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Abstract
Sphingolipids (SLs) are vital constituents of the plasma membrane of animal cells and concurrently regulate numerous cel-
lular processes. An escalating number of research have evinced that SLs assume a crucial part in the progression of tissue 
fibrosis, a condition for which no efficacious cure exists as of now. Cardiac fibrosis, and in particular, atrial fibrosis, is a key 
factor in the emergence of atrial fibrillation (AF). AF has become one of the most widespread cardiac arrhythmias globally, 
with its incidence continuing to mount, thereby propelling it to the status of a major public health concern. This review 
expounds on the structure and biosynthesis pathways of several pivotal SLs, the pathophysiological mechanisms of AF, and 
the function of SLs in cardiac fibrosis. Delving into the influence of sphingolipid levels in the alleviation of cardiac fibrosis 
offers innovative therapeutic strategies to address cardiac fibrosis and AF.
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Introduction

SLs represent a heterogeneous group of lipids that were 
first discovered in the structural elements of biological 
membranes and were named after the sphinx due to their 
perplexing structure [1]. SLs exhibit both hydrophobic and 
hydrophilic properties and constitute vital constituents of 
the plasma membrane in virtually all vertebrate cells. In 
addition, SLs are capable of functioning as signaling mol-
ecules that play a role in the regulation of various processes 
including cell proliferation, apoptosis, adhesion, migration, 
inflammatory responses, angiogenesis, and intercellular 
interactions [2–5].

AF is recognized as one of the most prevalent cardiac 
arrhythmias with an incidence of 1–2% in the general 
population. According to the 2019 Global Burden Report, 
AF affects almost 60 million individuals globally and has 
become a significant public health concern. The prevalence 
of AF is expected to continue rising globally due to eco-
nomic growth, an aging population, and the prevalence of 
risk factors such as diabetes, hypertension, obesity, and alco-
hol consumption [6, 7].

Although AF is a complex and heterogeneous disease 
[8], atrial fibrosis is its most prominent feature and is the 
key factor linking AF-related mechanisms [9, 10]. The main 
characteristic of atrial fibrosis is abnormal activation, prolif-
eration, and differentiation of fibroblasts, accompanied by 
excessive synthesis and irregular deposition of extracellular 
matrix (ECM) proteins [11]. A variety of complex molecular 
signaling systems are involved in AF, and the development 
of tissue fibrosis typically occurs in a gradual and progres-
sive manner. Once established, tissue fibrosis is difficult 
to reverse; therefore, preventing fibrosis by blocking the 
upstream biological processes that lead to it may be a thera-
peutic strategy that will benefit patients.

In recent years, the sphingolipid signaling pathway has been 
recognized as involved in the occurrence and development of 
fibrosis. Investigating the mechanisms by which sphingolipids 
participate in cardiac fibrosis can offer new insights for the 
treatment of cardiac fibrosis and related conditions.

Junjie Liu, Ximao Liu and Yucheng Luo contributed equally to this 
work and share first authorship.

 * Shaoyi Zheng 
 zhsy@smu.edu.cn

 * Bo Jia 
 dentist-jia@163.com

 * Zezhou Xiao 
 07zzxiao@smu.edu.cn

1 Department of Cardiovascular Surgery, Nanfang Hospital, 
Southern Medical University, Guangzhou, China

2 Department of Oral and Maxillofacial Surgery, 
Stomatological Hospital, School of Stomatology, Southern 
Medical University, Guangzhou, China

http://crossmark.crossref.org/dialog/?doi=10.1007/s00109-023-02391-8&domain=pdf
http://orcid.org/0000-0002-1122-0290


150 Journal of Molecular Medicine (2024) 102:149–165

1 3

Structure of sphingolipids

SLs are a class of amphipathic lipids that consist of a sphin-
goid base backbone, which is N-acylated with various fatty 
acid chains and alcohol groups at both ends of the sphin-
goid base backbone (Fig. 1). This class of lipids includes 
sphingosine, ceramides, sphingosine-1-phosphate (S1P), 
ceramide-1-phosphate (C1P) and sphingomyelin (SM). SLs 
can be divided into three structural types, namely, sphingo-
sine bases and simple derivatives, ceramides and complex 
SLs, with sphingosine serving as the structural foundation 
for all sphingolipid derivatives [2].

Sphingosine and simple derivatives

Sphingoid bases, also known as long-chain bases (LCBs), 
are non-transient amino alcohol precursors of ceramides 
and complex SLs. In comparison to complex sphingolipid 
derivatives, the hydrophilic head group of sphingoid bases 
consists only of hydroxyl groups. The most common mam-
malian sphingoid bases include sphingosine ((2 S,3R)-2-
amino-4-trans-octadecene-1,3-diol) and dihydrosphingo-
sine ((2R,3 S)-2-aminooctadecane-1,3-diol) which referred 
to as sphinganine (Table 1). sphingosine is produced via the 

salvage pathway following ceramide catabolism, whereas 
sphinganine is synthesized in the de novo biosynthetic path-
way. The structural difference between these two sphingoid 
bases is the presence of a trans double bond at position C4, 
which is present in sphingosine but absent in sphinganine.

Through minor modifications such as phosphorylation 
and acetylation, sphingosine can be easily transformed 
into sphingosine derivatives [12]. Both sphingosine and 
sphinganine possess terminal hydroxyl groups that can be 
phosphorylated to form sphingosine-1-phosphate [{[(4E)-
2-amino-3-hydroxyoctadec-4-en-1-yl]oxy} phosphonic acid] 
(S1P) and sphinganine-1-phosphate [{[(2 S,3R)-2-amino-
3-hydroxyoctadecyl]oxy}phosphonic acid].

