Skip to main content
Log in

TAT-W61 peptide attenuates neuronal injury through blocking the binding of S100b to the V-domain of Rage during ischemic stroke

  • Original Article
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

Ischemic stroke is a devastative nervous system disease associated with high mortality and morbidity rates. Unfortunately, no clinically effective neuroprotective drugs are available now. In ischemic stroke, S100 calcium-binding protein b (S100b) binds to receptor for advanced glycation end products (Rage), leading to the neurological injury. Therefore, disruption of the interaction between S100B and Rage can rescue neuronal cells. Here, we designed a peptide, termed TAT-W61, derived from the V domain of Rage which can recognize S100b. Intriguingly, TAT-W61 can reduce the inflammatory caused by ischemic stroke through the direct binding to S100b. The further investigation demonstrated that TAT-W61 can improve pathological infarct volume and reduce the apoptotic rate. Particularly, TAT-W61 significantly improved the learning ability, memory, and motor dysfunction of the mouse in the ischemic stroke model. Our study provides a mechanistic insight into the abnormal expression of S100b and Rage in ischemic stroke and yields an invaluable candidate for the development of drugs in tackling ischemic stroke.

Key messages

  • S100b expression is higher in ischemic stroke, in association with a high expression of many genes, especially of Rage.

  • S100b is directly bound to the V-domain of Rage.

  • Blocking the binding of S100b to Rage improves the injury after ischemic stroke.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Availability of data and materials

The data and materials in the current study are available from the corresponding author on reasonable request.

Abbreviations

MCAO:

Middle cerebral artery occlusion

I/R:

Ischemia/reperfusion

S100b:

S100 calcium binding protein b

Rage:

Receptor of advanced glycation end products

TTC:

2,3,5-Triphenyltetrazolium chloride

OGD/R:

Oxygen glucose deprivation/reperfusion

MWM:

Morris water maze

References

  1. Awada Z, Abboud R, Nasr S (2019) Risk of serious bleeding with antiplatelet therapy for secondary prevention post ischemic stroke in Middle East population. Cureus 11(6):e4942

    PubMed  PubMed Central  Google Scholar 

  2. Fu K, Chen L, Hu S, Guo Y, Zhang W, Bai Y (2021) Grape seed proanthocyanidins attenuate apoptosis in ischemic stroke. Acta Neurol Belg 121(2):357–364

    Article  PubMed  Google Scholar 

  3. Holla FK, Postma TJ, Blankenstein MA, van Mierlo TJM, Vos MJ, Sizoo EM, de Groot M, Uitdehaag BMJ, Buter J, Klein M et al (2016) Prognostic value of the S100b protein in newly diagnosed and recurrent glioma patients: a serial analysis. J Neurooncol 129(3):525–532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Krzych ŁJ, Czempik PF, Saucha W, Kokocińska D, Knapik P (2015) Serum S100b protein concentration in brain-dead organ donors: a pilot study. Anaesthesiology intensive therapy 47(4):320–323

    Article  PubMed  Google Scholar 

  5. Camponeschi C, De Carluccio M, Amadio S, Clementi ME, Sampaolese B, Volonté C, Tredicine M, Romano Spica V, Di Liddo R, Ria F et al (2021) S100b protein as a therapeutic target in multiple sclerosis: the S100b inhibitor arundic acid protects from chronic experimental autoimmune encephalomyelitis. Int J Mol Sci 22(24)

  6. King A, Szekely B, Calapkulu E, Ali H, Rios F, Jones S, Troakes C (2020) The increased densities, but different distributions, of both C3 and S100A10 immunopositive astrocyte-like cells in Alzheimer’s disease brains suggest possible roles for both A1 and A2 astrocytes in the disease pathogenesis. Brain Sci 10(8):503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Schmidt S, Linington C, Zipp F, Sotgiu S, de Waal MR, Wekerle H, Hohlfeld R (1997) Multiple sclerosis: comparison of the human T-cell response to S100 beta and myelin basic protein reveals parallels to rat experimental autoimmune panencephalitis. Brain 120(Pt 8):1437–1445

