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Abstract 
Hepatitis C virus (HCV) coinfection with human immunodeficiency virus (HIV) has a detrimental impact on disease progres-
sion. Increasing evidence points to extracellular vesicles (EVs) as important players of the host-viral cross-talk. The micro-
RNAs (miRNAs), as essential components of EVs cargo, are key regulators of normal cellular processes and also promote 
viral replication, viral pathogenesis, and disease progression. We aimed to characterize the plasma-derived EVs miRNA 
signature of chronic HCV infected and HIV coinfected patients to unravel the molecular mechanisms of coinfection. EVs 
were purified and characterized from 50 plasma samples (21 HCV mono- and 29 HCV/HIV co-infected). EV-derived small 
RNAs were isolated and analyzed by massive sequencing. Known and de novo miRNAs were identified with miRDeep2. 
Significant differentially expressed (SDE) miRNA identification was performed with generalized linear models and their 
putative dysregulated biological pathways were evaluated. Study groups were similar for most clinical and epidemiological 
characteristics. No differences were observed in EVs size or concentration between groups. Therefore, HCV/HIV co-infection 
condition did not affect the concentration or size of EVs but produced a disturbance in plasma-derived EVs miRNA cargo. 
Thus, a total of 149 miRNAs were identified (143 known and 6 de novo) leading to 37 SDE miRNAs of which 15 were 
upregulated and 22 downregulated in HCV/HIV co-infected patients. SDE miRNAs regulate genes involved in inflamma-
tion, fibrosis, and cancer, modulating different biological pathways related to HCV and HIV pathogenesis. These findings 
may help to develop new generation biomarkers and treatment strategies, in addition to elucidate the mechanisms underlying 
virus–host interaction.

Key messages 
• HCV and HCV/HIV displayed similar plasma-EV size and concentration.
• EVs- derived miRNA profile was characterized by NGS.
• 37 SDE miRNAs between HCV and HCV/HIV were observed.
• SDE miRNAs regulate genes involved in inflammation, fibrosis and cancer.
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Introduction

Hepatitis C virus (HCV) and human immunodeficiency virus 
(HIV) infections are two persistent public health challenges 
[1]. HCV causes chronic infection in approximately 70% of 

the people exposed to the virus. Chronic hepatitis C (CHC) 
patients often remain asymptomatic until the liver is seriously 
damaged, which may result in the development of cirrhosis, 
hepatocellular carcinoma (HCC), and ultimately death [2]. 
HCV and HIV coinfection is a rather common condition since 
both viruses share transmission routes [3]. It is estimated that 
6.2% of the people living with HIV have serological evidence 
of HCV exposure [1]. Moreover, those HCV positive individu-
als who are also infected with HIV show a worse disease out-
come, with higher rates of cirrhosis, liver failure, and HCC [4].
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Both viruses modulate the immune response and, 
although the molecular bases of HCV and HIV-induced 
immune dysfunction are still incompletely understood, 
increasing evidence points to extracellular vesicles (EVs) 
as important players of the cellular cross-talk between 
infected and immune cells [5]. Currently, the term EVs 
refers to particles naturally released from cells that are 
delimited by a lipid bilayer without replicating ability. 
According to their size, EVs can be classified as small 
(< 200 nm) or medium/large (> 200 nm) [6]. They are 
released into the extracellular milieu and are found in 
most biological fluids. EVs carry proteins, nucleic acids 
including microRNAs (miRNAs), and lipids with a spe-
cific composition that characterizes the cell of origin, sug-
gesting an active non-random packaging of its content, that 
generates a response in the receptor cell [7]. Thus, EVs are 
involved in intercellular signaling both of innate and adap-
tive immune response against pathogens, being essential 
in the pathogenesis of viral hepatitis and its associated 
liver diseases [8]. Together with HCV, HIV also hijacks 
the EVs’ machinery to evade immune surveillance, pro-
moting infection and dissemination [9]. Therefore, both 
viruses modify the EVs’ cargo produced by infected cells, 
such as miRNAs and proteins, among others [10, 11]. The 
miRNAs are highly conserved short non-coding RNAs 
(20–24 nts) fine-tuning regulators of gene expression 
[12]. Hence, the EVs–miRNA profile is context depend-
ent, providing information about the infectious dynamics 
and the virus-host relationship [7]. The key regulatory 
role of miRNAs has particularly emerged in chronic liver 
diseases; so, a dysregulation of their expression has been 
well-described in liver tissue and PBMCs, where we found 
that HCV exposure strongly influences the miRNome in 
HIV patients, leading to specific miRNA signatures [13, 
14]. However, little is known about the EVs–miRNAs 
regulation under HCV/HIV coinfection.

