confidence metric (pLDDT). 
The structures of the signal sequence (red box) and Gla domain 
(green box) show the highest confidence score. b - Positions of car-
boxylation and disulfide bond on the OC molecule (Gla domain). c 

- Inter-domain (inter-structure) arrangement prediction with predicted 
aligned error. The two dark green (low-error) squares on the 2D plot 
correspond to the two distinct domains (structures) highlighted in 
red and blue boxes. The alignment of the middle sequence (shown in 
gray) relative to the other residues shows a high error
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and  CO2 as cofactors, supplied by the vitamin K cycle and 
circulation [11, 36]. In bone, cOC represents 15% of non-
collagenous matrix proteins [2] and is essential for the 
alignment of apatite crystals and optimal bone strength. 
Bone strength is elevated by cOC [31]. The ucOC with 
a reduced degree of carboxylation at the glutamate resi-
dues (carboxylation is missing at one or more positions) is 
available with less affinity for hydroxyapatite [11]. Mature 
OC consisting of 49 residues is finally formed by cleavage 
of the pro-peptide by the proprotein convertase furin and 
secreted into the bone microenvironment ([37]; Fig. 1). The 
OC is able to interact with many molecules that have an 
important function in bone physiology. Predicted interac-
tions and functional partners of OC are illustrated in Fig. 4.

Osteocalcin‑deficient animal models

Due to considerable differences between mouse and human 
OC at both the genomic and protein level, the validity of 
extrapolating findings from the OC-deficient mouse model 
to human disease has been questioned [38]. In general, mice 
have a gene cluster of OC consisting of Bglap, Bglap2, 
and Bglap3 genes within a 23 kb span of genomic DNA, 
while one OC gene has been determined in rats and humans 
[39]. Bglap and Bglap2 are specifically expressed in bone, 
while Bglap3 is expressed in non-osteoid tissues (e.g. kid-
ney, male gonadal tissues, lung) [40, 41]. OC expression 
is regulated by runt-related transcription factor 2 (Runx2), 
which is an essential transcription factor for osteoblast 

Fig. 4  Predicted interactions and functional partners of OC. The network 
comes from STRING, a database of known and predicted protein 
interactions [170]. The evidence view with a minimum interaction 
score of 0.9 (the highest confidence) is displayed. Different line colors 
represent the types of evidence for the association. ALPL - Alkaline 
phosphatase, tissue-nonspecific isozyme; BGLAP – Osteocalcin; BMP2 
- Bone morphogenetic protein 2; FN1 – Fibronectin; GGCX - Vitamin  

K-dependent gamma-carboxylase; GPRC6A - G-protein coupled 
receptor family C group 6 member A; IBSP - Bone sialoprotein 2; MGP 
- Matrix Gla protein; PTH - Parathyroid hormone; RUNX2 - Runt-
related transcription factor 2; SP7 - Transcription factor Sp7; SPARC – 
SPARC; SPP1 – Osteopontin; TNFSF11- Tumor necrosis factor ligand 
superfamily member 11, membrane form
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differentiation [42]. In fact, Runx2 deficient mice do not 
express any OC; its expression was reduced by Runx2 
antisense oligonucleotides in rat primary osteoblasts and 
ROS17/2.8 osteoblastic cells, and overexpression of Runx2 
induced OC expression in C3H10T1/2 multipotent mesen-
chymal cells [43–46].