    Article  PubMed  Google Scholar 

  8. Penn AM, Saly V, Trivedi A, Lesperance ML, Votova K, Jackson AM, Croteau NS, Balshaw RF, Bibok MB, Smith DS et al (2018) Differential proteomics for distinguishing ischemic stroke from controls: a pilot study of the SpecTRA project. Transl Stroke Res 9(6):590–599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Feng Y, Yang L, Ma X, Huang Z, Zong X, Citadin CT, Lin HW, Zhang Q (2023) Photobiomodulation treatment inhibits neurotoxic astrocytic polarization and protects neurons in in vitro and in vivo stroke models. Neurochem Int 162:105464

    Article  CAS  PubMed  Google Scholar 

  10. Sharma A, Kaur S, Sarkar M, Sarin BC, Changotra H (2021) The age-Rage axis and Rage Genetics in chronic obstructive pulmonary disease. Clin Rev Allergy Immunol 60(2):244–258

  11. Liu B, Ye X, Zhao G, Jin L, Shi J (2021) Association of Rage with acute ischemic stroke prognosis in type 2 diabetes. Ir J Med Sci 190(2):625–630

    Article  PubMed  Google Scholar 

  12. MacLean M, Derk J, Ruiz HH, Juranek JK, Ramasamy R, Schmidt AM (2019) The Receptor for Advanced Glycation End Products (Rage) and DIAPH1: Implications for vascular and neuroinflammatory dysfunction in disorders of the central nervous system. Neurochem Int 126:154–164

    Article  CAS  PubMed  Google Scholar 

  13. Sapkota A, Park SJ, Choi JW (2021) Receptor for advanced glycation end products is involved in LPA(5)-mediated brain damage after a transient ischemic stroke. Life (Basel, Switzerland) 11(2)

  14. Kamide T, Kitao Y, Takeichi T, Okada A, Mohri H, Schmidt AM, Kawano T, Munesue S, Yamamoto Y, Yamamoto H et al (2012) Rage mediates vascular injury and inflammation after global cerebral ischemia. Neurochem Int 60(3):220–228

    Article  CAS  PubMed  Google Scholar 

  15. Zhang Y, Li F, Chen C, Li Y, Xie W, Huang D, Zhai X, Yu W, Wan J, Li P (2022) RAGE-mediated T cell metabolic reprogramming shapes T cell inflammatory response after stroke. J Cereb Blood Flow Metab 42(6):952–965

    Article  CAS  PubMed  Google Scholar 

  16. Yan XG, Cheng BH, Wang X, Ding LC, Liu HQ, Chen J, Bai B (2015) Lateral intracerebroventricular injection of Apelin-13 inhibits apoptosis after cerebral ischemia/reperfusion injury. Neural Regen Res 10(5):766–771

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Neeper M, Schmidt AM, Brett J, Yan SD, Wang F, Pan YC, Elliston K, Stern D, Shaw A (1992) Cloning and expression of a cell surface receptor for advanced glycosylation end products of proteins. J Biol Chem 267(21):14998–15004

    Article  CAS  PubMed  Google Scholar 

  18. Schmidt AM, Vianna M, Gerlach M, Brett J, Ryan J, Kao J, Esposito C, Hegarty H, Hurley W, Clauss M et al (1992) Isolation and characterization of two binding proteins for advanced glycosylation end products from bovine lung which are present on the endothelial cell surface. J Biol Chem 267(21):14987–14997

    Article  CAS  PubMed  Google Scholar 

  19. Jensen JL, Indurthi VS, Neau DB, Vetter SW, Colbert CL (2015) Structural insights into the binding of the human receptor for advanced glycation end products (Rage) by S100b, as revealed by an S100b-Rage-derived peptide complex. Acta Crystallogr D Biol Crystallogr 71(Pt 5):1176–1183

