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Abstract 
Disturbances in the circadian rhythm have been reported in patients following traumatic brain injury (TBI). However, the 
rhythmic expression of circadian genes in peripheral blood leukocytes (PBL) following TBI has not yet been studied. The 
messenger ribonucleic acid (mRNA) expression of period 1 (Per1), Per2, Per3, cryptochrome 1 (Cry1), Cry2, brain and 
muscle aryl hydrocarbon receptor nuclear translocator-like 1 (Bmal1), and circadian locomotor output cycles kaput (Clock) 
was quantified in PBLs from sham-operated rats and rats with acute subdural hematoma (ASDH) over a 48-h period. The 
rectal temperature of the animals was measured every 4 h over 2 days. The mesor, rhythm, amplitude, and acrophase were 
estimated using cosinor analysis. Cosinor analysis revealed that Per2, Cry1, and Bmal1 mRNAs were rhythmically expressed 
in the PBLs of sham-operated rats. In contrast, fluctuations in rhythmic expression were not observed following ASDH. The 
rectal temperature of sham-operated rats also exhibited rhythmicity. ASDH rats had a disrupted rectal temperature rhythm, 
a diminished amplitude, and an acrophase shift. TBI with ASDH results in dysregulated expression of some circadian genes 
and changes in body temperature rhythm. Further research is required to understand the pathophysiology of altered circadian 
networks following TBI.

Key messages 
•	 First to investigate the mRNA expression of circadian genes in PBLs of ASDH rats.
•	 ASDH rats had disrupted rhythmicity of Per2, Cry1, and Bmal1 mRNA expression.
•	 Cosinor analysis showed that ASDH rats had a disrupted rectal temperature rhythm.
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Introduction

Acute subdural hematoma (ASDH) is a common conse-
quence of head injury in humans, characterized by the accu-
mulation of blood between the dura and arachnoid mem-
brane. Although there have been many relevant advances 

in emergency services, including multimodality neuromoni-
toring and neurointensive care, ASDH remains associated 
with high morbidity and mortality. Even if patients survive 
without major neurological deficits, they may encounter 
sleep–wake disturbances, particularly fatigue, hypersomnia, 
and insomnia [1–3].

Circadian rhythms are cycles lasting approximately 24 h 
and entail various physiological and molecular changes. 
Rhythms are endogenously generated in response to light, 
darkness, and other environmental cues [4, 5]. Circadian 
fluctuations play critical roles in the regulation of biological 
processes within the body, including the sleep–wake cycle, 
body temperature, eating habits, cardiovascular function, 
hormonal rhythms, and metabolism [6, 7]. The regulation 
of biological rhythms aids organisms to anticipate and adapt 
to environmental changes. The timings of mammalian cir-
cadian rhythms are classically inferred based on core body 
temperature (cBT) changes, melatonin secretion by the 
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pineal gland, and blood cortisol levels. The primary circa-
dian clock is in the suprachiasmatic nucleus (SCN), a bilat-
eral structure located in the hypothalamus.

A subset of neurons within the SCN is the basis for cir-
cadian clock resetting through light entrainment and mela-
tonin secretion. The neurons are sensitive to light signals 
transduced from the retina via the retinohypothalamic tract. 
External cues, such as the light–dark cycle, environmental 
temperature, and timing of food intake, can entrain these 
internal biological rhythms [7]. The circadian fluctuations 
are regulated through rhythmic gene expression within a 
complex neural regulatory network involving transcription 
and translation feedback loops, which ultimately cause oscil-
lation [8]. In turn, output from the SCN controls the circa-
dian rhythm throughout the body via the regulation of cir-
cadian gene expression in peripheral tissues and autonomic 
nervous system activity [8, 9]. Autonomous clocks exist in 
all peripheral tissues and are driven and synchronized by 
the SCN via circadian output pathways [10]. Circadian gene 
expression within the SCN governs the rhythms of various 
cellular metabolic processes, neuronal firing, and neuropep-
tide secretion, which ultimately manifest in physiological 
and behavioral rhythms [9, 11, 12]. A previous study demon-
strated that 40.7% of patients with moderate-to-severe trau-
matic brain injury (TBI) exhibit disturbed circadian rhythms 
of brain temperature with a diminished amplitude in the first 
72 h following operation [13]. However, the effects of TBI 
on the regulation of circadian rhythm-related gene expres-
sion in peripheral tissues have not yet been investigated in 
humans or animal models.