Currently, the direct-acting antivirals allow rapid elimina-
tion of HCV, but this therapy is not globally available, and 
some patients do not necessarily achieve liver disease cure 
or, at least, stop its progression. Likewise, antiretroviral ther-
apies (ART) achieve virological suppression in most HIV 
individuals; however, HIV persistence in cell reservoirs is 
an ongoing concern, and it has been described that miRNAs 
are involved in the latency process [15]. Given this scenario, 
an in-depth understanding of the pathogenesis of CHC and 
HCV/HIV coinfection will ultimately allow the development 
of treatment, diagnoses, and monitoring systems for liver 
diseases that improve the quality of life of infected patients.

Many questions remain unanswered about the charac-
terization of the miRNA fingerprint in different pathologi-
cal situations and scarce data about miRNA–EVs has been 
published and none with a massive approach. Thus, our 
study aims to massively characterize the miRNA profile in 

purified EVs from plasma of HCV mono-infected and HCV/
HIV co-infected patients and to assess the specific miRNA 
signature of each group of patients, as well as their potential 
biological function.

Materials and methods

Patients

The study population included a total of 50 CHC patients, 
n = 21 HCV mono-infected and n = 29 HCV/HIV co-
infected. HCV mono-infected patients were recruited from 
Italian’s Hospital of Buenos Aires and Ramos Mejía Hospi-
tal from Buenos Aires, Argentina, and HCV/HIV co-infected 
patients from La Paz University Hospital, Infanta Leonor 
University Hospital, La Princesa University Hospital, Puerta 
de Hierro, and 12 de Octubre Hospital from Madrid, Spain.

Patients were naive of treatment for HCV. CHC infec-
tion was defined by the presence of anti-HCV antibodies 
in serum and detectable HCV RNA in plasma samples in at 
least 2 separate occasions. HIV diagnosis was assessed by 
HIV antibodies presence. All HCV/HIV co-infected patients 
received suppressive antiretroviral treatment (ART) for at 
least 1 year. They maintained undetectable level of HIV with 
CD4+ T-cells counts ≥ 500 cells/mm3 since at least 1 year 
before sample collection.

Patients had no other causes of liver disease, autoim-
mune or metabolic disorders, and HCC or co-infection with 
hepatitis B virus (HBV). Cases with alcohol consumption 
(men > 30 g/day; women > 20 g/day) were excluded.

Clinical and epidemiological data were obtained from 
medical records. Liver fibrosis was assessed at time of blood 
sample collection by histological observation of liver biop-
sies according to METAVIR in HCV mono-infected cases 
and by transient elastography in HCV/HIV co-infected 
patients [16]. Cases were categorized as significant (≥ 2) 
and no significant (< 2) fibrosis.

Informed written consent was obtained from each patient. 
The study protocol conformed to the ethical guidelines of 
the 1975 Declaration of Helsinki and has the approval of the 
ethics committees of all institutions.

Extracellular vesicle isolation

Whole peripheral blood was extracted and processed within 
the first 4 h after extraction. Plasma fraction was pre-clarified 
at 648 g 15 min at 4 °C and stored at −80 °C.