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  20. Dattilo BM, Fritz G, Leclerc E, Kooi CW, Heizmann CW, Chazin WJ (2007) The extracellular region of the receptor for advanced glycation end products is composed of two independent structural units. Biochemistry 46(23):6957–6970

    Article  CAS  PubMed  Google Scholar 

  21. Yan SD, Bierhaus A, Nawroth PP, Stern DM (2009) Rage and Alzheimer’s disease: a progression factor for amyloid-beta-induced cellular perturbation? Journal of Alzheimer’s disease : JAD 16(4):833–843

    Article  PubMed  Google Scholar 

  22. Feng L, Matsumoto C, Schwartz A, Schmidt AM, Stern DM, Pile-Spellman J (2005) Chronic vascular inflammation in patients with type 2 diabetes: endothelial biopsy and RT-PCR analysis. Diabetes Care 28(2):379–384

    Article  CAS  PubMed  Google Scholar 

  23. Deng Y, Chen D, Gao F, Lv H, Zhang G, Sun X, Liu L, Mo D, Ma N, Song L et al (2020) Silencing of long non-coding RNA GAS5 suppresses neuron cell apoptosis and nerve injury in ischemic stroke through inhibiting DNMT3B-dependent MAP4K4 methylation. Transl Stroke Res 11(5):950–966

    Article  CAS  PubMed  Google Scholar 

  24. Huang X, Yang J, Huang X, Zhang Z, Liu J, Zou L, Yang X (2021) Tetramethylpyrazine improves cognitive impairment and modifies the hippocampal proteome in two mouse models of Alzheimer’s disease. Front Cell Dev Biol 9:632843

    Article  PubMed  PubMed Central  Google Scholar 

  25. Lu J, Xu F, Lu H (2020) LncRNA PVT1 regulates ferroptosis through miR-214-mediated TFR1 and p53. Life Sci 260:118305

    Article  CAS  PubMed  Google Scholar 

  26. Liu MX, Luo L, Fu JH, He JY, Chen MY, He ZJ, Jia J (2022) Exercise-induced neuroprotection against cerebral ischemia/reperfusion injury is mediated via alleviating inflammasome-induced pyroptosis. Exp Neurol 349:113952

    Article  CAS  PubMed  Google Scholar 

  27. Li J, Liu Z, Wang L, Xu H, Wang Y (2019) Thousand and one kinase 1 protects MCAO-induced cerebral ischemic stroke in rats by decreasing apoptosis and pro-inflammatory factors. Biosci Rep 39(10)

  28. Yang W, Li G, Cao K, Ma P, Guo Y, Tong W, Wan J (2020) Exogenous insulin-like growth factor 1 attenuates acute ischemic stroke-induced spatial memory impairment via modulating inflammatory response and tau phosphorylation. Neuropeptides 83:102082

    Article  CAS  PubMed  Google Scholar 

  29. Su X, Vasilkovska T, Fröhlich N, Garaschuk O (2021) Characterization of cell type-specific S100B expression in the mouse olfactory bulb. Cell Calcium 94:102334

  30. Cordeiro JL, Neves JD, Nicola F, Vizuete AF, Sanches EF, Gonçalves CA, Netto CA (2022) Arundic Acid (ONO-2506) Attenuates neuroinflammation and prevents motor impairment in rats with intracerebral hemorrhage. Cell Mol Neurobiol 42(3):739–751

    Article  CAS  PubMed  Google Scholar 

  31. Li H, Wu W, Sun Q, Liu M, Li W, Zhang XS, Zhou ML, Hang CH (2014) Expression and cell distribution of receptor for advanced glycation end-products in the rat cortex following experimental subarachnoid hemorrhage. Brain Res 1543:315–323

    Article  CAS  PubMed  Google Scholar 

  32. AP IJ, Guo D (2019) Drug-target association kinetics in drug discovery. Trends in biochemical sciences 44(10):861–871