In this study, we analyzed the messenger ribonucleic acid 
(mRNA) expression dynamics of seven circadian rhythm-
related genes in peripheral blood leukocytes (PBLs) from 
sham-operated and ASDH rats. The rhythmicity of cBT of 
sham-operated and ASDH rats was also analyzed. Finally, 
cosinor analysis was used to analyze the rhythmicity, mesor, 
amplitude, and acrophase of mRNA expression and cBT.

Materials and methods

Ethics statement

This study complied with the ARRIVE guidelines and was 
carried out in accordance with the U.K. Animals (Scientific 
Procedures) Act, 1986 and associated guidelines, EU Direc-
tive 2010/63/EU for animal experiments, or the National 
Research Council’s Guide for the Care and Use of Labora-
tory Animals. The study was approved by the Institutional 
Animal Care and Use Committee of National Taiwan Uni-
versity, College of Medicine (approval no. 20120485; date 
of approval: April 20, 2012).

General preparation

Fourteen 8-week-old male Sprague–Dawley rats, weigh-
ing 190–210 g, were used in the study. Rats were allowed 
to acclimate to the animal room lighting conditions for 
2 weeks prior to surgical procedures. The room tempera-
ture and relative humidity were maintained at 22 ± 2 °C 
and 50% ± 20%, respectively. The lighting conditions in 
the animal room were lights on from 07:00 to 19:00, with 
a 12:12 h cycle. The animals received water and food 
ad libitum prior to the experiments. Animals were ran-
domized to the sham-operated group (n = 7) and ASDH 
group (n = 7). Data were analyzed between these groups.

Induction of subdural hematoma

Following general preparation, animals in the ASDH 
group (n = 7) were placed in a prone position. Rats were 
then anesthetized with 2.5% isoflurane. Thereafter, an 
8-mm sagittal scalp incision was made. A 3-mm frontal 
burr hole was drilled into the right frontal region, 3 mm 
from the sagittal suture and 1 mm anterior of the coronal 
suture, using surgical loupes. The dura was incised with 
a 26-gauge needle and a Codman microsensor (Codman, 
Raynham, MA, USA), connected to the Codman intrac-
ranial pressure (ICP) monitor, was inserted into the sub-
dural space together with a 26-gauge L-shaped needle. The 
hole was secured with bone wax. This model is a modified 
version of the established models [14–16]. Nonheparin-
ized venous blood was obtained from the tail vein of rats, 
and 0.06–0.1 mL was slowly injected (> 1 min) into the 
subdural space through the needle via the burr hole until 
the ICP was 22–25 mmHg. Next, the ICP catheter was 
removed, and subsequently, the dural opening was sealed 
with gelfoam, whereas the burr hole was sealed with bone 
wax. The scalp incision was closed using nylon sutures. 
Rats were returned to housing conditions under a 12-h 
light–dark cycle, and ad libitum oral intake was resumed 
postoperatively. Considering the effects of the day-night 
cycle on the study of circadian rhythm, all surgical pro-
cedures were completed by 5 AM. Blood sampling for 
mRNA expression analysis and cBT measurements was 
performed from 9 AM on the same day. Blood for analysis 
was collected from the tail veins every 4 h for 48 h. To 
analyze the effects of ASDH on cBT regulation, the rectal 
temperature of the animals was measured at 4-h intervals 
using a temperature probe. In sham-operated animals, no 
injection into the subdural space was made after placement 
of the ICP catheter and needle.