Ducy et al. [47], generated the first OC-deficient mice (in 
129Sv:C57BL/6J mixed genetic background) that had sig-
nificantly elevated trabecular and cortical bone volume, cor-
tical bone thickness, bone mineral density (BMD), and bone 
strength. The number of osteoclasts and bone marrow area 
were higher in OC-null mice. In addition, ovariectomy raised 
bone marrow area and reduced bone strength in this mouse 
model. In accordance with the findings of aforementioned 
study, OC has been considered a negative factor of bone 
formation that reduces osteoblast function and osteoclas-
togenesis. Moreover, OC-null mice displayed impaired glu-
cose metabolism [28], reduced testosterone synthesis [14], 
and muscle mass [16]. However, the new OC-deficient mice 
generated by Diegel et al. [48], (in C57BL/6J,C3H mixed 
genetic background, the authors replaced DNA encoding 
Bglap and Bglap2 with a neo cassette in embryonic stem 
cells) and Moriishi et al. [6] (in C57BL/6N mixed genetic 
background, the authors used CRISPR/Cas9-mediated gene 
editing to remove most of the Bglap and Bglap2 protein cod-
ing regions) did not confirm the inhibition of bone formation 
by OC. Consistent with their findings, OC did not affect 
bone formation, bone resorption, and bone mass in either 
estrogen-deficient or estrogen-sufficient conditions. Moreo-
ver, OC was not physiologically involved in glucose metabo-
lism, testosterone synthesis or maintenance of muscle mass. 
Possible explanations for these discrepancies may include 
modifier genes, genetic background of mice, differences in 
the molecular genetics of knockout alleles, sex, or breed-
ing environment. However, both studies mentioned above 
[6, 48] have brought a general consensus that OC promotes 
bone mineralization. The rat OC gene locus shares greater 
synteny with the human locus. Therefore, Lambert et al. [38] 
generated OC-null mutant rats (using the CRISPR/Cas9 sys-
tem) and reported increased trabecular thickness, BMD, and 
trabecular bone volume. In contrast to the findings of Ducy 
et al. [47], their data did not demonstrate elevated cortical 
bone volume and density. Also, OC-deficient rats did not 
develop obesity, insulin resistance, or glucose intolerance. 
Further investigations are therefore necessary to clearly 
determine the causal effect of OC.

Osteocalcin and diabetes mellitus

Diabetes mellitus (DM) represents a worldwide pub-
lic health issue affecting approximately 450 million 
adults [49]. In addition to the most frequent secondary 

complications of DM (including diabetic retinopathy, 
nephropathy, neuropathy, cardiovascular diseases) [50], 
diabetic bone disorder is often diagnosed, which justi-
fies the inclusion of DM among bone-related diseases. 
It is manifested by altered bone mineral density (BMD), 
abnormalities in bone metabolism and microarchitecture, 
reduced bone strength. Although both type 1 diabetes mel-
litus (T1DM) and type 2 diabetes mellitus (T2DM) share 
common features, notably hyperglycemia, the etiology of 
diabetic bone disorder differs between them. While reduced 
BMD is mainly determined in T1DM, the BMD may not be 
affected in T2DM patients. However, a higher risk of frac-
tures is demonstrated in both T1DM and T2DM [51, 52].

Strong evidence suggests that ucOC could exert its 
metabolic effects by targeting multiple tissues essential 
for glucose and lipid metabolism. In the pancreas, ucOC 
can promote β-cell proliferation and insulin production 
through GPRC6A [19, 53]. The ucOC can also elevate 
delta like-1 (DLK1) production in pancreatic β cells, and 
DLK1 inhibits the insulin signaling-dependent OC produc-
tion in osteoblasts [54]. Therefore, there is a positive feed-
back loop between pancreatic islets and bone. The ucOC 
can also indirectly favor insulin production by increasing 
GLP-1 secretion from the intestine [15]. In insulin target 
tissues, ucOC can increase glucose and fatty acid uptake 
[16, 55], insulin sensitivity [56], nutrient utilization and 
mitochondrial capacity [16] and reduce glycogen produc-
tion in muscle and lipid synthesis in liver [16, 57].

It has been reported that circulating levels of ucOC are 
decreased in both humans and mice in the presence of 
metabolic syndromes such as insulin resistance and DM 
[58–60] and that these disorders can be alleviated by ucOC 
administration [28, 60–62]. Obese diabetic mice adminis-
tered ucOC have been shown to improve systemic glucose 
tolerance and insulin sensitivity, concomitantly with reduc-
tions in hyperlipidemia and whole-body adiposity [61–63]. 
Accordingly, the overexpression of ucOC protected mice 
from obesity and glucose intolerance [28]. In insulin resist-
ant tissues, ucOC treatment restored the impaired response 
to insulin stimulation, disturbed energy metabolism and 
reduced mitochondrial capacity [19, 60, 62, 64].