EVs’ isolation was performed using the ExoRNeasy 
Serum/Plasma Midi kit (QIAGEN, cat #77044) according to 
manufacturer’s instructions with custom modifications. All 
samples were processed at the National Center for Microbiol-
ogy (Madrid, Spain). Briefly, 1.2 ml of EDTA-anticoagulated 
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plasma was diluted in pre-filtered phosphate buffered saline 
(PBS), centrifuged at 2.000 g and 10.000 g consecutively 
and filtered through a 0.2-µm pore membrane. Samples were 
then diluted with binding buffer and transferred to a spin col-
umn. EVs retained in the membrane were washed and eluted 
(Buffer XE, QIAGEN, cat #76214). Aliquots for further EV 
characterization were stored at −80 °C.

EVs characterization

Electron microscopy (EM)

EVs were negatively stained for observation. Briefly, a 5-µl 
aliquot of EVs was mixed with 5 µl PFA 4%, vortexed and 
incubated for at least 5 min at room temperature (RT). Vesi-
cles were then adsorbed on glow-discharged collodion car-
bon grids, washed two times with MilliQ water and stained 
with 2% uranyl acetate for 1 min. Samples were imaged on 
a FEI Tecnai 12 electron microscope operated at 120 kV 
and equipped with a FEI Ceta CCD camera. An average of 
20 micrographs per sample was evaluated and EV diameter 
was measured with FIJI/ImageJ [17]. In addition, cryo-EM 
analysis was performed from a concentrated sample of EVs 
(starting material: 7 ml of plasma). Samples were applied 
to Quantifoil Cu/Rh R2/2 300 mesh glow-discharged grids 
and vitrified using a Leica EM GP2 cryofixation unit. Data 
was collected on a Talos cryoelectron microscope (Thermo 
Fisher Scientific) operated at 200 kV, and images were 
recorded with Falcon 3 direct electron detector (Thermo 
Fisher Scientific) in lineal mode using the EPU automated 
data acquisition software (Thermo Fisher Scientific) for sin-
gle particle analysis.

Nanoparticle tracking analysis (NTA)

Size distribution and concentration of EVs were deter-
mined by analyzing the light scattering and the Brownian 
motion of the suspended particles in pre-filtered PBS using 
a NanoSight NS300 system (Malvern) equipped with a fast 
video capture and particle-tracking software (NanoSight 
NTA 3.4). Briefly, samples were diluted 100-fold using 
PBS pre-filtered through a 0.2-µm pore membrane filter 
and analyzed in triplicate for 60 s per replicate at 25 frames 
per second (fps).

High throughput sequencing and  
bioinformatics analysis

Total RNA was purified from eluted EVs with the ExoRNe-
asy Serum/Plasma Midi kit (QIAGEN, cat #77044). RNA 
quantity and quality were evaluated by Nanodrop (Thermo 

Fisher Scientific). Purity and integrity evaluation, small 
RNA library preparation, and sequencing were performed 
at the Centre for Genomics Regulation (CRG) (Barcelona, 
Spain). Size distribution of the RNA was evaluated by Bio-
analyzer 2100 with Agilent RNA 6000 pico kit (Agilent). A 
small RNA library was constructed with NEBNext Multi-
plex Small RNA Library Prep Kit (NewEngland BioLabs) 
following the manufacturer’s instructions including a dif-
ferent index for each sample. Sequencing was performed on 
the Illumina HiSeq2500 platform, single-end-sequencing, 
50 nts (1 × 50) to get roughly 10 million reads per sample.

Raw data was analyzed using a specific bioinformatic 
pipeline for the identification of known and novel miRNAs 
detailed in Supplementary Data 1. Briefly, reads were qual-
ity checked with FastQC, and adapter trimming was per-
formed with cutadapt. Remaining reads were analyzed with 
miRDeep2 to identify and quantify known and unknown 
miRNAs.