Ceramides

Ceramides are composed of sphingoid bases and variable 
long-chain fatty acids [13, 14] (Fig. 2). Due to the fact that 
ceramides possess (1) variable lengths and saturation of the 
fatty acid chains; (2) the introduction of hydroxyl or double 
bonds into the sphingoid bases; and (3) the length of the 
sphingoid base [15], ceramides are not a single substance, 
but rather a class of structurally similar substances. Accord-
ing to statistics, there may be as many as 360 different cera-
mide structures [16]. The length, degree of unsaturation, 
and position of the unsaturated bonds in the fatty acid chains 
all influence the properties of ceramides. Ceramides are an 
important constituent of complex SLs, differing from sphin-
goid bases by the addition of long-chain fatty acids to the 
amino group. As the backbone of SM, glycosphingolipids 
(GSLs), and gangliosides, ceramides are essential constitu-
ents of the eukaryotic cell membrane. Ceramides also play 
a critical role as second messengers in cell signaling, and  

Fig. 1  Chemical structure formula of SLs. R: Various fatty acid chains

Table 1  Sphingoid structures of common mammalian

Classification Sphingolipid IUPAC Name Structure
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have significant biological functions in cell metabolism, 
including cell proliferation, apoptosis, and differentiation. 
This part will be covered in the two chapters of this review 
on sphingolipid biosynthesis and the association of sphin-
golipids with cardiac fibrosis and AF.

Complex sphingolipids

The basic composition of complex SLs comprises a cera-
mide backbone and a polar head group typically located at 
the 1-position. Generally, SLs are classified into two major 
categories based on their head groups: phosphosphingolipids 
(PSLs) and GSLs; however, these classifications are not mutu-
ally exclusive; PSLs can also be considered as acidic GSLs.

Phosphosphingolipids

As the name implies, PSLs contain the basic sphingolipid 
structure, along with one or more phosphate groups. SM is 
the most common PSL, consisting of a phosphorylcholine 
and a ceramide, exhibiting a cylindrical structure. SM spe-
cies constitute the most prevalent SLs in mammalian cells 
[17] and are a major component of myelin sheaths.

The other PSL is C1P, the main antagonist of ceramide. 
Despite their similarity, as they differ by only one phos-
phate group, they perform opposing functions within the 
cell. Ceramide normally promotes apoptosis, however C1P 
promotes cell proliferation. This is discussed in more detail 
in later chapters.

Glycosphingolipids

Structurally, GSLs are composed of a ceramide backbone 
that is covalently linked to at least one carbohydrate moiety. 
In plants, these carbohydrate moieties are typically simple 
sugars like glucose, whereas in mammals, they can vary 
from simple sugars to complex head groups that can be 
modified by attachment of several carbohydrates or other 
acidic/neutral molecules. GSLs encompass a vast and var-
ied group of structures that are commonly categorized into 
neutral and acidic GSLs based on their charge.

Sphingolipid biosynthesis

Ceramide represents a crucial node in the biosynthetic path-
way of SLs, and its production is accomplished via three 
principal pathways: the de novo synthetic pathway, the 
sphingomyelinase pathway and the salvage pathway [18, 
19] (Fig. 3).

Biosynthesis of sphingoid bases and ceramide 
via the de novo synthetic pathway

The de novo synthesis pathway initiates within the endoplas-
mic reticulum (ER) and is accompanied by the decarboxyla-
tion and condensation of L-serine and activated fatty acyl 
coenzyme-A (CoA). Palmitoyl-CoA (C16-CoA) is the most 
widely employed fatty acyl CoA for sphingolipid production. 
However, the selection of acyl-CoA substrate is contingent 
upon the subunit composition of the serine palmitoyltrans-
ferase (SPT) enzyme, which catalyzes the condensation 
reaction. SPT, a pyridoxal 5’ phosphate-dependent enzyme, 
belongs to the alpha-oxoamine synthase family. This het-
erodimer consists of two catalytic subunits (SPTLC1, 
SPTLC2) or a third regulatory subunit (SPTLC3) in place 
of SPTLC2. Other protein families such as small subunit 
SPTs (SPTssa and SPTssb) and orosomucoid-like proteins 
(ORMDLs), perform critical regulatory roles in the SPT 
complex, resulting in either increased (small subunit SPTs) 
or decreased (ORMDLs) activity [20, 21]. The selection of 
specific acyl coenzyme A is determined by the combina-
tion of different subunits. The complex SPTLC1/SPTLC2/
SPTssa preferentially selects Palmitoyl-coenzyme A (C16-
CoA). Moreover, SPTLC1/SPTLC3/SPTssa and SPTLC1/
SPTLC2/SPTssb primarily select Myristoyl-CoA (C14-
CoA) and Stearoyl-CoA (C18-CoA), respectively [21, 22].

The condensation product of serine and palmitoyl coen-
zyme A is 3-ketodihydrosphingosine, which is then reduced 
by NADPH-dependent 3-ketodihydrosphingosine reductase 
(KDSR). The ketone located at C3 of 3-ketodihydrosphingosine  
is reduced to an alcohol, resulting in amino alcohol sphinga-
nine (dihydrosphingosine) [23, 24]. sphinganine can be con- 
verted into three different derivatives. The first, sphinganine- 
1-phosphate, is produced by sphingosine kinase via 

Fig. 2  The chemical structure  
of ceramide
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ATP-dependent phosphorylation [25]. The second, dihy-
drosphingosine, as shown in Fig. 3, can also be converted 
to phytosphingosine (4-hydroxysphinganine) by adding a 
hydroxyl group to C4.

The third biological derivative, dihydroceramide, as 
shown in Fig. 3, arises from the continuation of the de novo 
synthetic pathway. Dihydroceramide synthase, often referred 
to as ceramide synthase (CerS), catalyzes the attachment of 
the acyl group of fatty acyl-CoA to the free amino group  
of sphinganine via an amide bond, producing dihydrocera-
mide [26]. There are six enzymes in the CerS family that 
have been identified, each with a specific preference for the 
length of acyl-CoA chain used for N-acylation of the sphin-
goid LCB (Table 2). CerS1 was the first CerS to be discov-
ered due to its homology to Lag1 in yeast and demonstrates 
a preference for C18-CoA. CerS2 prefers C22-C24-CoA, 
CerS3 utilizes C26-CoA and higher CoA, CerS4 utilizes 
C18-C20-CoA, and CerS5 and CerS6 utilize mainly C14-
16-CoA [22, 27–30]. The dihydroceramide produced by 
these sphingosine N-acyltransferases is then dehydrated by 

dihydroceramide desaturase with the addition of a 4,5-trans 
double bond, resulting in ceramide [31].