In patients with metabolic syndrome, lower tOC levels 
were reported compared to controls, and increases in tOC 
levels were associated with decreases in fasting plasma 
glucose, glycated hemoglobin (HbA1c), insulin resist-
ance index (HOMA-IR) and body mass index (BMI) [58]. 
According to Liang et al. [65], tOC level was the high-
est in the normal glucose tolerance group and gradually 
decreased in the impaired glucose tolerance group and 
T2DM participants. After a four-year follow-up, group 
with low tOC (<23.33 ng/mL) showed an increased risk 
of T2DM, reduced fasting glucose and insulin resistance 
(IR). Many studies also confirmed significantly reduced 
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tOC levels in individuals with T2DM versus healthy con-
trols [65–76]. On the other hand, a minimal number of 
studies did not reveal any differences [77, 78]. The data are 

summarized in Table 1. According to Zeng et al. [79], high 
tOC was associated with lower blood glucose, IR, triglyc-
erides and BMI. Thus, OC may be positively correlated 

Table 1  Summary table of OC 
levels in patients with bone-
related diseases and healthy 
controls

The values are expressed as mean ± standard deviation or median (interquartile range)
a prediabetic patients
b osteoporotic patients with hip fracture
c osteoporotic patients with diabetes

Disease Patients with the disease Healthy controls P-value Ref.

type 2 diabetes mellitus
tOC (ng/ml)

2.5 ± 1.24 4.4 ± 1.32 < 0.01 [66]
4.44 ± 3.53 8.82 ± 4.03 < 0.001 [67]
15.3 ± 4.1 18.3 ± 5.3 0.012 [68]
17.5 ± 6.4 22.2 ± 9.4 < 0.005 [69]
15.1 (10.8–18.3) 16.8 (11.8–20.6) < 0.05 [70]
21.7 ± 8.2 27.8 ± 13.8 < 0.001 [71]
10.2 ± 0.2 12.8 ± 0.1 < 0.05 [72]
3.6 ± 1.5 5.7 ± 1.1 NS [77]
18.56 ± 19.47 21.21 ± 10.85 < 0.001 [73]
18.58 (15.75–22.59) 23.6 (19.24–29.23) < 0.001 [65]
7.30 (5.00–9.82) 12.2 (7.12–17.4) 0.001 [75]
18.1 (14.2–22.9) 21.8 (17.2–27.8) < 0.001 [76]

type 2 diabetes mellitus
ucOC (ng/ml)

3.57 (2.33–5.35) 4.45 (2.62–6.47) < 0.05 [83]
9.58 ± 6.29 11.22 ± 4.73 < 0.001 [73]
3.04 ± 0.28a 4.48 ± 0.57 0.025 [84]
1.5 ± 1.4 2.3 ± 1.8 < 0.05 [85]
2.76 ± 0.38 4.52 ± 0.06 0.009 [30]

type 2 diabetes mellitus
cOC (ng/ml)

7.53 (5.75–9.45) 8.48 (6.49–11.53) < 0.001 [83]

osteoporosis
tOC (ng/ml)

8.3 ± 6.0 10.5 ± 4.3 NS [122]
6.06 ± 0.97 3.51 ± 0.42 < 0.01 [113]
28.0 ± 12.5b 27.5 ± 11.2 NS [123]
10.6 ± 5 7.3 ± 3.6 < 0.05 [114]
5.03 ± 0.56 2.61 ± 0.55 < 0.001 [115]
9.85 ± 2.72c 9.67 ± 3.37 NS [124]
13.0 ± 5.3 9.2 ± 3.5 < 0.05 [116]
15.3 ± 8 7.9 ± 3.6 < 0.001 [117]
30.24 ± 12.32 23.95 ± 9.27 < 0.01 [118]
26.13 ± 15.35 24.08 ± 16.08 < 0.001 [119]
6.0 (3.5–8.5) 12.4 (9.4–17.8) < 0.001 [125]
43.5 (36.5–64.0) 22.5 (18.2–28.5) 0.001 [121]

osteoporosis
ucOC (ng/ml)

6.7 ± 4.8b 5.8 ± 4.1 NS [123]
1.82 ± 1.76c 3.09 ± 3.94 < 0.05 [124]
2.19 (2.11–4.02) 1.31 (0.86–1.75) 0.01 [121]

osteopetrosis
ucOC/tOC

10.5 ± 4.80 39 ± 17.16 < 0.05 [150]

osteopetrosis
tOC in bone (mg/kg)

51.4 ± 3.9 38.0 ± 3.6 < 0.03 [149]

destructive osteoarthritis
tOC (ng/ml)

10.27 ± 3.47 8.20 ± 3.9 NS [158]

non-destructive osteoarthritis
tOC (ng/ml)

3.83 ± 1.59 7.42 ± 3.04 < 0.001 [158]

osteoartritis
ucOC (ng/ml)

5.66 ± 4.70 < 4.5 < 0.05 [159]

rheumatoid arthritis
tOC (ng/ml)

5.56 ± 3.67 6.09 ± 2.54 NS [158]
1.6 ± 0.4 3.3 ± 0.3 < 0.01 [164]
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with glycemic metabolic status, and reduced level of 
serum tOC could be consistent with incident T2DM.