Statistical analysis

For the descriptive analysis, significant differences between 
categorical data were calculated using the chi-squared test 
and Fisher’s exact test. Student t-test and Mann-Whitney U 
test were used to compare parametric and non-parametric 
continuous variables among independent groups, respec-
tively. The miRNA count matrix was filtered and normalized 
with Trimmed Mean of M-values (TMM) and count per mil-
lion (CPM) using edgeR. Significant differentially expressed 
(SDE) miRNAs between groups (HCV mono-infected vs 
HCV/HIV co-infected) were analyzed using a generalized 
linear model with negative binomial distribution (bnGLM) 
adjusted by liver fibrosis. The miRNAs with fold change 
(FC) ≥ 1.5 (|log FC| ≥ 0.585) and q-value ≤ 0.05 (p-value 
corrected for the false discovery rate (FDR) by Benjamini-
Hochberg correction) were considered significant. Specific 
analysis on miRNA sequencing revealed that a minimum of 
19 individuals per group is required to achieve a minimum 
1.5-fold change with an average power exceeding 80% [18]; 
therefore, sample size of the present study is sufficiently 
large to reliably detect the required 1.5-fold expression dif-
ferences. See Supplementary Data 1 for extended details.

Statistical software R (v4.0.2) (R Foundation for statisti-
cal computing, Vienna, Austria) was used for all statistical 
analyses.

miRNA‑based target prediction and pathway 
enrichment analysis

SDE miRNA-target interactions and pathway enrichment 
analysis of the target genes were performed in silico, as 
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previously described [14]. Only experimentally validated 
interactions were considered. Extended details are in Sup-
plementary Data 1.

Results

Clinical characteristics of each group of patients

Clinical and epidemiological characteristics of HCV mono-
infected and HCV/HIV co-infected patients enrolled in this 
study are summarized in Table 1. Groups were homogene-
ously balanced according to sex, age, weight, body mass 
index (BMI), and other clinical characteristics. The HCV 
mono-infected group showed significantly higher levels 
of alkaline phosphatase (ALP) (p = 0.021). HCV genotype 
1 was the most prevalent in HCV mono-infected patients 
(p = 0.024).

EV characterization

The isolated EVs’ size and shape were evaluated by TEM 
and cryo-EM. TEM image analysis revealed the presence 
of spheric particles with a mean diameter of ~130 nm, 
ranging from 63 to 230 nm (Supplementary Data 2a). 
Cryo-EM also showed different sized spherical particles 
with a lipid bilayer (Supplementary Data 2b). No sig-
nificant differences in particle size or concentration were 
observed between HCV mono-infected and HCV/HIV co-
infected groups (Supplementary Data 3).

EV‑derived miRNA comparison between  
study groups

The raw sequencing data has been deposited in the Array-
Express repository (EMBL-EBI) under accession number 
E-MTAB-11811. On average, 10 million reads per sample 

Table 1  Clinical and 
epidemiological characteristics 
of HCV mono-infected and 
HCV/HIV co-infected patients

Values expressed as cases (%) or median (percentile 25; percentile 75)
HCV Hepatitis C Virus, HIV Human Immunodeficiency Virus, BMI Body Mass Index, TC total choles-
terol, GOT Glutamic oxaloacetic transaminase, GPT glutamic pyruvic transaminase, GGT  gamma-glutamyl 
transferase, ALP alkaline phosphatase
* Statistically significant differences between HCV mono-infected and HCV/HIV co-infected group 
(p < 0.05)
a No significant differences between parenteral and sexual risk of infection

Variables HCV HCV/HIV P value

N 21 29
Sex (% female) 11 (52.4%) 14 (48.3%) 0.407
Age (years) 54 (46.5; 62.5) 50 (45; 53) 0.142
Weight (kg) 70.1 (60; 81.2) 64.7 (54.7; 76.2) 0.241
Height (cm) 170.5 (160; 175.3) 167.5 (161.5; 170.3) 0.849
BMI (kg/m2) 26.1 (22; 27.4) 23.1 (20.7; 26.5) 0.238
Risk of infection
    Parenteral 7 (33.3%) 16 (55.2%) 0.686a