At 48 h, rats were euthanized via intraperitoneal injec-
tion of a lethal dose of pentobarbital. None of the animals 
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exhibited obvious hemiparesis or other focal neurologi-
cal deficits. No seizures were observed. Considering that 
ICP-induced brain injury with edema may exacerbate in 
the first few days after ASDH, a two-day survival time was 
chosen for the present experiments.

Sample collection and mRNA extraction

Local anesthetic cream was applied on the surface of the 
tail 30 min before the experiment to minimize the effects of 
anesthesia on circadian gene expression. Peripheral blood 
samples of 100 µl each were collected from the tail veins of 
rats at 4 h intervals over a span of 48 h following the surgi-
cal procedure. These samples were collected to analyze the 
24-h gene expression rhythms. For overnight data collec-
tion time points, tail vein blood sampling was conducted 
in a darkened room, with the only illumination being pro-
vided by red light. mRNA transcript measurements at 12 
time points provided sufficient data for the estimation of 
cosinor parameters [17]. Total ribonucleic acid (RNA) was 
extracted from samples using the QIAamp RNA Blood Mini 
Kit with on-column deoxyribonuclease (DNase) treatment 
of RNA samples (Qiagen, Valencia, CA, USA) under strict 
RNAse-free conditions.

cDNA synthesis and quantitative PCR

Up to 1 µg RNA was reverse-transcribed into complemen-
tary DNA (cDNA) using the Omniscript Reverse Transcrip-
tion Kit (Qiagen) and 10 µM oligo-dT primers (Applied 

Biosystems, Waltham, MA, USA) in accordance with the 
manufacturer’s instructions. The 20-µL reaction volume con-
taining the completed first-strand cDNA synthesis reaction 
was diluted to 50 µL, and 1 µL of this dilution was used for 
each quantitative polymerase chain reaction (PCR). PCRs 
were performed on an Illumina Eco™ Real-Time PCR Sys-
tem (Illumina, San Diego, CA, USA) with the following 
reaction conditions: initial denaturation at 95 °C for 10 min, 
40 cycles with 10 s denaturation at 94 °C, and 30 s anneal-
ing at 60 °C. mRNA expression measurements were per-
formed in triplicate, and the average was calculated. Relative 
expression levels for the means of the triplicate experiments 
for circadian genes were normalized to those of β-actin as 
an internal control, and the relative threshold cycle (∆Ct) 
was obtained. The 2−ΔΔCt method was used to analyze 
mRNA expression [18, 19]. The circadian genes analyzed 
were period 1 (Per1), Per2, Per3, cryptochrome 1 (Cry1), 
Cry2, circadian locomotor output cycles kaput (Clock), 
and brain and muscle aryl hydrocarbon receptor nuclear 
translocator-like 1 (Bmal1), and the primers employed are 
listed in Table 1 (Per3, Cry2 [20]; Per1, Per2, Cry1, Clock 
[21]; Bmal1 [22]). The primers for β-actin were designed 
using Primer3 (version 4.0; https://​bioin​fo.​ut.​ee/​prime​r3/) 
and Primer-BLAST (Basic Local Alignment Search Tool, 
NCBI). The mRNA expression of clock genes was quanti-
fied using β-actin as the reference gene, which has been 
used as a housekeeping gene for circadian rhythm studies 
in several tissues [23–25]. The circadian oscillations of 
mRNA expression, mesor (mean level of mRNA oscilla-
tions), amplitude of the rhythm (used to measure half of the 

Table 1   Primer sequences for 
real-time polymerase chain 
reaction (PCR)

Per1 period 1, Per2 period 2, Per3 period 3, Cry1 cryptochrome 1, Cry2 cryptochrome 2, Bmal1 brain 
and muscle aryl hydrocarbon receptor nuclear translocator-like 1, Clock circadian locomotor output cycles 
kaput

Gene Accession no Primer sequence Product 
size (bp)