  33. Huang HL, Lin CC, Jeng KC, Yao PW, Chuang LT, Kuo SL, Hou CW (2012) Fresh green tea and gallic acid ameliorate oxidative stress in kainic acid-induced status epilepticus. J Agric Food Chem 60(9):2328–2336

    Article  CAS  PubMed  Google Scholar 

  34. Katan M, Luft A (2018) Global Burden of Stroke. Semin Neurol 38(2):208–211

    Article  PubMed  Google Scholar 

  35. Anrather J, Iadecola C (2016) Inflammation and stroke: an overview. Neurotherapeutics : the journal of the American Society for Experimental NeuroTherapeutics 13(4):661–670

    Article  CAS  PubMed  Google Scholar 

  36. Zhang J, Fu B, Zhang X, Chen L, Zhang L, Zhao X, Bai X, Zhu C, Cui L, Wang L (2013) Neuroprotective effect of bicyclol in rat ischemic stroke: down-regulates TLR4, TLR9, TRAF6, NF-κB, MMP-9 and up-regulates claudin-5 expression. Brain Res 1528:80–88

    Article  CAS  PubMed  Google Scholar 

  37. Kadhim HJ, Duchateau J, Sébire G (2008) Cytokines and brain injury: invited review. J Intensive Care Med 23(4):236–249

    Article  PubMed  Google Scholar 

  38. Kirkley KS, Popichak KA, Afzali MF, Legare ME, Tjalkens RB (2017) Microglia amplify inflammatory activation of astrocytes in manganese neurotoxicity. J Neuroinflammation 14(1):99

    Article  PubMed  PubMed Central  Google Scholar 

  39. Kalogeris T, Baines CP, Krenz M, Korthuis RJ (2012) Cell biology of ischemia/reperfusion injury. Int Rev Cell Mol Biol 298:229–317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Schieber M, Chandel NS (2014) ROS function in redox signaling and oxidative stress. Current biology : CB 24(10):R453-462

    Article  CAS  PubMed  Google Scholar 

  41. Qiao J, Arthur JF, Gardiner EE, Andrews RK, Zeng L, Xu K (2018) Regulation of platelet activation and thrombus formation by reactive oxygen species. Redox Biol 14:126–130

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the Jiangsu Province Innovative and Entrepreneurial Team Program, the Six Talent Peaks Project in Jiangsu Province (WSN-089), Development Fund of The Affiliated Hospital of Xuzhou Medical University in 2021(XYFM2021010), the National Natural Science Foundation of China (82104150), and Foundation of Xuzhou Medical University (D2018004). We are grateful to all the staff in the Jiangsu Province Key Laboratory of Anesthesiology, Public Experimental Research Center and Experimental Animal Center of Xuzhou Medical University, for their support and help during the experiments.

Author information

Authors and Affiliations

Authors

Contributions

YJS and NW initiated and designed the project; JL performed the main experiments, analyzed experimental results, and drafted the article; HL and NW performed bioinformatics analysis and structure analysis. XYM and DL took part in western blot. YLC, QF, and ZZ performed behavioral experiments. XRW took part in immunohistochemistry. All the authors read and approved the final manuscript.

Corresponding authors

Correspondence to Nan Wang or Yuan-Jian Song.

Ethics declarations

Ethics approval and consent to participate

The project “TAT-W61 peptide attenuates neuronal injury through blocking the binding of S100b to the V-domain of Rage during ischemic stroke” was examined and verified by Laboratory Animal Ethics Committee of Xuzhou Medical University in accordance with Guide to Laboratory Animal Ethics Examination of Xuzhou Medical University (201907A008). And relative animal experiments are permitted.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 761 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, J., Li, H., Liu, C. et al. TAT-W61 peptide attenuates neuronal injury through blocking the binding of S100b to the V-domain of Rage during ischemic stroke. J Mol Med 102, 231–245 (2024). https://doi.org/10.1007/s00109-023-02402-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-023-02402-8

Keywords

Navigation