Large epidemiological studies indicated that a higher 
level of ucOC was associated with a lower risk of DM in 
the community [73, 80]. Bullo et al. [81] revealed that an 
increase in ucOC was consistent with a decrease in HOMA-
IR over two years in a community-dwelling population. 
However, a prospective investigation showed no evidence of 
an association between ucOC and incident T2DM in elderly 
participants [82]. On the contrary, further studies reported 
lower levels of ucOC in subjects with T2DM compared 
to controls [30, 73, 83–85]. The role of ucOC in T1DM 
remains uncertain [4].

Considering pharmacological treatment of DM, a recent 
meta-analysis by Hu et  al. [86] revealed no significant 
impact of metformin (an insulin sensitizer) administra-
tion on tOC level. Similarly, vildagliptin (an incretin-based 
therapy) had no effect on tOC level even after 12 months 
of application [87]. Identical findings were also recorded 
in diabetic women with osteoporosis receiving metformin 
and sitagliptin (an incretin-based therapy) [88]. Application 
of thiazolidinediones (insulin sensitizers) such as pioglita-
zone and rosiglitazone in diabetic patients produced vari-
ous effects on tOC levels, ranging from a decrease [89], 
through non-significant changes [90, 91] to an increase in 
tOC [92]. In several cases, it is possible to observe variabil-
ity in the concentration of tOC over time according to the 
length of treatment with a given thiazolidinedione. When 
using rosiglitazone, no significant changes in tOC levels 
were found after 12 weeks; however, rapid decrease in tOC 
was sustained during the 2-year follow-up. In contrast, in the 
pioglitazone study, serum tOC first decreased at 6 months 
and then almost returned to baseline at 12 months. Both thia-
zolidinediones are peroxisome proliferator-activated recep-
tor (PPAR) agonists. However, rosiglitazone is a specific 
PPARγ activator, while pioglitazone is not only a selective 
human PPARγ1 but also a weak human PPARα activator 
[93], which may result in differences in their effects. In 
addition, it is necessary to consider the limitations of indi-
vidual studies, such as small sample sizes, different dosages 
or different proportions of men and women. The results of 
Namvaran et al. [92] deviate from the trend of decreasing 
tOC levels due to thiazolidinediones, the authors explain 
this fact by breaking IR, where the cause of increased tOC 
may be reduced IR in peripheral tissues and improved glu-
cose tolerance. Regarding SGLT2 inhibitors (e.g. canagli-
flozin, empagliflozin), longer treatment time appears to 
be required to affect tOC levels (Table 2). In addition, OC 
may serve as a medium through which certain pharmaco-
logical drugs can affect glucose metabolism. It is known 
that bone resorption is closely related to glucose homeo-
stasis. Specifically, high fasting plasma glucose levels were 
measured in osteoporotic women treated with medications 

inhibiting bone resorption, and there was a positive correla-
tion between ucOC and urinary cross-linked N-telopeptides 
of type I collagen (NTx, bone resorption marker) [94, 95]. 
Accordingly, the use of antiresorptive drugs should increase 
the risk of IR and DM due to reduced levels of ucOC. How-
ever, epidemiological and clinical trials have shown that the 
administration of antiresorptive drugs was not consistent 
with changes in plasma glucose, IR and the development of 
DM, but was associated with a reduced risk of DM, espe-
cially with long-term treatment [96–101]. Urano et al. [74] 
conducted a study involving postmenopausal women; some 
of them were treated with bisphosphonates (antiresorp-
tive drugs). According to their findings, tOC levels were 
significantly correlated with HbA1c levels. Furthermore, 
a decrease (<6.1 ng/mL) of tOC was associated with the 
future development of T2DM. However, there was no trend 
towards an increased incidence of T2DM in patients treated 
with bisphosphonates [74]. The findings by Mazzioti et al. 
[102] also suggested that bisphosphonate treatment does not 
affect glucose metabolism, although lower tOC levels were 
noted in bisphosphonate-treated patients. Lewis et al. [103] 
found that HbA1c did not change significantly, although tOC 
and ucOC levels were lower in elderly women after 1 year of 
calcium carbonate supplementation compared to untreated 
individuals. Serum levels of OC were measured by radioim-
munoassay or immunoradiometric assay.