Per1 AB002108 Forward 5′-CGC​ACT​TCG​GGA​GCT​CAA​ACTTC-3′ 169
Reverse 5′-GTC​CAT​GGC​ACA​GGG​CTC​ACC-3′

Per2 NM_031678 Forward 5′-CAC​GCA​ACGGG GAG​TAC​ATC​ACA​C-3′ 142
Reverse 5′-CAA​GGG​GAG​GCT​GCG​AAC​ACAT-3′

Per3 XM_039110819.1 Forward 5′-GCA​GGG​CAT​TTG​CGT​GGA​-3′ 115
Reverse 5′-GTG​TCT​CTC​GGC​TGG​GAA​ATAC-3′

Cry1 NM_198750 Forward 5′-GTG​GTG​GCG​GAA​ACT​GCT​CTC-3′ 152
Reverse 5′-ACT​CTG​TGC​GTC​CTC​TTC​CTGA-3′

Cry2 NM_133405.2 Forward 5′-GTG​CTT​TCT​TCC​AAC​AGT​TCT​TCC​-3′ 94
Reverse 5-GGC​AGG​TAT​CGC​CGG​ATG​TA-3′

Bmal1 XM_039109788 Forward 5′-TGG​ACT​GCA​ACC​GCA​AGA​G-3′ 154
Reverse 5′-CCT​TCC​ATG​AGG​GTC​ATC​TTTG-3′

Clock NM_021856 Forward 5′-TTC​GAT​CAC​AGC​CCA​ACT​CC-3′ 163
Reverse 5′-ACC​TCC​GCT​GTG​TCA​TCT​TCTC-3′

β-actin NM_031144.3 Forward 5′-ACC​GAG​CGT​GGC​TAC​AGC​TTC​ACC​-3′ 107
Reverse 5′-GTG​GCC​ATC​TCT​TGC​TCG​AAG​TCT​-3′

https://bioinfo.ut.ee/primer3/
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difference between the lowest and highest levels of mRNA 
expression), and acrophase (the time when mRNA expres-
sion reaches its peak during the day), were determined.

cBT analysis

The rectal temperature of the animals was measured using an 
anal probe every 4 h over 2 days, beginning from 9 AM on 
the day of operation. This time point was 4 h after the opera-
tion to ensure the stabilization of body temperature after 
general anesthesia and potential postoperative hypothermia. 
Temperature measurements at eight-time points provided 
sufficient temperature records for a better estimation of the 
cosinor parameters [17]. The following characteristics of 
rectal temperature were analyzed: circadian oscillations of 
temperature, mesor, amplitude of the temperature rhythm, 
and acrophase.

Cosinor analysis

The circadian rhythm of mRNA expression and rectal tem-
perature was analyzed using the cosinor method, which is 
the most commonly used approach for analyzing the diurnal 
pattern of biological rhythms [17, 26, 27]. Cosinor analysis 
is a nonlinear model that fits the data to a 24-h cosine curve, 
with estimates of rhythm, including mesor, amplitude, and 
acrophase [27]. An online platform (https://​cosin​or.​online/​
app/​cosin​or.​php) was used in this study [28]. If the char-
acteristics of the data analyzed fit the cosine curve with 
P < 0.05, a circadian rhythm was confirmed.

Results

mRNA expression of circadian genes

To determine the effects of ASDH on circadian rhythm regu-
lation, we measured the mRNA expression of seven circa-
dian rhythm-related genes in PBLs. The mRNA expression 
patterns of Per1, Per2, Per3, Cry1, Cry2, Clock, and Bmal1 
in PBLs of sham-operated rats (n = 7) and rats with ASDH 
(n = 7) were determined using real-time PCR (Fig. 1).

