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Abstract
Tissue-resident fibroblasts are mesenchymal cells which control the structural integrity of the extracellular matrix (ECM). 
Fibroblasts possess a remarkable plasticity to allow them to adapt to the changes in the microenvironment and thus main-
tain tissue homeostasis. Several stresses, also those associated with the aging process, convert quiescent fibroblasts into 
myofibroblasts which not only display fibrogenic properties but also act as immune regulators cooperating both with tissue-
resident immune cells and those immune cells recruited into affected tissues. TGF-β cytokine and reactive oxygen species 
(ROS) are major inducers of myofibroblast differentiation in pathological conditions either from quiescent fibroblasts or via 
transdifferentiation from certain other cell types, e.g., macrophages, adipocytes, pericytes, and endothelial cells. Intrigu-
ingly, TGF-β and ROS are also important signaling mediators between immunosuppressive cells, such as MDSCs, Tregs, 
and M2 macrophages. It seems that in pathological states, myofibroblasts are able to interact with the immunosuppressive 
network. There is clear evidence that a low-grade chronic inflammatory state in aging tissues is counteracted by activation 
of compensatory immunosuppression. Interestingly, common enhancers of the aging process, such as oxidative stress, loss 
of DNA integrity, and inflammatory insults, are inducers of myofibroblasts, whereas anti-aging treatments with metformin 
and rapamycin suppress the differentiation of myofibroblasts and thus prevent age-related tissue fibrosis. I will examine 
the reciprocal interactions between myofibroblasts and immunosuppressive cells within aging tissues. It seems that the dif-
ferentiation of myofibroblasts with age-related harmful stresses enhances the activity of the immunosuppressive network 
which promotes tissue fibrosis and degeneration in elderly individuals.
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Introduction

Tissue-resident fibroblasts maintain the integrity of con-
nective tissues by secreting the proteins of the extracellular 
matrix (ECM) and, accordingly, producing the proteolytic 
enzymes which degrade the components of the ECM. Fibro-
blasts possess a remarkable phenotypic plasticity since the 
cells of host tissues and infiltrated immune cells can modu-
late the properties of fibroblasts, especially in pathological 
conditions [1] (Fig. 1). Moreover, under harmful conditions, 
not only tissue-resident fibroblasts differentiate into myofi-
broblast but also many other cell types, e.g., inflammatory 

macrophages, adipocytes, pericytes, and smooth muscle 
cells, can transdifferentiate into myofibroblasts [2]. Myofi-
broblasts are fibrogenic cells which promote the process of 
fibrosis in several pathological states including age-related 
fibrosis in many tissues [3–5]. Interestingly, fibroblasts, 
especially the myofibroblasts, can act as immune regulators 
displaying either pro-inflammatory or immunosuppressive 
properties. Cancer-associated fibroblasts (CAF) are able to 
exhibit both inflammatory phenotypes (iCAF) and myofi-
broblastic features (myCAF). The myCAFs possess many 
immunosuppressive properties which can enhance tumor 
growth [6]. Tissue-resident and cultured fibroblasts are also 
able to switch to a state of cellular senescence similarly as 
that encountered in many other cell types [7]. Considering 
the plasticity of fibroblasts and their close collaboration with 
immune cells, it seems evident that tissue fibroblasts pos-
sess many of the properties linked with the promotion of the 
aging process.
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The aging process is associated with the presence of a low-
grade chronic inflammation in the tissues, termed as inflam-
maging [8]. Currently, the primary cause of the inflammaging 
state in tissues needs to be clarified although it is known that 
with aging there is an accumulation of senescent cells within 
tissues where they secrete pro-inflammatory factors, such as 
cytokines and chemokines [9]. Subsequently, these inflamma-
tory mediators activate tissue-resident immune cells to secrete 
anti-inflammatory factors and recruit immunosuppressive 
cells into tissues in attempt to counteract the inflammatory 
responses [10]. Given that the primary cause of inflamma-
tion cannot be resolved, it generates degenerative processes 
in tissues with aging [11]. The role of fibroblasts in this 
microenvironment is interesting since these cells can promote 
either pro-inflammatory or immunosuppressive processes to 
stimulate repair processes, such as fibrosis, in an attempt to 
maintain tissue homeostasis. I will examine the properties of 
myofibroblasts within tissues and the interactions of myofi-
broblasts with the cells of the immunosuppressive network. It 
seems that myofibroblasts play a significant role not only in 
the promotion of the aging process but also in the aggravation 
of age-related diseases.