A low bone remodeling status has been observed in 
diabetic patients treated with glucocorticoids (GC) [104] 
and could be associated with higher BMD [105]. Accord-
ing to Florez et al. [75], reduced tOC levels during GC 
treatment represent a risk factor for the manifestation of 
DM. Thus, GC-treated patients with tOC levels <9.25 ng/
mL presented a sixfold higher risk of DM (Table 2). How-
ever, of all bone turnover markers measured, only OC was 
significantly associated with increased chances of DM. 
Insignificantly lower values of bone alkaline phosphatase 
(ALP), serum procollagen type I amino-terminal propep-
tide (PINP), and cross-linked C-terminal and N-terminal 
telopeptides of type I collagen (serum CTx and urine 
NTx) were reported in subjects with DM. The study by 
van Bommel et al. [106] showed that GC decreased tOC 
and PINP levels in a dose-dependent manner and that 
these alterations were related to adverse effects of GC on 
glucose and lipid metabolism. Furthermore, the effect of 
teriparatide (anabolic drug) on serum HbA1c and fast-
ing plasma glucose was investigated by Mazzioti et al. 
[102]. This therapy generally increases bone formation 
and thus OC values (Table 2). A significant decrease in 
serum HbA1c was determined in diabetic patients, sug-
gesting that teriparatide could cause some improvement 
in glucose homeostasis [102, 107]. Future research may 
assess whether treatments with more profound effects on 
OC interfere with glucose metabolism.
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Osteocalcin and osteoporosis

Osteoporosis is the most common skeletal disorder affecting 
approximately 200 million individuals worldwide [108]. It 
is characterized primarily by reduced BMD, alterations in 
bone microstucture and elevated risk of fragility fractures. 
At the microstructural level, increased bone resorption and 
decreased bone formation occur simultaneously, leading to 
bone loss. Age is one of the main risk factors for primary 
type 1 (postmenopausal) osteoporosis. Primary osteoporosis 
of type 2 (senile) occurs after the age of 75 and is diagnosed 
in a ratio of 2:1 in women and men [109, 110].

Although serum tOC is widely used as a bone turnover 
marker to indicate high remodeling status in postmeno-
pausal osteoporosis (PMO) [22, 111, 112], alterations in 
tOC level in individuals with PMO compared to healthy 
controls remain controversial. Several studies indicated a 
higher level of tOC in PMO cases [113–121]. However, 
there are also researches reporting the same or even lower 
tOC level in osteoporotic patients [122–125]. Biver et al. 
[126] and Liu et al. [127] performed meta-analyses to 
compare several markers of bone turnover and found no 
significant difference in tOC level between osteoporotic 
and healthy individuals. Therefore, tOC does not appear to 

Table 2  Summary table of associations between selected drugs and OC levels in treated and untreated individuals

The values are expressed as mean ± standard deviation or median (interquartile range)
DT duration of treatment
a increase relative to placebo
b placebo group, otherwise values before treatment (baseline) are in this column
c baseline comparison of patients according to the presence of diabetes mellitus
d matched controls
e serum levels of OC were measured by radioimmunoassay or immunoradiometric assay
f serum levels of OC/ucOC were measured by solid-phase two-site chemiluminescent immunometric assay, electrochemiluminescence assay or 
competitive chemiluminescence immunoassay
g serum levels of OC/ucOC were measured by enzyme-linked immunosorbent assay or solid phase enzyme amplified sensitivity immunoassay
h the OC measurement method was not specified in the publication

Disease Selected drugs DT OC level in treated
individuals

OC level in untreated
individuals

P-value Ref.

type 2 diabetes mellitus
tOC (ng/ml)

metformin 12 m 7.0 ± 3.2 7.1 ± 3.1 NS [91] e

pioglitazone 12 m 7.7 ± 3.8 8.0 ± 3.5 NS [91] e

6 m 6.8 ± 3.0 8.0 ± 3.5 < 0.05 [91] e

12w 16.04 ± 13.84 7.29 ± 6.54 < 0.001 [92] e

rosiglitazone 12w 2.8 ± 0.4 3.5 ± 0.5 NS [90] f

24 m 2.5 ± 1.9 3.4 ± 2.5 < 0.05 [89] f

vildagliptin 12 m 12.5 ± 5.2 12.5 ± 4.2 NS [87] f

canagliflozin 52w + 10.1%a - < 0.05 [170] h

empagliflozin 3 m 1.63 ± 0.03 1.63 ± 0.02b NS [171] g

glucocorticoids 3 m 7.57 ± 1.0c 11.56 ± 1.0c < 0.001 [172] e

type 2 diabetes mellitus + 
osteoporosis

tOC (ng/ml)