The average mRNA expression at each time point was 
assessed using cosinor analysis. Per2, Cry1, and Bmal1 

mRNAs exhibited circadian expression rhythmicity in 
the PBLs of sham-operated rats (P < 0.05; Fig. 2). The 
acrophase of Per2, Cry1, and Bmal1 mRNA expression in 
sham-operated rats was 4:26, 7:48, and 8:00, respectively 
(Table 2). No rhythmic expression was observed for Per1, 
Per3, Cry2, and Clock mRNAs in the PBLs of sham-
operated rats. In ASDH rats, the rhythmic changes in the 
expression of Per2, Cry1, and Bmal1 mRNA were disrupted. 
No rhythmicity was observed for Per1, Per3, Cry2, and 
Clock mRNAs in the PBLs of the ASDH rats.

cBT analysis

To determine the effects of ASDH on the regulation of core 
body temperature, rectal temperature was measured using an 
anal probe every 4 h over 2 days (Fig. 3). The average rectal 
temperature at each time point was analyzed using cosinor 
analysis (Table 3). In the sham-operated rats, the tempera-
ture changes fit the 24-h day-night rhythm (P = 0.04), with 
the highest values occurring at 00:16 AM (Fig. 4). In the 
ASDH rats, the rhythmicity was disrupted (P = 0.06), with 
decreased amplitude and an acrophase shift to 05:42 (Fig. 5). 
The mesor was 37.35 °C in the sham-operated group and 
37.37 °C in the ASDH group.

Discussion

This study is the first to determine the mRNA expression 
of circadian genes in PBLs in an ASDH animal model. We 
observed disrupted rhythmicity of Per2, Cry1, and Bmal1 
mRNA and rectal temperature after ASDH. Additionally, a 
depressed amplitude and acrophase shift were noted.

Oscillations in Per1 and Per2 mRNA expression were 
initially observed in cultured fibroblasts, suggesting the 
existence of peripheral circadian clocks [29, 30]. Per genes 
are involved in cell cycle and cancer development [31, 
32]. SCN oscillations have since been detected in vari-
ous cells outside the SCN as fluctuations in Per1, Per2, 
Per3, Cry1, Cry2, Bmal1, and Clock expression. The phase 
delay between SCN and peripheral expression is approxi-
mately 4–6 h [33]. Disrupted circadian function results 
in compromised adaptation to environmental changes, 
which is associated with various conditions in humans, 
including aging, neurological and psychiatric problems, 
metabolic disorders, reproductive abnormalities, and can-
cer development [8, 34]. SCN lesions cause dysregula-
tion of peripheral oscillator rhythms [35] and altered gene 
expression in certain peripheral tissues [36]. An intrin-
sic transcriptional–translational feedback loop regulates 
rhythmic circadian gene expression [37]. The transcription 
factors, Clock and Bmal1, activate Per (Per1, Per2, and 
Per3) and Cry (Cry1 and Cry2) genes by heterodimerizing 

Fig. 1   Time course-dependent changes in the relative messenger 
ribonucleic acid (mRNA) levels of a Per1, b Per2, c Per3, d Cry1, 
e Cry2, f Bmal1, and g Clock in peripheral blood leukocytes (PBL) 
from sham-operated (n = 7, yellow line) and acute subdural hematoma 
(ASDH) (n = 7, blue line) rats. mRNA levels are expressed relative 
to those of β-actin. Using the cosinor method analysis, the mRNA 
expression of Per2, Cry1, and Bmal1 exhibited significant 24-h varia-
tion in sham-operated rats (P < 0.05). The standard error is not shown 
to ensure clarity of presentation

◂

https://cosinor.online/app/cosinor.php
https://cosinor.online/app/cosinor.php
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in the nucleus and binding to response elements within 
respective promoter sequences. Furthermore, PER and 
CRY repressor proteins form cytoplasmic complexes, 
which are translocated to the nucleus to inhibit CLOCK/
BMAL-mediated transcription [32, 38]. For a new cycle 
to begin, CRY proteins are targeted for proteasomal deg-
radation through association with FBXL3 (a member of 
the F-box protein family) E3 ubiquitin ligase complexes 
[39–41]. This transcriptional–translational feedback loop 
imposes activating/repressive functions in an autoregula-
tory cyclic manner. In another circadian feedback loop, 
REV-ERB proteins, the members of the nuclear recep-
tor superfamily of intracellular transcription factors, are 
activated by the CLOCK/BMAL dimer, which enters the 
nucleus to inhibit Bmal1. Therefore, Per1 and Per2 expres-
sion in rodent SCN peaks during the day, whereas Bmal1 
expression peaks at night [42–44]. These two feedback 
loops regulate circadian oscillations in gene expression.