    Sexual 2 (9.5%) 8 (27.6%)
    Unknown 12 (57.2%) 5 (17.2%)
    Time of HIV infection (months) 268.3 (163.4; 332.6)

HCV Genotype
    1 19 (90.4%) 17 (58.6%) 0.024*
    2, 3, and 4 2 (9.6%) 12 (41.4%)

HCV viral load (UI/ml) 2.5E06 (8.8E05; 6.4E06) 4.4E06 (6.6E05; 1.1E07) 0.548
Fibrosis severity
    F < 2 10 (47.6%) 22 (70.96%) 0.072
    F ≥ 2 11 (52.4%) 7 (22.58%)

TC (mg/dL) 189 (177; 219) 186 (166; 199.8) 0.714
GOT (UI/ml) 60 (41.7; 101) 37 (27.5; 61) 0.071
GPT (UI/ml) 67 (43.5; 163.5) 43 (32; 62.5) 0.051
GGT (UI/ml) 42 (21.2; 126.5) 65 (33; 118.3) 0.538
ALP (UI/ml) 101 (89; 127) 85.5 (63.2; 104.5) 0.020*
Platelets (103/ul) 188.2 (100.7; 223.2) 201 (96.8; 226.2) 0.995
CD4+ T-cell (cell/mm3) 735.6 (611.0; 1260) 703.8 (528.0; 1010) 0.243
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were obtained, which is an appropriate depth for analysis. A 
total of 1049 known miRNAs were identified, plus 14 puta-
tive de novo miRNAs. After filtering (see Supplementary 
Data 1 for details), 149 miRNAs (143 known and 6 de novo) 
remained for subsequent analysis (Fig. 1).

In the exploratory analysis, the PLS-DA of normalized 
miRNA counts showed a clear segregation of the HCV 
mono-infected samples from the HCV/HIV co-infected ones 
(Fig. 2a).

The SDE analysis displayed 37 miRNAs (Fig. 2b and 
Supplementary Data 4). Fifteen miRNAs were upregu-
lated in HCV/HIV co-infected group (Fig. 3a), including 
the putative de novo miRNA encoded by chromosome 

9, which was strongly upregulated (hsa-chr9_24472; 
logFC = 2.69, FDR = 1.08E-06) (Supplementary Data 
5). This putative miRNA is located at the q22.1 arm of 
chromosome 9 [chr9:87839044–87839112 (GRCh38/
hg38)] within the intron 1 of the fructose-bisphosphatase 
2 pseudogene 1 (FBP2P1), coincident with an enhancer 
(ENSR00001151034) and a CTCF binding site, which has 
a key role in the regulation of miRNAs expression [19]. 
Among the upregulated miRNAs, the hsa-miR-184, hsa-
miR-144-5p/3p, hsa-miR-1-3p, and hsa-miR-363-3p were 
highly expressed in the HCV/HIV co-infected cohort. On 
the other hand, 22 known miRNAs were downregulated in 
the HCV/HIV co-infected group, including hsa-miR-1290, 

Fig. 1  Schematic representation 
of RNA-seq results analysis. 
miRNA sequencing analysis and 
summary of the results
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hsa-miR-1246, hsa-miR-11400, hsa-miR-432-5p, and hsa-
miR-146a-5p. Remarkably, the well-described hsa-miR-
122-5p was also downregulated in this group.

Additionally, the area under the ROC curves (AUROC) 
was evaluated in order to assess whether SDE miRNAs cor-
rectly classify patients according to their infectious status. In 
this sense, eight of them showed an outstanding performance 
(AUROC > 0.9); moreover, two of them, namely the hsa-
miR-146a-5p and hsa-miR-151a-3p, showed high abundance 
and an absolute logFC > 1.2 (Supplementary Data 4).