metformin 12w 16.4 ± 6.9 17.7 ± 7.8 NS [88] f

sitagliptin 12w 14.75 ± 2.7 16.8 ± 8.1 NS [88] f

osteoporosis
tOC (ng/ml)

bisphosphonates 12 m 9 (4–20) 14 (4–32) < 0.001 [102] f

risedronate 12 m 4.8 ± 1.2 7.5 ± 2.3 < 0.001 [139] e

teriparatide 12 m 30 (10–54) 15 (3–40) < 0.001 [102] f

denosumab 24w 13.12 ± 2.42 24.21 ± 3.72 < 0.001 [140] g

osteoporosis
ucOC (ng/ml)

parathyroid hormone 12 m 10.65 (7.02–16.69) 4.4 (2.9–6.9) < 0.01 [141] g

alendronate 12 m 3.27 (1.99–4.61) 4.6 (2.8–6.5) < 0.01 [141] g

risedronate 12 m 0.8 ± 0.4 1.0 ± 0.4 NS [139] f

osteoarthritis
tOC (ng/ml)

salmon calcitonin 24 m 22.3 (15.8–31.4) 22.1 (15.8–31.0)b NS [162] h

rheumatoid arthritis
tOC (ng/ml)

low-dose corticosteroids 12 m 3.3 (0.7–6.0) 4.2 (1.4–5.8)d NS [166] e

non-steroidal anti-inflam-
matory drugs

12 m 4.7 (0.5–8.0) 4.0 (1.4 -6.5)d NS [166] e

tocilizumab 24w 47.42 ± 2.8 36.29 ± 2.14 < 0.001 [167] f
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be a good indicator of high bone turnover status in PMO 
unless new techniques for standardized assessment of cir-
culating OC are used. Despite remaining issues with ref-
erence intervals and assay harmonization, tOC has been 
shown to be useful in elucidating the pharmacodynamics 
and efficacy of osteoporosis drugs in clinical trials [128].

Vergnaud et al. [123] revealed that a higher ucOC level 
predicted hip fracture risk independently of femoral neck 
BMD in older women. Conversely, tOC was not associated 
with hip fracture risk [124]. However, significant changes 
in ucOC level were observed in both osteoporotic and dia-
betic patients with osteoporosis (Table 1). According to 
Xu et al. [129], elevated ucOC level correlated with lower 
BMD at the lumbar spine, femoral neck, and total hip in 
both elderly women and men. Similar to these findings, 
Szulc et al. [130] and Emmaus et al. [131] reported that 
older women with abnormally high serum ucOC had lower 
BMD values at all sites. Cummings et al. [132] identified a 
26% decrease of femoral neck BMD in patients with abnor-
mal ucOC levels, which corresponded to a five- to seven-
fold increase in hip fracture. Horiuchi et al. [124] found 
that ucOC levels were significantly higher in subjects with 
osteoporosis versus non-osteoporotic individuals (Table 1).

Interestingly, lower levels of dietary vitamin K are consist-
ent with higher ucOC levels, while vitamin K supplements 
reduce ucOC levels [133]. Therefore, ucOC can be used as a 
marker to determine whether vitamin K preparations should 
be given to patients with osteoporosis [10]. Menatetrenone 
is the form of a synthetic vitamin  K2 that is widely used in 
clinical practice. In the study by Shiraki et al. [134], serum 
level of ucOC was lower and cOC higher after 1 month of 
menatetrenone treatment. Differences in ucOC and cOC lev-
els persisted during 6 months of the therapy. In addition, a 
higher tOC level was reported after 6 months of menate-
trenone administration. Conversely, Jiang et al. [135] identi-
fied a reduction for both tOC and ucOC as well as the ucOC/
tOC ratio after 12 months of menatetrenone treatment. A 
meta-analysis by Su et al. [136] demonstrated nonsignifi-
cantly reduced ucOC and a lower ucOC/tOC ratio in patients 
treated with menatetrenone (as part of combination therapy) 
compared to the placebo group. On the other hand, warfarin, 
an anticoagulant drug, inhibits vitamin K-dependent carboxy-
lase, prevents post-translational carboxylation of factors in 
the coagulation cascade and OC, thereby increasing the levels 
of ucOC and lowering blood glucose levels in mice. How-
ever, warfarin also regulates OC gene expression, so warfarin 
treatment interferes with the interpretation of studies of this 
protein and its role in carbohydrate metabolism [137].