The salvage pathway and the  
sphingomyelinase pathway

As illustrated in Fig. 3, complex SLs such as GSLs, are par-
tially degraded and their respective components are recircu-
lated to form ceramides, which is known as the salvage path-
way. Sphingomyelinases (SMases) catalyze the hydrolysis of 
SMs to generate ceramide and phosphorylcholine, known as 
the sphingomyelinase pathway [17]. GSLs are transported 
from the plasma membrane to lysosomes by cytocytosis 
and degraded by specific enzymes with the assistance of 
accessory proteins [32, 33]. The glycan fraction of GSLs is 
removed, leading to the formation of ceramides, which are 
subsequently deacylated by ceramidases (CDases) to produce 
sphingosine and free fatty acids. As mentioned previously, 
sphingosine is only produced in the salvage pathway through 
the complex hydrolysis of SLs and ceramides. Sphingosine 

Fig. 3  The pathway of ceramide synthesis encompasses the de novo 
synthetic pathway, the salvage pathway, and the sphingomyelinase path-
way. SPT: serine palmitoyltransferase; KDSR: 3-ketodihydrosphingosine 

reductase; SphK: sphingosine kinases; CerS: ceramide synthase; CDases: 
ceramidases; SMS: sphingomyelin synthase; SMases: Sphingomyelinases
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can be phosphorylated by sphingosine kinases (SphK1 & 
SphK2) to produce S1P. Alternatively, sphingosine can be 
translocated to the ER, where it is reused for ceramide for-
mation via CerS, subsequently producing complex SLs [34].

Formation of complex sphingolipids

Complex SLs are synthesized by attaching hydrophilic head 
groups to the hydroxyl groups located at C1 of a hydropho-
bic ceramide. As previously mentioned, they can be cat-
egorized into two categories: PSLs and GSLs. Ceramides 
produced by the de novo synthetic pathway or the salvage 
pathway are the basis for all complex SLs.

Phosphosphingolipids

PSLs are formed by attaching a phosphate-containing polar 
head group to the ceramide parent compound. In the case of 
SM, the ceramide parent compound is phosphocholine [35]. 
After completion of synthesis in the ER, ceramide is trans-
ported to the Golgi inner leaflet via ceramide transporter pro-
tein (CERT) [32, 36, 37]. The head group of a phosphoryl-
choline is transferred from the phosphatidylcholine to the 
ceramide via sphingomyelin synthase (SMS), producing dia-
cylglycerol (DAG) and SM (ceramide phosphocholine) [17]. 
There are three SMSs (SMS1, SMS2 and SMSr), which are 
encoded by the genes SGMS1, SGMS2 and SAMD8. SMS1 
and SMS2 each have six transmembrane structural domains 
and perform the same catalytic function but are located at 
different sites; SMS1 is found in the trans-Golgi apparatus, 
whereas SMS2 is in the plasma membrane [17, 38].

As a substitute for the choline used to form SM, ethanola-
mine can be used as the phospho-alcohol fraction, supplied by 
a phosphatidylethanolamine to produce ceramide phosphoe-
thanolamine (CPE). A less active homologue of SMS, called 
sphingomyelin synthase-related protein (SMSr), preferentially 

utilizes phosphatidylethanolamine as a donor, resulting in the 
production of CPE [39]. SMSr is a six-transmembrane protein 
similar to its SMS counterpart, although it is located within 
the lumen of the ER [40].

Sphingosine produced in the salvage pathway is phospho-
rylated by sphingosine kinase at the C1 hydroxyl group to 
form S1P. This process takes place in various cellular com-
partments including the plasma membrane, mitochondria, 
nucleus, and lysosomes. There are two isoforms of sphin-
gosine kinase, SphK1 and SphK2. SphK1 is predominantly 
located in the cytoplasmic lysis and phosphorylates sphin-
gosine from the lysosomal cytosol to form S1P. However, 
SphK1 can move to the plasma membrane to be phosphoryl-
ated by extracellular signal-regulated kinase 1/2 (ERK1/2), 
where it also forms S1P with sphingosine in the membrane 
[40]. On the other hand, SphK2 predominantly localizes in 
the nucleus and mitochondria [36, 41, 42].

C1P is produced through direct phosphorylation of cera-
mide by ceramide kinase (CERK), which is predominantly 
generated in the trans-Golgi network but is also detected in the 
nucleus and plasma membrane. CERK contains an N-terminal 
myristoylation site and pleckstrin homology domain that It is 
used for cell membrane binding [36, 43]. Moreover, CERK 
belongs to the DAG kinase family. CERK selectively recog-
nizes ceramides containing sphingosine and exhibits greater 
affinity towards those with acyl chains greater than 12 car-
bons [17]. Once synthesized, C1P is transported to the plasma 
membrane via the ceramide phosphate transfer protein [36].

Glycosphingolipids

GSLs are formed through the combination of hydrophobic 
ceramide groups and hydrophilic carbohydrate head groups 
and can be broadly classified as neutral or acidic GSLs based 
on their carbohydrate composition. neutral GSLs are also 
commonly referred to as cerebrosides.