Target enrichment analysis

The miRNA-gene interaction analysis showed 358 enriched 
target genes for the 37 SDE miRNAs. Supplementary Data 6 
shows the top 50 target genes according to the FDR. We also 
explored SDE miRNA-gene interactions, and Fig. 3b shows 
the top ten. Note that three of the upregulated miRNAs sig-
nificantly target over a hundred genes (hsa-miR-92a-3p, hsa-
miR-32-5p, and hsa-miR-363-3p) (Supplementary Data 7).

In silico functional analysis showed that the significantly 
targeted genes are mostly involved in cancer-related path-
ways and cytokine mediated pathways (Supplementary Data 
8). The top 25 pathways obtained by KEGG, REACTOME, 
and GO in the pathway-enrichment analysis for the SDE 
miRNAs is shown in Supplementary Data 9.

Discussion

The analysis of the EVs presented here showed that while 
the concentration and size of EVs were similar, HCV coin-
fection with HIV produces a strong disturbance of miRNA 
content in EVs compared to the one observed in the HCV 
monoinfection. To our knowledge, this is the first study that 
characterizes the miRNA profile in plasma-EVs of HCV/
HIV co-infected vs HCV mono-infected patients.

Scarce data is published about the size and concentra-
tion of plasma-derived EVs in HCV/HIV coinfection. In 
this study, the plasma-EVs’ characterization demonstrated 
that HIV coinfection does not significantly affect neither 
the EVs’ size nor concentration in a CHC setting. To date, 

EVs’ characterization remains a challenge; however, the 
techniques applied in this study are according to recent lit-
erature that suggests TEM as the most accurate approach 
to confirm the EVs’ structure and NTA to quantify their 
number and distribution [20]. In the studied cohorts, the 
isolated EVs’ size was compatible with small EVs according 
to MISEV guidelines [6]. The isolation procedure does not 
unequivocally purify specific types of vesicles but, rather, 
yield complex heterogeneous mixtures of EVs. It is also 
noteworthy to mention that the content of EV sub-fractions 
varies depending on the source of the EVs and/or the isola-
tion techniques, which can ultimately largely influence the 
final results [21]. Therefore, although accumulating evi-
dence in EVs’ composition are highly heterogeneous and 
dynamics, the correct control of methodological procedures 
and the use of appropriate protocols allowed us the further 
comparative analysis between groups [22, 23].

By performing high-throughput small RNA-Seq and com-
putational profiling analyses, we described that the HCV/
HIV co-infected group differentially expressed 37 miRNAs 
compared to the HCV mono-infected group. Some of these 
miRNAs were previously described to target genes asso-
ciated with inflammation (cytokine-mediated pathways), 
fibrosis, and cancer development like USP28, WNT1, 
PHLDB2, BAX, MAP3K4, MET, RAB12, and ROCK1, 
among others. Additionally, some of them were reported to 
have a proviral effect in HCV life cycle, like hsa-miR-122, 
which was downregulated in the HCV/HIV co-infected 
group. Although it was formerly reported that HIV may 
promote HCV replication by enhancing the hsa-miR-122 in 
hepatoma cells, there is no previous data about its levels 
within EVs’ cargo between HCV/HIV co-infected vs HCV 
mono-infected patients [24]. We also detected in the HCV/
HIV co-infected group a strong downregulation of miRNAs 
with antiviral effect, like hsa-miR-221, which accelerates 
anti-HCV treatment response, and hsa-miR-199a, that inter-
acts directly with HCV genome to inhibit replication [25, 
26]. Similarly, some others were described to participate in 
HIV life cycle, namely hsa-miR-1290 participates in HIV 
latency and hsa-miR-146a-5p is known to target CXCR4, an 
essential co-receptor in HIV entry route into T cells [27, 28]. 
Both miRNAs showed a deep downregulation in the HCV/
HIV co-infected group of patients, which could be respon-
sible of maintaining a higher viral transcription of HIV in 
CHC patients, as we have previously observed [29]. In this 
setting, the hsa-miR-146a-5p has been previously identified 
in plasma-EVs of HIV mono-infected patients, demonstrat-
ing a significantly higher expression than HIV-negative con-
trols. This study from Chettimada et al. was performed with 
a similar methodological approach to our study, and interest-
ingly, they did not observe differences between HCV/HIV 
co-infected and HIV mono-infected miRNA profiles [30].