Plasticity and heterogeneity of fibroblasts

Fibroblasts are a diverse set of mesenchymal cells which 
originate from the mesodermal layer during embryogenesis 
[1, 2]. Fibroblasts possess a multilineage differentiation 

potential; e.g., in tissue injuries and remodeling states, they 
can serve as progenitor cells for many specialized mesen-
chymal cells, such as adipocytes, endothelial cells, pericytes, 
and osteoblasts. Interestingly, fibroblasts can also possess a 
pluripotency since adult fibroblast cells have been exploited 
in the generation of induced pluripotent stem cells (iPSC) 
[12]. Fibroblasts have also revealed a great diversity in their 
gene expression patterns with respect to their location within 
adult tissues and between different tissues [13, 14]. This 
positional memory seems to be driven by the epigenetic 
regulation of the HOX genes. Fibroblasts can also retain the 
memories of their past experiences, i.e., distinctive memo-
ries of previous inflammatory, metabolic, and mechanical 
stimuli [14]. These adaptive properties are crucial for the 
maintenance of tissue homeostasis since tissue-resident 
fibroblasts are the sensors of the tissue microenvironment 
and they have to be able to adapt to different insults in order 
to maintain tissue integrity. In addition, there are some spe-
cialized fibroblast populations which have tissue-specific 
functions. For example, the fibroblastic reticular cells in 
lymph nodes coordinate the crosstalk between immune cells, 
recruit immune cells into lymph nodes, and can even present 
antigens [15]. Moreover, the stromal bone marrow fibro-
blasts are the servant cells for the hematopoietic stem cells 
and progenitor cells in the regulation of hematopoiesis [16].

Single-cell transcriptional profiling studies have revealed 
the impressive heterogeneity in the properties of fibroblasts 
within normal tissues and between different tissues [17, 
18]. Buechler et al. [18] reported an extensive study on the 
organization of fibroblast lineage across different mouse and 
human tissues both in the steady-state condition and in some 
diseases. They observed that there existed two universal sub-
sets of fibroblast populations in the tissues of both normal 
mice and healthy humans. They suggested that these two 
major subgroups could act as a source population for the 
activation of more specialized fibroblasts in both the steady-
state and diseased microenvironments. They also speculated 
that the tissue-resident fibroblasts of these universal sub-
sets would be able to exhibit an inflammatory phenotype, 
whereas there existed six different clusters of fibroblasts, 
e.g., myofibroblasts, which represented a more persistent 
cellular state in perturbed tissues. Fibroblasts have also been 
categorized according to their specialized functional states, 
such as CAFs, fibrosis-associated fibroblasts (FAF), wound-
associated fibroblasts (WAF), and aging-associated fibro-
blasts (AAF) [2]. Many single-cell transcriptional experi-
ments have been conducted to characterize CAFs, FAFs, and 
WAFs [19–21]. These studies will be addressed later with 
respect to the immunosuppressive properties of the fibro-
blast subsets. Fibroblasts are commonly exploited in cell 
culture studies, especially in experiments examining cellular 
senescence. However, it should be recalled that fibroblas-
tic cell lines, e.g., the NIH3T3 line, contain heterogeneous 
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Fig. 1  Interactions between fibroblasts and immune cells in aging tis-
sues. Fibroblasts are a heterogeneous group of cells involving quies-
cent fibroblasts, activated myofibroblasts, and senescent fibroblasts. 
The immune cell population includes the tissue-resident cells, such 
as macrophages, DCs, Tregs, and ILCs, and the tissue-recruited 
immune cells, e.g., monocytes, macrophages, and MDSCs. Myofibro-
blasts can activate tissue-resident immune cells as well as recruiting 
immune cells into tissues. There is a reciprocal cooperation between 
fibroblasts and immune cells since immune cells, especially immuno-
suppressive cells, can modify the activities of fibroblasts. Abbrevia-
tions: DC, dendritic cell; ILC, innate lymphoid cell; MDSC, myeloid-
derived suppressor cell; Treg, regulatory T cell
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subclones which can be differentially expanded in distinct 
experimental treatments [22]. Moreover, fibroblasts which 
have been cultured on plastic plates or on collagen and gel-
atin-coated plates will switch into myofibroblast-like pheno-
types attributed to the stiffness of the matrix [23].