Besides SCN, rhythmic circadian gene expression has 
been identified in the pineal gland, olfactory bulb, and fore-
brain [45–51]. Rhythmic circadian gene expression was 
detected in the lung, liver, stomach, adrenal glands, kidney, 
bone marrow, vasculature, adipose tissue, and peripheral 
blood in animals [42–44, 52–58]. Rhythmic Per1, Cry1, and 
Bmal1 mRNA expression in human oral mucosa and Per1 
and Bmal1 in human skin is known [33]. Rhythmic changes 
in Per1, Per2, Per3, Cry1, Bmal1, and Clock expression 
occur in the PBLs and whole blood cells in healthy human 
subjects [59–64]. These findings suggest specific expression 
patterns of circadian genes in various tissues and organs. 
However, previous studies have yielded controversial data 
regarding circadian expression rhythmicity and acrophase. 
Moreover, consistent conclusions regarding whether all cir-
cadian genes exhibit rhythmicity in peripheral blood cells 
are missing. Abnormal expression levels of Per2, Clock, and 
Bmal1 in oral mucosa and mononuclear cells at certain time 

Fig. 2   Time course-dependent changes in relative mRNA levels of a 
Per2, b Cry1, and c Bmal1 in the PBLs of sham-operated rats. mRNA 
levels are expressed relative to those of β-actin. The estimated best-
fit cosine curve (continuous line) is plotted by analyzing the mean 

expression in seven samples at each time point. For example, the two 
levels of expression at hour 1 represent the data obtained at the 1st 
and 25th h. The mRNA expression of Per2, Cry1, and Bmal1 exhib-
ited significant 24-h variations (P < 0.05)
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points were detected in patients with sleep disorders after 
TBI [65]. Protein levels of some circadian genes have been 
quantified in peripheral tissues using western blot analysis to 
clarify their roles in various physiological and pathological 
conditions [66–69], but not in TBI models. This highlights 
the need for further research on circadian gene expression in 
numerous healthy individuals using standardized protocols 
and more frequent sample collections.

As circadian clocks are highly conserved across mam-
mals, rodents represent valuable models for investigating 
the regulation of human circadian rhythms in many diseases 
[70, 71]. Similar mRNA expression rhythms were observed 
in human hepatoma cells and mouse liver, but differences 
in acrophase and amplitude existed [72]. Serial biopsies of 
human bone marrow and adipose tissue are performed for 
the time-series analysis of gene expression [53, 73], but it is 
difficult to perform for other human organs/tissues. There-
fore, we adopted the ASDH rat model to explore the molec-
ular mechanisms underlying ASDH-associated circadian 
clock dysregulation. PBLs were selected as source material 
to analyze circadian rhythm, considering the accessibility 
and animal welfare issues. We found that only Per2, Cry1, 
and Bmal1 mRNA expression was rhythmic in sham-oper-
ated rat PBLs, but it was disrupted in ASDH rats, suggesting 
that the accumulation of blood in the subdural space with 
increased ICP is responsible for this change.