Fig. 2  Analysis of EVs-microRNA cargo in HCV mono-infected vs 
HCV/HIV co-infected patients. a Exploratory analysis. Multivariate 
analysis was performed by supervised partial least squares discrimi-
nant analysis (PLS-DA) from normalized log transformed and scaled 
miRNA expression data. b Hierarchical cluster analysis of the SDE 
miRNAs. Study subjects are represented in columns and SDE miRNAs 
in rows, with clustering dendograms on the left for miRNAs and at the 
top for samples. The color scale shows the relative expression level of 
SDE miRNAs. Red color indicates a higher expression level and blue a 
lower expression level. Patients are grouped by infectious status

◂
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Fig. 3  Differential miRNA 
expression analysis and target 
pathway analysis. a Volcano 
plot of SDE miRNAs. FDR 
false discovery rate, FC 
fold change. Red dots show 
miRNAs with a FDR cor-
rected p-value ≤ 0.05 and a 
logFC ≥ 0.585 (equivalent 
to FC ≥ 1.5), blue dots show 
miRNAs with a FDR cor-
rected p-value ≤ 0.05 and a 
|log FC|> 0.585, and gray dots 
show miRNAs without statisti-
cal significance. Highlighted 
dots are specially mentioned 
in the results section. b Chord 
diagram of the top 10 miRNA-
gene interaction. Each targeted 
gene is represented by one 
different color, together with 
their corresponding interaction, 
while SDE miRNAs are shown 
on the right
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It is important to mention that some of the identified dif-
ferences could potentially be due to the impact of antiretro-
viral therapy. Although there are a limited number of stud-
ies in this field, a pilot study in rhesus macaques infected 
with the simian immunodeficiency virus (SIV) revealed 
that the antiretroviral therapy may modify both the abun-
dance and the compartmentalization of several plasma EVs’ 
miRNA related to various diseases and biological processes 
[31]. However, it remains unknown if these differences are 
directly related to the therapy itself or are a consequence of 
the viral suppression. In this regard, it is worth mentioning 
that non-viremic and viremic HIV patients display slight 
differences in miRNA expression [32], these differences 
are mainly attributed to miRNAs with a reported role in 
HIV latency such as hsa-miR-29 family members, hsa-miRs 
-125b and -150. Additionally, differences in plasma miRNA 
profile have been identified between HIV mono-infected 
patients who respond or do not respond to ART [33]. Thus, 
considering that all HCV/HIV co-infected patients in our 
cohort were both on ART and achieved viral suppression, 
and bearing in mind previous evidence, we could suggest 
that the effect of ART does not significantly impact the 
miRNA profile.

Additionally, EVs carry different biological active 
molecules, which are key mediators in the progression of 
liver fibrosis and the subsequent development of HCC in 
the context of viral hepatitis (hepatitis A, B, C, and E) [8, 
20]. Some of these 37 SDE miRNAs were associated with 
liver damage and HCV-induced HCC including hsa-miR-
122-5p, hsa-miR-144, hsa-miR-1246, hsa-miR-224-5p, 
hsa-miR-221, hsa-miR-424-3p, hsa-miR-139-5p, hsa-miR-
486-5p, and hsa-miR-199a family [34–41]. In line with 
this observation, the in silico pathway-enrichment analy-
sis showed a strong presence of pathways related to cancer 
events, such as colorectal, breast, gastric, lung, melanoma, 
and pancreatic cancer as well as HCC, among others [8, 20]. 
Therefore, the signature of EVs arising from their cargo, 
especially miRNAs, plays an essential role in the outcome 
of the pathological processes.