In pathological conditions, there exist different cellular 
sources to account for the heterogeneity of fibroblasts within 
tissues. Tissue-resident fibroblasts can adapt to alterations 
in their microenvironment, e.g., to inflammatory changes 
and tissue wounds, or the presence of cancer cells which are 
able to edit the properties of local fibroblasts. Interestingly, 
the fate-mapping of cells has revealed that in pathological 
states, many cell types can become transdifferentiated into 
fibroblasts, most commonly into myofibroblasts (Fig. 2). 
For example, recruited monocytes and inflammatory mac-
rophages can be transdifferentiated into myofibroblasts, e.g., 
as occurs in renal fibrosis [24]. The signaling via the TGF-β/
Smad3 pathway is recognized as a common trigger for the 
transition of inflammatory macrophages into myofibro-
blasts during the generation of mouse kidney fibrosis [25]. 
Since adipocytes are mesenchymal-derived cells, they are 
an important source of myofibroblast transdifferentiation in 
the production of fibrosis in many tissues [26]. For instance, 
while the adipocyte–myofibroblast transition represents an 
efficient repair of skin wounds [27], it has also a significant 
role in dermal fibrosis and subcutaneous lipoatrophy [28]. 
Microvascular pericytes can also become transdifferentiated 
into myofibroblasts, e.g., in idiopathic pulmonary fibrosis 

[29]. Fibrocytes are the bone marrow (BM)-derived mes-
enchymal progenitor cells which are released into the cir-
culation and recruited into affected tissues. Subsequently, 
the fibrotic or inflammatory microenvironment stimulates 
their differentiation into myofibroblasts [30]. Niu et al. [31] 
demonstrated that the differentiation capacity of circulating 
fibrocytes into myofibroblasts was significantly elevated in 
elderly people as compared to younger individuals. They 
reported that the age-related enhancement of differentia-
tion competence was attributed to a more effective signal-
ing through the IL-18/IL-18R1 pathway. Sueblinvong et al. 
[32] demonstrated that old mice possessed an increased level 
of fibrocytes in their BM as compared to younger mice, and 
accordingly, bleomycin treatment induced a stronger recruit-
ment of fibrocytes into the lungs of aged mice.

It is also known that the transdifferentiated state of 
myofibroblasts can be reversed into their original phe-
notypes [33, 34]. For instance, Fortier et al. [34] dem-
onstrated that PGE2 and FGF2 treatments were able to 
revert the myofibroblastic state of human lung fibroblasts. 
They reported that the dedifferentiation induced by PGE2 
utilized the cAMP/PKA pathway, while FGF2 exploited 
the MEK/ERK pathway. There is clear evidence that the 
differentiation of myofibroblasts is under epigenetic regu-
lation [35–37]. For instance, DNA methylation and non-
coding microRNAs are the master regulators of myofi-
broblastic state, e.g., via the control of α-smooth muscle 
actin (α-SMA) expression in rat lung fibroblasts [35]. 
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Fig. 2  Myofibroblast differentiation and interaction with immunosup-
pressive cells in the promotion of an immunosuppressive microenvi-
ronment in aging tissues and age-related diseases. Cooperation with 
immunosuppressive cells can also promote the transdifferentiation of 
macrophages, monocytes, fibrocytes, adipocytes, pericytes, endothe-
lial cells, epithelial cells, and smooth muscle cells into myofibro-
blasts. Tissue-resident fibroblasts can be activated into myofibroblasts 