In this context, a clinical study by Fernandez-Real et al. 
[138] evaluated the effect of a high-calorie diet and regular 
physical activity on tOC levels. According to their findings, 
weight loss through diet and physical activity can cause increase 
in tOC level associated with changes in visceral fat mass.

Lower tOC levels were found in osteoporotic patients 
treated with bisphosphonates including risedronate, as well 
as in those treated with denosumab, a RANKL-binding mon-
oclonal antibody [102, 139, 140]. On the other hand, treat-
ment with teriparatide resulted in an increase in tOC [102]. 
The relationship between ucOC levels in postmenopausal 
osteoporotic women treated with parathyroid hormone (PTH) 
or alendronate (a bisphosphonate) and alterations in meta-
bolic parameters were investigated by Schafer et al. [141]. 
The ucOC levels were increased after PTH and decreased 
after alendronate administration (Table 2). The ucOC/tOC 
ratio was increased with PTH treatment and unchanged with 
alendronate administration. Patients treated with PTH had 
reduced body weight after 12 months, while those treated 
with alendronate showed no significant changes. In addition, 
alterations in ucOC were positively correlated with changes 
in adiponectin, but no association was found with insulin, 
glucose, leptin, or the insulin/glucose ratio. On the contrary, 
no significant difference in ucOC level was detected during 
treatment with risedronate [139].

Secondary osteoporosis is also an important health prob-
lem, the most common form being glucocorticoid-induced 
osteoporosis (GIO). Impaired bone formation is a central 
pathophysiological mechanism of GIO-related bone loss 
[102]. At the molecular level, excess glucocorticoids inhibit 
Wnt protein production, causing mesenchymal progenitor cells 
to differentiate into adipocytes rather than osteoblasts. Exces-
sive glucocorticoids also interfere with the canonical BMP 
(bone morphogenetic protein) pathway [142]. Consequently, 
serum tOC levels were reduced in patients receiving glucocor-
ticoids, even when administered at lower doses [143, 144]. In 
the study by Shikano et al. [145], serum ucOC levels showed 
a decrease during glucocorticoid treatment from the first week 
and remained decreased for four weeks. Menatetrenone treat-
ment improved tOC levels in the third and fourth weeks.

Osteocalcin and osteopetrosis

Osteopetrosis is a group of rare bone disorders within 
the family of sclerosing bone dysplasias, characterized 
by reduced bone resorption leading to high bone mass. 
An overly dense bone architecture, instead of providing 
strength, negates structural fragility that predisposes to 
fractures. Disruption of normal bone remodeling can lead 
to skeletal deformation and can interfere with mineral 
homeostasis [146]. Interestingly, mice lacking OC have 
severe osteopetrosis [147]. In general, three different types 
of osteopetrosis can be classified in humans: autosomal 
recessive (ARO), intermediate recessive (IRO) and autoso-
mal dominant (ADO). They are characterized by different 
modes of inheritance and severity, from asymptomatic to 
fatal [11, 148].
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Overall, individuals with ADO had increased level of tOC 
in cortical bone [149], reduced ucOC/tOC ratio (Table 1) 
and hypoinsulinemia [150]. In osteopetrotic children, serum 
OC levels were reported as normal or low. However, in a 
subset of six children, osteoblast activity (assessed by circu-
lating ALP and OC) and osteoblast number did not increase 
despite hyperparathyroidism, suggesting PTH resistance or 
defective osteoblasts [151].

Osteopetrosis can be generally treated with calcium and 
vitamin D (first-line therapy), calcitriol, red blood cell transfu-
sion, interferon γ-1b, and corticosteroids [146], however, there 
is no known link between these medications and OC level.

Osteocalcin and inflammatory joint diseases

Inflammatory diseases affecting bones and joints are very 
common in the world, as 250 million and 14 million people 
worldwide suffer from osteoarthritis (OA) and rheumatoid 
arthritis (RA), respectively [152, 153]. Primary joint diseases 
are characterized by systemic osteoporosis and higher inci-
dence of fractures [154]. These disorders are also associated 
with the presence of inflammatory process targeting the joints 
with adverse effects on their structure and function [155]. 
From this group, OA and RA are described in this review.