Interestingly, differences in the liver miRNA expression 
profile between HCV/HIV co-infected and HCV mono-
infected patients were recently described by Dalla et al. 
[42]. The existence of a distinct miRNA signature between 
these groups of patients in the liver microenvironment, as 
well as in the plasma-derived EVs, as we here described, 
strongly suggests the occurrence of different modulatory 
processes during coinfection. Moreover, the selective pack-
aging of specific miRNAs into biologically active EVs, and 
its dissimilar profile from other biological materials, sug-
gests a key role of plasma-derived EV miRNAs in early dis-
ease progression. In this line, Chunwen Pu et al. described 

an unlike expression of two HCC-related miRNAs (hsa-
miR-21 and hsa-miR-144) in serum-EVs vs. EV-depleted 
serum, endorsing the idea of EVs as key mediators in the 
intercellular communication process [43]. Together, all this 
evidence indicates that the balance among the expression 
of distinct miRNAs would be the responsible for regulating 
disease progression.

The worst prognosis for the HCV/HIV coinfection could 
be partially explained by alterations in the dynamic net-
work of interactions miRNA- target gene- protein, where 
EVs are key mediators. Therefore, the analysis of the EVs- 
miRNAs SDE between HCV/HIV co-infected and HCV 
mono-infected patients could facilitate the elucidation of 
these dissimilarities and, consequently, it will clarify our 
understanding of these conditions. Since miRNAs are the 
novel regulators of several crucial immunological and non-
immunological processes, a clear comprehension of their 
role in antiviral immunity may allow the emergence of a new 
generation of biomarkers, in addition to the elucidation of 
the mechanisms driving virus-host interaction.

It should be held in mind that this study has certain limi-
tations. First, we evaluated plasma-EVs, which is a mix-
ture of EVs released by different cell types, not all of them 
infected by either HCV and/or HIV. Second, our study 
focused on small EVs. Large EVs including apoptotic bod-
ies would provide information of a different metabolic stage 
of the cells meanwhile, small EVs have a greater potential 
as regulators of different molecular processes (although it 
is not exclusive to them). Third, the EVs characterization 
lack of the evaluation of EV-surface markers, an additional 
information that could be of interest to fully characterize 
this EVs, but the EV-miRNA composition is comparable 
with previous published reports. Fourth, the limited sample 
size could reduce our statistical power to detect smaller dif-
ferences than 1.5 of fold change between the study groups. 
Fifth, additional possible confounders could be affecting our 
results. It may be important to acknowledge the potential 
influence of various factors such as environmental vari-
ables related to geographical differences on the observed 
outcomes. While we made efforts to control for these factors 
by balancing our populations for the most important clinical 
and biochemical variables related to HCV-disease, it is chal-
lenging to completely eliminate their influence. Sixth, this is 
an exploratory work, where only association was considered, 
and lacks mechanistic exploration or functional validation. 
Future studies, in a larger cohort, are essential to confirm 
virus–host interaction and disease progression. Moreover, 
it could be interesting to analyze EVs-miRNA from other 
populations such as healthy individuals, HIV mono-infected 
patients, and especially those cases with liver diseases such 
as CHC patients infected with hepatitis B virus.
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Conclusion

HCV/HIV coinfection does not affect the concentration or 
size of EVs but impacts the specific plasma derived-EVs 
miRNAs cargo. This signature for the HCV/HIV co-infected 
group demonstrated an in silico association with inflamma-
tion and cancer related pathways. These findings may help 
in the development of a new generation of biomarkers and 
treatment strategies, in addition to elucidate the mechanisms 
underlying virus-host interaction.
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