ASDH also disrupted the rhythm of rectal temperature, 
with reduced amplitude and a shift of the acrophase. The 
peak cBT in sham-operated rats was at 00:16 AM, which 
is comparable to the findings of a previous study [74]. In a 
study comprising 108 patients with moderate-to-severe TBI, 
40.7% presented disrupted brain temperature rhythm; how-
ever, some patients with normal brain temperature rhythm 
still exhibited phase shifts [13]. Only a few studies have 
investigated the rhythms and acrophases of body or brain 

Table 2   Rhythm features of messenger ribonucleic acid (mRNA) 
expression of circadian genes in sham-operated and acute subdural 
hematoma (ASDH) rats

* P-value for statistical significance of parameter estimates: Rhythm 
detection was considered significant when P < 0.05, ASDH acute sub-
dural hematoma
Per1 period 1, Per2 period 2, Per3 period 3, Cry1 cryptochrome 1, 
Cry2 cryptochrome 2, Bmal1 brain and muscle aryl hydrocarbon 
receptor nuclear translocator-like 1 Clock circadian locomotor output 
cycles kaput, ASDH acute subdural hematoma

Mesor Amplitude Acrophase 
(clock hours)

P-value

Sham-operated rats
    Per1 20.96 4.54 09:30 0.326
    Per2 1.48 0.48 04:26 0.039 *
    Per3 4.53 0.91 10:59 0.251
    Cry1 2.79 0.94 07:48 0.017 *
    Cry2 17.29 2.83 09:11 0.244
    Bmal1 3.65 0.65 08:00 0.044 *
    Clock 4.26 0.74 11:56 0.400

ASDH rats
    Per1 20.96 1.09 15:22 0.840
    Per2 1.74 0.34 21:04 0.122
    Per3 4.28 0.77 15:18 0.284
    Cry1 2.44 0.17 15:31 0.662
    Cry2 17.72 1.73 14:50 0.456
    Bmal1 4.10 0.14 16.73 0.925
    Clock 4.43 0.27 16.68 0.871

Fig. 3   Time course-dependent changes in rectal temperature in sham-operated (n = 7) and acute subdural hematoma (ASDH) rats (n = 7). Data 
are expressed as mean ± standard error

Table 3   Rhythm features of rectal temperature in sham-operated and 
acute subdural hematoma (ASDH) rats

*Statistically significant (P < 0.05)
ASDH acute subdural hematoma

Mesor Amplitude Acrophase P-value

Sham-operated rats 37.35 °C 0.19 00:16 0.004*
ASDH rats 37.37 °C 0.16 05:42 0.063



410	 Journal of Molecular Medicine (2024) 102:403–414

temperature in patients after brain injuries. Shifts in acro-
phase of cBT were observed in a study comprising 28 Alz-
heimer’s disease patients who presented with high nocturnal 
activity and fragmented sleep [75]. Among 100 patients with 
intracerebral hemorrhage, the rhythmicity of systolic blood 
pressure and heart rate was lost in 43% and 52% of patients, 
respectively [76]. In a study of 78 patients with basal gan-
glia hemorrhage after surgery, brain temperature remained 
intact in 55.1%, with acrophase shift in 60.3% of patients 
[77]. Furthermore, cosinor analysis of cBT in 86 patients 
with ruptured cerebral aneurysms revealed elevated mesors 
(37.8 ± 0.4 °C) with blunted amplitudes (0.27 ± 0.14 °C), 

and only 27% of acrophases remained within the normative 
12–6 PM quadrant [78].

Traumatic brain injury (TBI) can lead to various forms 
of damage in the case of ASDH, encompassing localized 
cortical ischemic damage related to the hematoma, second-
ary injury due to increased intracranial pressure (ICP), and 
the release of toxic substances from the hematoma itself 
[79–81]. In their study using the high-frequency head impact 
(HFHI) and controlled cortical impact (CCI) mouse models 
of TBI, Korthas et al. revealed that different forms of brain 
trauma can result in distinct patterns of circadian and sleep 
disruptions [82]. Boone et al. observed that TBI disrupts 
the oscillation of Per1 and Bmal1 mRNA within the SCN 
and hippocampus [83]. Additionally, Li et al. found that, 
in context of TBI in rats, Bmal1 levels in the cerebral cor-
tex decrease, exacerbating nerve damage by increasing the 
phosphorylation of P38 MAPK (mitogen-activated protein 
kinase) [84]. The effects of TBI on mRNA expression of 
peripheral oscillators are under-examined. Patients with 
TBI of varying severity may experience impaired circadian 
rhythm after injury to the hypothalamus. Changes in envi-
ronmental synchronizers, such as ambient temperature in the 
ICU and feeding schedule, have been documented [85, 86]. 
Hemorrhage or other injuries of the retinohypothalamic tract 
may lead to the disruption of retinal inputs to the SCN [87]. 
Repeated impacts in high-frequency head impact (HFHI) 
mice have been demonstrated to result in the development 
of chronic inflammation and damage in the optic nerve/
tract. Additionally, inflammation has been documented in 
the hypothalamus on the same side as the controlled corti-
cal impact (CCI) injury in mice. [82]. In an autopsy study, 
microhemorrhage or ischemic necrosis in the hypothalamus 
was found in 42.5% of patients who died after severe TBI 
[88].