OA can be defined by joint symptoms, structural pathol-
ogy, or both [156]. It is characterized by excessive cartilage 
degradation, abnormal bone growth, sclerosis, and synovial 
inflammation [157].

Campion et al. [158] determined reduced tOC levels in 
patients with non-destructive OA and a non-significant 
increase in those with destructive OA. On the contrary, 
Naito et al. [159] revealed elevated ucOC levels in subjects 
with bilateral knee OA versus healthy controls. The data 
are summarized in Table 1. An increased OC expression 
in articular cartilage and subchondral bone was detected in 
OA joints [158, 160, 161]. Karsdal et al. [162] found a 12% 
reduction in tOC levels in patients with symptomatic knee 
OA treated with salmon calcitonin compared to untreated 
individuals; however, this decrease was transient and only 
a 2% decrease was noted at the end of the study (Table 2).

RA is a systemic inflammatory autoimmune disease 
characterized by synovial inflammation and hyperplasia, 
autoantibodies production, and systemic features (cardio-
vascular, pulmonary, and psychological disorders) [163]. It 
is also responsible for joint destruction consistent with bone 
complications, which include periarticular bone loss, bone 
erosion, and systemic osteoporosis [155].

Non-significantly lower tOC levels were found in patients 
with RA [158]. Seriolo et al. [164] reported decreased tOC 
levels in individuals with active RA compared to those 
without active disease (Table 1). Although the physiologi-
cal significance of alterations in tOC levels in OA and RA 

is still unknown, they may reflect distinct bone phenotypes 
between these diseases [1]. While OA is more characterized 
by an increase in subchondral bone mass, RA involves bone 
resorption and subchondral bone loss [164, 165].

According to Peretz et al. [166], tOC levels have not been 
shown to be a useful index of abnormal bone turnover in RA, 
except in some patients with vertebral fractures treated with 
low doses of corticosteroids. No significant differences in 
tOC levels were recorded in individuals with RA treated with 
low-dose corticosteroids or non-steroidal antiinflammatory 
drugs and untreated controls (Table 2). In the study by Tamai 
et al. [167], tOC levels in RA patients with erosion progres-
sion were significantly increased in the tocilizumab (anti-
interleukin-6 receptor antibody)-treated group than in the 
infliximab (anti-tumor necrosis factor drug)-treated group.

Conclusions and perspectives

Three forms of OC (cOC, ucOC, tOC) can be generally 
determined. In clinical conditions, ucOC/tOC ratio is often 
measured because it allows early identification of individu-
als at risk of low physical function and thus prevent future 
falls. Overall, cOC is required for optimal bone strength, 
ucOC is considered an endocrinologically active form, and 
tOC is regarded a marker of bone turnover. The vast major-
ity of information on OC is limited to in vitro and animal 
model studies and therefore may not accurately reflect the 
situation in humans. Moreover, most clinical trials investi-
gated groups pre-defined according to age, ethnicity or gen-
der, which may also distort the data obtained. Limitations 
of existing knowledge also include technical problems with 
commonly used serum ucOC assays. Therefore, the medical-
scientific community must continue efforts to elucidate the 
involvement of ucOCs in human health and disease and its  
clinical applications.

In addition to current knowledge of OC, this review also 
described its role in the management of DM, osteoporosis, 
osteopetrosis, OA and RA, focusing mainly on available 
clinical studies. Significantly reduced levels of tOC and 
ucOC could be associated with the risk of T2DM. The role 
of tOC and ucOC in T1DM remains uncertain. The tOC 
level does not seem to be a good indicator of high bone 
turnover status in PMO, OA and RA due to controversial 
findings. It is also worth noting that the correlation does 
not imply a direct function of OC in humans, so investiga-
tion of larger patient cohorts as well as carefully performed 
genetic studies are needed to gain more mechanistic insights. 
Additionally, associations between several pharmacological 
drugs used to treat all aforementioned bone-related disor-
ders and OC levels were revealed. From this point of view, 
OC may serve as a medium through which some medica-
tions can affect glucose metabolism (e.g. glucocorticoids, 
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teriparatide), body weight (e.g. PTH), adiponectin secretion 
(e.g. PTH), and synovial inflammation (e.g. tocilizumab). 
Last but not least, this review can contribute to a better use 
of OC in clinical applications as well as in further research 
and thus enrich current scientific literature.
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