Table 2  Specificity of different CerS to acyl-CoA

Ceramide synthase Tissue distribution Acyl-CoA specificity Pathologies associated with increased ceramide synthase activity

CerS1 Brain, skeletal muscle C18:0 Skeletal muscle insulin resistance
CerS2 ubiquitous C22:0 Cardiac mitochondrial dysfunction

C24:0 Neutral/benign
C24:1 Cardiac mitochondrial dysfunction

CerS3 Skin, testes ≥C26:0 Farber disease biomarker
CerS4 Heart, lungs C18:0 Unknown

C20:0 Lung cancer, heart failure
CerS5 ubiquitous C14:0 Unknown

C16:0 Heart failure, apoptosis
CerS6 ubiquitous C14:0 Unknown

C16:0 Heart failure, apoptosis, adipose tissue dysfunction, liver insulin 
resistance and liver fibrosis
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As shown in Fig. 4, once formed in the ER, ceramides can 
be galactosylated by ceramide galactosyltransferase (CGT), 
a type I transmembrane protein, using uridine diphosphate 
galactose (UDP-Gal) to form Galactosylceramide (GalCer) 
on the luminal surface of the ER [32, 44]. GalCer can then 
be transported to the Golgi apparatus for further modifi-
cation, for example by the addition of sulphate to the C3 
hydroxyl group, converting it to sulfatide, or it can be sia-
lylated by the sialyltransferase ST3GalV to form Neu5Acα2-
3GalβCer (GM4) [17]. Additionally, ceramide can reach the 
Golgi complex via one of two transport pathways: (1) trans-
port via CERT, which transports ceramide to the trans-Golgi 
network to form SM; or (2) vesicular transport to the cis-
Golgi network, which is used to produce glucosylceramide 
(GlcCer) via glycosylation [32, 37]. The formation of Glc-
Cer is mediated by enzyme UDP-glucose ceramide glucosyl-
transferase (UGCG), which transfers a glucose moiety taken 
from activated UDP-glucose to the hydroxyl group at C1 of 
the ceramide in β-linkage (O-linked glycosylation) [45, 46].

GlcCer is transported via the Golgi apparatus and can be 
galactosylated by β4 galactosyltransferases V and VI to form 
LacCer, which becomes a branching point for the addition of 
more monosaccharides to form globular glycosides (neutral 
GSL) or the addition of one or more acids and subsequent 
formation of acidic GSL [46].

The pathophysiology of AF

The main ECG manifestations of AF are the absence of P 
waves and the presence of irregular ventricular rhythms with-
out repetitive patterns. Clinically, AF can be defined as par-
oxysmal (converted to normal sinus rhythm within 7 days), 

persistent (converted to normal sinus rhythm after 7 days), 
long-standing persistent (lasting for more than 12 months), or 
permanent (unable to be terminated and converted to normal 
sinus rhythm) [47]. Current research and exploration of AF 
support the hypothesis that AF is produced by the interaction 
between a ‘trigger’ (initiating electrical stimulation) and a 
‘substrate’ (vulnerable tissue causing AF to be induced and 
sustained in certain cases) [48]. The development and per-
sistence of AF requires pathophysiological remodeling of the 
atria. Regardless of whether it is a simple AF or a secondary 
effect of other cardiac diseases, changes associated with AF 
remodeling can be classified into three categories: (i) elec-
trical remodeling, involving modulation of L-type  Ca2+ cur-
rents, various  K+ currents, and gap junctional function; (ii) 
structural remodeling, entailing alterations in tissue proper-
ties, size and ultrastructure; and (iii) autonomic remodeling, 
including altered sympathetic vagal activity and hyperinner-
vation [49]. As the result of pathophysiological remodeling 
of the atria, complex electrical defects are created in the atria, 
including foci of ectopic rapid discharge, complex multifold 
return pathways or rotors [50]. This will therefore increase 
susceptibility to AF, leading to its induction and perpetuation 
(Fig. 5) [51].

Atrial fibrosis is the most prominent feature of atrial 
remodeling in AF [52]. Although there is controversy about 
whether atrial fibrosis is the cause or just a consequence 
of AF, numerous studies have suggested that fibrosis is 
the cause of AF and that AF further exacerbates fibrosis. 
First, many animal models of atrial fibrosis have shown that 
atrial fibrosis increases susceptibility to AF [51, 53, 54]. 
Several specific pro-fibrotic signaling molecules includ- 
ing angiotensin II (Ang II), aldosterone and transforming 

Fig. 4  Biosynthesis of complex SLs. SLs synthesized in the endoplas-
mic reticulum are in green and those synthesized in the Golgi appara-
tus are in red. Ceramides are the main branching point in the biosyn-
thetic pathway of various SLs, including SM, C1P and simple GSLs 
such as GlcCer and GalCer. UGCG is responsible for the addition of 
glucose molecules to ceramides, while CGT adds galactose molecules 

to ceramides. GalCer can be sialylated by the sialyltransferase ST3Gal 
V to produce GM4. In addition, GalCer may be sulfated by cerebro-
side sulfotransferase to form sulfatide. GlcCer is converted to Lac-
Cer by the addition of Gal onto the Glc headgroup. CERK: ceramide 
kinase; SMS: sphingomyelin synthase; UGCG: UDP glucose ceramide 
glucosyltransferase; CGT: ceramide galactosyltransferase
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growth factor-β1 (TGF-β1) are associated with atrial fibrosis 
and AF [55–57]. In animal models, AF can be prevented 
by preventing fibrosis [58, 59]; secondly, in the absence of 
any abnormalities in cell electrophysiology, atria fibrosis 
was observed in a transgenic mouse model of isolated atrial 
fibrosis and can induce AF [60, 61]; finally, studies have  
also demonstrated that fibroblast function can be activated 
during rapid atrial pacing [62].

Atrial fibrosis is characterized primarily by abnormal 
activation, proliferation and differentiation of fibroblasts, 
as well as excessive synthesis and irregular deposition 
of ECM proteins, the essence of which is an imbalance 
between collagen synthesis and its catabolism [11]. The 
ECM of the heart consists mainly of fibrillar type I col-
lagen (accounting for approximately 85% of total myo-
cardial collagen) and type III collagen (accounting for 
around 11% of total myocardial collagen). Type I colla-
gen is mainly associated with thick fibers that have tensile 
strength. In contrast, type III collagen usually forms thin 
fibers that maintain the elasticity of the matrix network 
[63, 64]. In addition to collagen, the ECM of the heart 
contains glycosaminoglycans (such as hyaluronic acid), 
glycoproteins and proteoglycans as well as a large number 
of potential growth factors and proteases, whose activa-
tion after cardiac injury may trigger a fibrotic response. 
Fibrosis will maintain the integrity of the heart; however, 

scar proliferation formed by collagen following fibrosis 
interferes with electrical signaling [65].