The increased ICP after ASDH in our model underlies 
SCN dysregulation. We injected nonheparinized blood into 
the subdural space to achieve an ICP of 22–25 mmHg. A 
larger blood injection and higher ICP may mimic the clini-
cal scenarios in ASDH patients, wherein ICP impairs con-
sciousness and causes neurological deficits. However, the 
animals may not survive through the entire study period 
owing to high ICP. As several factors may contribute to the 
dysregulation of circadian gene expression and temperature 
changes, further studies are required to explore other poten-
tial mechanisms.

Our study has a few limitations. First, the frequency and 
duration of longitudinal peripheral blood sampling were 
limited. Considering the welfare of animals and the possible 
effects of delayed brain ischemia and edema, we obtained 12 
measurements over 2 days. Additional data collection may 
improve the reliability of cosinor analysis but may disturb the 
circadian rhythms of animals. Using telemetry devices may 
allow researchers to monitor the body temperature of animals 

Fig. 4   Time-related patterns of rectal temperature in sham-operated 
rats. X–Y plots represent the fitted cosine curves (continuous line) of 
rectal temperature measurements at 4-h intervals over 48 h. The curve 
is plotted by analyzing the measurements obtained for seven rats at 
each time point. For example, the two measurements at hour 1 repre-
sent the data obtained at the 1st and 25th h

Fig. 5   Time-related patterns of rectal temperature in ASDH rats. X–Y 
plots representing the fitted cosine curves (continuous line) of rec-
tal temperature measurements at 4-h intervals over 48  h. The curve 
is plotted by analyzing the measurements for seven rats at each time 
point. For example, the two measurements at hour 1 represent the 
data obtained at the 1st and 25th h
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continuously in their home environments without disturbance 
[17]. Second, unilateral limb weakness after ASDH makes it 
difficult to observe locomotor activity in animals. Third, our 
study exclusively employed male rats, which may limit the 
generalizability of the results to female rodents. Although the 
question of whether male or female rats exhibit higher vari-
ability in circadian rhythm study remains inconclusive, it is 
important to consider the effects of androgens and estrous 
cycle phase on the endogenous circadian period in male and 
female rodents, respectively. Fourth, the model using subdural 
blood injection does not entirely replicate the actual clinical 
scenarios of SDH, which are frequently associated with exten-
sive primary brain injury. Further research is needed to investi-
gate gene expression oscillations in SCN and different periph-
eral tissues and to explore the precise mechanisms underlying 
dysregulation of circadian gene expression after TBI, along 
with its relationship with body temperature changes.

In conclusion, this study provides novel insight into the 
rhythmicity of cBT and mRNA expression of circadian genes 
in PBLs in a rat model of ASDH. ASDH resulted in dys-
regulation of Per2, Cry1, and Bmal1 mRNA expression in 
PBLs and rhythmic changes in body temperature during the 
first 48-h post-surgery. Although further studies are needed to 
explore the underlying molecular mechanisms, the dysregula-
tion of mRNA expression may be targeted for the treatment 
of patients with post-TBI neurological and mental disorders.
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