Atrial fibrosis is a complex process that involves various 
intricate molecular signaling systems (Fig. 6). The major 
pro-fibrotic cell membrane receptor factors identified to 
date include connective tissue growth factor (CTGF), Ang 
II, platelet-derived growth factor (PDGF), and transform-
ing growth factor-β (TGF-β) [66]. The downstream signal-
ing pathways involves multiple common intermediates that 
increase the production of ECM proteins through a range 
of transcription factors as well as signaling molecules that 
exert positive feedback on the fibrotic process. Meanwhile, 
inflammation and many inflammation-related cytokines and 
cellular mediators have also been reported to release and 
activate pro-fibrotic molecules to cause fibrosis [67].

Association of sphingolipids with cardiac 
fibrosis and AF

SLs, heretofore, have been ascertained to participate in the 
fibrotic processes of various organs, including the liver, 
lungs, kidneys, and ocular structures [68–70]. Notably, 
SLs serve as discernible markers for hepatic fibrosis and 
inflammation. A study has proffered evidence indicating a 
noteworthy correlation between plasma S1P levels and the 

Fig. 5  Main types of remodeling leading to atrial fibrillation [9]
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mortality rate of the Model for End-Stage Liver Disease 
[71]. Activated hepatic stellate cells, reliant upon the enzy-
matic action of SphK, instigate hepatic fibrogenesis. The 
TGF-β signaling pathway, when activated, orchestrates an 
upregulation of SphK1 expression, culminating in an eleva-
tion of S1P levels and a concurrent reduction in ceramides. 
This cascade of events precipitates the differentiation of 
hepatic stellate cells into myofibroblasts [72]. Hao et al. 
have found the inhibition of S1P-S1PR1 signaling to provoke 
an exacerbation in pulmonary fibrosis [73]. In the realm of 
diverse chronic renal pathologies, SLs tend to accumulate 
within the renal milieu, thereby precipitating renal fibrosis 
and, ultimately, renal insufficiency [69]. Furthermore, S1P 
exerts its influence on processes involving the proliferation 
of retinal pigment epithelial cells, differentiation of myofi-
broblasts, and the synthesis of collagen, thereby catalyzing 
ocular fibrogenesis. Notably, these processes can be amelio-
rated through the application of anti-S1P antibodies [74, 75].

Gonzalez-Cordero et al. analyzed the genes from patients 
with AF and found a number of single nucleotide polymor-
phisms significantly associated with AF, some of which 
encode proteins involved in lysosomal activity that break 
down ceramide into sphingosine and lead to collagen deposi-
tion around atrial cardiomyocytes [76].

Biologically active SLs are now considered to possess a 
diverse range of functions that involve almost all major aspects 
of cellular biology, including cell proliferation, cell regulation, 
cell adhesion, cell migration, inflammatory responses, angio-
genesis and intercellular communication [2–5].

The relationship between ceramide and cardiac fibrosis

Ji et al. discovered that reducing cardiac and plasma cera-
mide levels decreased ventricular remodeling and fibrosis in 
a mouse model of heart failure (HF) induced by ischemia. 
The researchers induced myocardial infarction in mice by 
ligating the left anterior descending branch of the coronary 
artery, producing left ventricular dysfunction and progres-
sive cardiac remodeling and dilatation. In the HF with 
reduced ejection fraction (HFrEF) model, application of 
Myriocin (an inhibitor of SPT) reduced cardiac ceramide 
levels, as well as ventricular remodeling and fibrosis in the 
HFrEF mouse model. Similar results were also observed in 
 Sptlc2+/− mice (lacking the Sptlc2 subunit) [77]. Reducing 
cardiac and plasma ceramide levels by promoting ceramide 
degradation through CDases can similarly reduce cardiac 
remodeling and fibrosis and thus improve cardiac function. 
Adiponectin is an adipose-derived hormone that promotes 
weight loss, increases insulin sensitivity, reduces inflamma-
tion and inhibits apoptosis and has anti-diabetic and cardio-
protective effects [78]. Adiponectin was found to increase 
the intrinsic CDases activity of its two receptors, AdipoR1 
and AdipoR2 [79, 80]. Inhibition of acidic CDases activity 
in mice after myocardial infarction was found to exacerbate 
the impairment of cardiac function, while an increase in 
acidic CDases activity improved cardiac function [81], sug-
gesting an important role for the CDases response in HFrEF. 
These studies provide evidence that ceramide acts as a car-
diotoxin that impairs cardiac function and suggest that the 

Fig. 6  Signaling pathways associated with atrial fibrosis
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application of interventions to reduce ceramide levels may 
have a protective effect on the heart.

Ceramide has a role in regulating cellular apoptosis and 
senescence [82], while ceramide can also lead to neuroin-
flammation via apoptosis. De Wit et al. found that elevated 
levels of ceramide in reactive astrocytes promote neuroin-
flammation [83]. The accumulation of ceramide can induce 
inflammatory oxidative stress, leading to cystic fibrosis and 
emphysema [84]. Studies conducted on animals have shown 
that apoptosis in the context of fibrosis may contribute to 
the pathophysiological profile of AF [85–89], and ceramide 
may also play a role in atrial fibrosis and remodeling through 
oxidative stress and inflammatory responses [36, 62, 90–92].

The relationship between C1P and cardiac fibrosis

In addition to regulating the growth of primary photorecep-
tor progenitors, primary bone marrow-derived macrophages 
(BMDM), C2C12 macrophages and various cancer cell 
types, C1P also stimulates DNA synthesis and cell prolif-
eration in fibroblasts.

The stimulation of cell proliferation by C1P involves mul-
tiple signaling pathways. For example, in BMDM, C1P acti-
vates the ERK, c-Jun N-terminal kinases (JNK) and PI3-K/
PKB pathways, leading to the phosphorylation of NF-κB 
and GSK-3β. This culminates in upregulation of cyclin D1 
and c-Myc, thereby stimulating macrophage proliferation 
[93, 94]. Furthermore, the phosphorylation of the mam-
malian target of rapamycin (mTOR), specifically the kinase 
complex (mTORC1), has been found to be a key step in 
the mechanism of C1P-stimulated macrophage proliferation 
[95]. Fibroblasts can change from a quiescent to a prolifera-
tive, migratory, secretory state in the context of myocardial 
infarction, altering their phenotype to become myofibro-
blasts, which then express contractile proteins, including 
α-SMA, ultimately leading to myocardial fibrosis [96].

Moreover, C1P is involved in the inflammatory response 
and can enhance phospholipase A2 (PLA2) activity, thereby 
promoting the release of arachidonic acid (AA) from mem-
brane phospholipids [97]. Pettuss et al. found that C1P regu-
lates the inflammatory response by activating the synthesis 
and release of AA and prostaglandins, and they also dis-
covered that CERK, which produces C1P, is an upstream 
regulator of PLA2 activation [98]. Inflammation plays an 
important role in fibrosis and remodelling following car-
diac injury [36, 62, 90–92], implying that C1P may regulate 
the inflammatory response and, consequently, participate in 
cardiac fibrosis.

The relationship between S1P and cardiac fibrosis

S1P plays a crucial role in tissue fibrosis [99, 100]. Its con-
centrations in tissues and/or plasma correlate with a number 

of fibrotic factors, including TGF-β, PDGF and CTGF [101]. 
Increased concentrations of S1P in peripheral blood are also 
observed in a variety of fibrosis-related diseases, whereas 
blocking of S1P with antibodies against S1P is effective to 
reduce TGF-β-mediated collagen production [102]. Relaxin 
(RLX), a peptide hormone that causes physiological car-
diac effects, is a key regulator of ECM remodeling in many 
tissues [103]. A research using immature primary cardio-
myocytes isolated from neonatal mice and mouse cardiac 
fibroblasts H9C2 has suggested that RLX mediates SM 
metabolism, SphK1 activation, and S1P production in car-
diomyocytes. Moreover, RLX-mediated S1P production is 
critical for ECM remodeling in cardiomyocytes [104].

Both intracellular and extracellular S1P can impact cell 
growth and survival through multiple pathways involved in 
fibrotic activity [105]. S1P possesses pro-proliferative and 
anti-apoptotic properties and can act as an antagonist of cer-
amide mediated apoptosis by activating ERK and inhibiting 
ceramide-induced activation of JNK [106, 107].

S1P can be involved in inflammatory responses. Yogi 
et al. found that S1P promotes activation of p38MAPK and 
JNK/SAPK and induces inflammatory mediator production, 
in addition to stimulating inflammatory pathways through 
S1P1 receptor-mediated tyrosine kinase phosphorylation. 
This response was amplified in spontaneously hypertensive 
stroke-prone rats, possibly due to increased phosphoryla-
tion of PDGF and epidermal growth factor receptors. This 
research indicates that S1P may induce pro-inflammatory 
signaling pathways that could affect hypertensive vascular 
inflammation [108]. Furthermore, elevated pro-inflammatory 
responses, including elevated pro-inflammatory cytokines 
(IL-23/IL-17/G-CSF cytokine axis), increased expres- 
sion of inflammatory product genes, and higher levels of 
blood neutrophils and monocytes were found in S1P lyase 
knockout mouse models due to S1P accumulation [109]. 
Additionally, during myocardial hypoxia, S1P plays an 
important role in the pro-inflammatory response and migra-
tion of cardiac fibroblasts [110]. S1P can also enhance the 
expression of cyclooxygenase 2, promoting an increase in 
PGE2 [97]. In contrast, Fettel et al. demonstrated that S1P 
inhibited leukotriene biosynthesis in neutrophils by inducing 
 S1PR4-mediated  Ca2+ mobilization, suggesting that S1P has 
anti-inflammatory effects [111].

It has been demonstrated that S1P plays a role in tissue 
fibrosis possibly through the regulation of autophagy [112].

S1P signaling can regulate fibroblast migration and 
myofibroblast differentiation, vascular permeability and 
TGF-β signaling through its receptors and is associated with 
fibrotic responses to tissue injury [113–118]. S1P receptors 
(S1PRs) are crucial components in various life processes. 
 S1PR1 has been found to play a crucial role in embryonic 
angiogenesis [119] and is also known to regulate blood pres-
sure in adult individuals [120].  S1PR2 has been shown to be 
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involved in the morphogenesis of the zebrafish heart [121]. 
In vivo, the expression of S1PRs is regulated by a variety 
of factors and cytokines. TGF-β1 has been shown to be a 
potent regulator of S1PRs expression [122]. Additionally, 
the stimulation of human macrophages using supernatants 
from cultured apoptotic cells can increase the expression of 
 S1PR1 in macrophages [123]. Increasing evidence supports 
an important role for S1PRs in the fibrosis process in various 
cells [100]. A study using  S1PR2-deficient mice or  S1PR3 
and  S1PR2 double-deficient mouse models found that the 
activity of Rho, which is closely associated with fibrosis, 
was significantly reduced in these mouse embryonic fibro-
blasts [124]. Furthermore, inhibition of  S1PR2 and  S1PR3 
gene expression in vitro led to the inhibition of myofibro-
blast differentiation, and this study also indicated that  S1PR2 
and  S1PR3 are localized to the cell membrane [125].

S1P-S1PR3 signaling has been found to promote cardiac 
fibrosis in addition to liver fibrosis. Mice overexpressing 
sphingosine kinase 1 (SphK1), the enzyme responsible 
for producing S1P, were observed to develop spontane-
ous cardiac fibrosis. When these mice were crossed with 
 S1PR3-deficient mice, the ability of SphK1 overexpression 
to produce cardiac fibrosis was diminished, suggesting that 
the pro-fibrotic effects of S1P in the heart are at least par-
tially mediated by  S1PR3 [126]. Furthermore, S1P-S1PR2 
signaling has been demonstrated to induce increased dif-
ferentiation of cardiac fibroblasts and collagen production 
in rats [102].

S1PR1,  S1PR2 and  S1PR3 are expressed in the heart. 
The distribution of S1PR isoforms varies depending on the 
type of cardiomyocyte:  S1PR1 is mainly expressed in car-
diomyocytes with lower levels of  S1PR2 and  S1PR3 [127, 
128], whereas  S1PR3 is mainly distributed in fibroblasts 
[129]. A study showed that S1PRs are critical in regulat-
ing myocardial function as they control ion channels and 
mediate myocardial self-protection during ischemic pre-
conditioning [130]. In mouse experiments,  S1PR1 expres-
sion is upregulated during myocardial hypertrophy and can 
lead to myocardial hypertrophy and fibrosis by inducing 
interleukin (IL)-6 secretion in a manner dependent on Ang 
II-AT1, though this occurs only in proliferating fibroblasts 
and not in cardiac myocytes [131]. Conversely, activation of 
 S1PR2 and  S1PR3 in vivo attenuates myocardial ischemia-
reperfusion injury, potentially via S1P-mediated ventricular 
fibrosis affecting fibroblast differentiation into myofibro-
blasts [132, 133]. Furthermore, knockdown of  S1PR3 in 
cardiac cells can inhibit fibrosis in SphK1-high expressing 
mice through Rho- and Smad3-dependent signaling path-
ways [126]. FTY720, an S1PRs agonist, can produce potent 
anti-inflammatory and antioxidant effects by inhibiting oxy-
gen free radicals, thereby reducing cardiomyocyte death and 
formation of myocardial fibrosis [134]. FTY720 is also an 
effective ischemic preconditioner, as demonstrated by a 

study using a mouse model of heart transplantation, where 
it reduced apoptosis, inflammation, and oxidative stress, 
thereby ameliorating myocardial fibrosis [135].

Expression of SphK1 in cardiac fibroblasts can affect 
cardiomyocyte degeneration and fibrosis. In vivo studies 
have shown that SphK1 transgenic mice develop myo-
cardial degeneration and fibrosis at high levels of SphK1 
(20-fold increase in SphK1 activity), whereas this is 
not observed at lower levels of SphK1 (5-fold increase 
in SphK1 activity) [126]. However, there is a contrary 
conclusion: SphK1 expression is significantly higher in 
cardiac fibroblasts than in cardiomyocytes. Under nor- 
mal conditions, SphK1 is required for the proliferation 
of cardiac fibroblasts, but in the presence of myocardial  
hypoxia, SphK1 can exert anti-inflammatory effects 
and inhibit the development of cardiac fibrosis. Hence, 
SphK1 plays a dual regulatory role in cardiac physiology 
and pathology [110]. The above two studies suggest that 
SphK1 does play a regulatory role in cardiac fibrosis, but 
this role may be linked to the activity and expression of 
SphK1. Further research is necessary to investigate the 
mechanism by which SphK1 influences cardiac fibrosis.

In summary, S1P, S1PRs, and SphK are associated with 
the expression of several significant factors involved in the 
fibrotic pathway during the development of cardiac fibro-
sis. However, the molecular mechanisms governing the 
connection between the S1P signaling pathway and cardiac 
fibrosis remain unclear, as do the promoting or inhibit-
ing effects on cardiac fibrosis under different conditions. 
Therefore, further ex vivo and in vivo studies are needed 
to determine whether these molecules in this pathway can 
serve as potential targets for the treatment of cardiac fibro-
sis in the future.

Relationship between fatty acid carbon 
chain length in sphingolipids and cardiac 
fibrosis and atrial fibrillation

The length of fatty acid carbon chains in SLs has been found 
to have an impact on cardiac fibrosis and AF. To facilitate 
the description, this review categorizes SLs into four groups 
based on the length of the fatty acid carbon chains in the 
SLs as follows: (1) short-chain fatty acids: less than 6 car-
bons; (2) medium-chain fatty acids: 6–12 carbons; (3) long-
chain fatty acids: 12–20 carbons; and (4) very long-chain 
fatty acids: greater than or equal to 20 carbons.

Very long-chain saturated fatty acids (VLSFAs) in cir-
culation can originate from food or be synthesized endog-
enously. Small amounts of VLSFAs have been found in 
some nuts, seeds, and their extracted oils, with peanuts, 
macadamia nuts and rapeseed oil having the highest total 
VLSFAs content. Peanuts contain the highest content of 
22:0 and 24:0 VLSFAs, while rapeseed oil contains the 
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highest content of 20:0 VLSFAs. Sunflower seed oil has 
a higher proportion of 22:0 VLSFAs compared to other 
major commodity oils [136]. Other commodity oils, 
including corn oil, olive oil, soybean oil and safflower oil, 
contained small amounts of 20:0 VLSFAs. Short-term 
feeding trials have shown that supplementation with pea-
nut [137] and macadamia nuts [138] can elevate circulat-
ing levels of VLSFAs.

The elongation of very long-chain fatty acids (ELOVL) 
enzyme family can catalyze the endogenous synthesis of 
VLSFAs from 18:0 fatty acid chains in the ER (Fig. 7) 
[139]. As the chain length of saturated fatty acids increases, 
the proportion of fatty acids absorbed in vivo decreases 
relatively, so the relative contribution to circulating VLS-
FAs levels by diet and metabolism may vary, but it is also 
unclear exactly what proportion is accounted for.

SLs containing saturated fatty acids with varying chain 
lengths exhibit distinct biological activities. Ceramide 
containing palmitic acid (Cer-16) promotes apoptosis, 
whereas ceramide containing VLSFAs prevents apopto-
sis and cardiomyocyte loss [140–143]. Apoptosis of car-
diomyocytes in the atria heightens the risk of AF, with 
increased expression of apoptosis inducers in AF atrial 
tissue. In contrast, inhibiting the key apoptotic enzyme, 

caspase3, prevents electrical conduction disturbances and 
AF in the atria [87–89].

Jensen et al. found that ceramide and SLs containing pal-
mitic acid (16:0) were linked to an increased risk of AF in 
a cardiovascular health study about the risk of AF, whereas 
ceramide and SLs containing very long chain saturated fatty 
acids were associated with a decreased risk of AF [144]. 
Fretts et al. reported that higher levels of several VLSFAs 
(arachidic [20:0], behenic [22:0], and lignoceric [24:0]) 
(arachidic [20:0], behenic [22:0], and lignoceric [24:0]) 
detected in phospholipids, including phosphoglycerides and 
sphingolipid fatty acids, were associated with a lower risk 
of AF [145]. Additionally, Lemaitre et al. systematically 
summarized that elevated levels of plasma VLSFAs were 
link to a lower risk of heart failure, AF, and mortality [139].
Signori et al. found that increased concentrations of the very 
long-chain ceramide Cer (d18:1/24:0) reduced the risk of 
AF, while higher coffee intake was related to both increased 
blood Cer (d18:1/24:0) and a decreased risk of AF [146].

Conclusion

SLs are crucial components of the plasma membrane in all 
vertebrate cells and play a role in regulating cellular func-
tions such as cell proliferation, cell regulation, cell adhe-
sion, cell migration, inflammatory responses, angiogenesis, 
and cell-cell interactions, and are thus associated with tissue 
fibrosis. Fibrosis of the heart, particularly atrial fibrosis, is 
the basis and most prominent feature of AF. Although there 
is still debate regarding whether atrial fibrosis is the cause 
or consequence of AF, recent research tends to suggest that 
some factors lead to atrial fibrosis and subsequently promote 
susceptibility to AF. When cardiac electrical conduction dis-
orders occur, AF can be induced.

AF is one of the most common cardiac arrhythmias that 
has emerged as a significant public health concern. Globally, 
its prevalence continues to rise [7, 147]. The primary treat-
ment for AF currently involves administering drugs to man-
age heart rate and rhythm, as well as using electrical (direct 
current and ablation therapy) cardioversion techniques to 
control ventricular rate or convert to sinus rhythm. Surgi-
cal interventions for symptom control are also utilized, and 
anticoagulants are frequently prescribed to prevent thrombo-
embolic events arising from AF [9]. Unfortunately, no effec-
tive treatment for atrial fibrosis and permanent AF exists, 
and repairing fibrotic tissue to normal is challenging once 
fibrosis has set in. Therefore, the more effective strategy for 
treating this type of disease is currently to slow or prevent 
the development of fibrotic disease by obstructing upstream 
biological processes before fibrosis occurs in the tissues.

Numerous in vitro and in vivo studies have demonstrated 
that sphingolipid signaling pathways are involved in the 

Fig. 7  Endogenous synthesis of very long-chain saturated fatty acids 
(VLSFAs) [139]. VLSFAs are produced from 18:0 fatty acid chains 
catalyzed by the elongation of very long-chain fatty acids (ELOVL) 
family of enzymes. Seven ELOVL enzymes are present in  vivo and 
overlap in the elongation steps they can catalyze. The 18:0 fatty acid 
chain can be derived from 16:0 or come from the diet. Unlike 18:0 and 
16:0, VLSFAs are present in lower amounts, and only a small propor-
tion of 18:0 is elongated to 20:0 and longer saturated fatty acids
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occurrence and development of cardiac fibrosis. SLs, such 
as ceramide, C1P, and S1P can be involved in the regulation  
of cardiac fibrosis in a variety of ways. The length of the  
fatty acid chains in SLs can also influence their properties and  
participate in tissue fibrosis. Nonetheless, the mechanisms of 
sphingolipid signaling pathways in fibrosis and the interac-
tions between related signaling pathways remain not entirely 
elucidated. The role of sphingosine in cardiac fibrosis has 
been poorly documented, and S1P and SphK1 might play 
varying roles in fibrosis under different conditions. Further 
research is necessary to clarify the mechanisms of sphin-
golipid signaling for fibrosis-related diseases, and interven-
tions in this pathway may offer potential therapeutic options 
for fibrosis-related diseases. Furthermore, targeting the sphin-
golipid signaling pathway could be a promising approach for 
preventing or mitigating fibrotic diseases in the future.

Nomenclature SLs: Sphingolipids; AF: Atrial fibrillation; ECM: Extra-
cellular matrix; S1P: Sphingosine-1-phosphate; C1P: Ceramide-1- 
phosphate; SM: Sphingomyelin; LCBs: Long-chain bases; PSLs: Phos-
phosphingolipids; GSLs: Glycosphingolipids; ER: Endoplasmic retic- 
ulum; CoA: Coenzyme-A; SPT: Serine palmitoyltransferase; ORM-
DLs: Orosomucoid-like proteins; KDSR: 3-ketodihydrosphingosine  
reductase; CerS:  Ceramide synthase; SMases:  Sphingomyeli-
nases; CDases: Ceramidases; CERT: Ceramide transporter protein; 
SMS: Sphingomyelin synthase; DAG: Diacylglycerol; CPE: Ceramide 
phosphoethanolamine; ERK1/2: Extracellular signal-regulated kinase 
1/2; CERK: Ceramide kinase; CGT : Ceramide galactosyltransferase; 
UDP-Gal: Uridine diphosphate galactose; GalCer: Galactosylceramide; 
GlcCer: Glucosylceramide; UGCG : UDP-glucose ceramide glucosyl-
transferase; CTGF: Connective tissue growth factor; Ang II: Angio-
tensin II; PDGF: Platelet-derived growth factor; TGF-β: Transforming 
growth factor-β; HF: Heart failure; BMDM: Bone marrow-derived mac-
rophages; mTOR: Mammalian target of rapamycin; AA: Arachidonic 
acid; PLA2: Phospholipase A2; RLX: Relaxin; JNK: C-Jun n -terminal 
kinases; S1PRs: S1P receptors; SphK1: Sphingosine kinase 1; IL: Inter-
leukin; VLSFAs: Very long-chain saturated fatty acids; ELOVL: Elon-
gation of very long-chain fatty acids
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