in many pathological states. Tissue-resident fibroblasts and myofi-
broblasts can be converted into senescent fibroblasts in many patho-
logical conditions. The common properties of senescent fibroblasts 
are listed. Abbreviations: IL, interleukin; MDSC, myeloid-derived 
suppressor cell; ROS, reactive oxygen species; TGF-β, transforming 
growth factor-β; Treg, regulatory T cell
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The resolution of tissue fibrosis can occur via different 
mechanisms involving either apoptosis or the dedifferen-
tiation of myofibroblasts [38]. Interestingly, Kato et al. 
[39] demonstrated that myofibroblasts obtained from mice 
with idiopathic pulmonary fibrosis revealed an impaired 
capacity to undergo the dedifferentiation process. They 
also reported that fibrotic myofibroblasts displayed an 
increased resistance to apoptosis which was associated 
with an elevated expression of myoblast determination 
protein (MyoD). The MyoD factor can promote the dif-
ferentiation of myofibroblasts by activating the expression 
of α-SMA protein in human fetal lung fibroblasts [40]. It 
seems that the transdifferentiation of diverse cell types 
to myofibroblasts highlights the exceptional plasticity of 
these cells and most probably increases the heterogeneity 
of fibroblast populations in pathological states.

The state of cellular senescence is one of the sources 
which increase the heterogeneity of fibroblast population 
in aged tissues as well as in idiopathic pulmonary fibrosis 
and systemic sclerosis [7, 41, 42] (Fig. 2). The hallmarks 
of senescent fibroblasts include, e.g., an irreversible cell-
cycle arrest, apoptotic resistance, impaired proteostasis 
and energy metabolism, and the pro-inflammatory phe-
notype of senescent cells (Fig. 2). The inflammatory prop-
erties of senescent fibroblasts have been discussed in the 
“Fibroblasts act as immune regulators” section. Zou et al. 
[43] utilized single-cell transcriptomic technique to study 
age-related changes in cell populations of human normal 
skin. They demonstrated that the age-related variabil-
ity of specific properties was significantly higher in the 
fibroblast population as compared to other cell types pre-
sent in human skin. They revealed that the expression of 
α-SMA and many fibrous components of ECM was clearly 
downregulated in the fibroblast population of aged nor-
mal skin, whereas the expression of cytokines and other 
inflammatory mediators was strongly increased in old 
dermal fibroblasts. Several studies on systemic sclerosis 
have demonstrated that senescent fibroblasts accumulated 
into the sclerotic skin [42, 44]. The common biomarkers 
of senescence, such as cell-cycle inhibitors, certain col-
lagen components, and inflammatory markers, were sig-
nificantly upregulated in fibroblasts of the sclerotic skin. 
Oxidative stress, especially the NOX4-mediated processes, 
has a crucial role in the cellular senescence and fibrotic 
lesions in systemic sclerosis [45]. It is known that normal 
aged tissues and many age-related diseases display similar 
changes in the biomarkers of senescence as observed in 
senescent fibroblasts induced by replicative or damaging 
treatments in cell culture conditions; however, there are 
clear indications that cellular senescence in vitro does not 
represent the functional phenotype of fibroblasts within 
aged tissues attributed to the presence of tissue microen-
vironment [7].

Fibroblasts act as immune regulators

Immune functions are not only limited to the cells of 
hematopoietic system such as myeloid and lymphoid 
cells, but also many structural cells of tissues can act as 
immune regulators; i.e., they are able to produce inflam-
matory mediators and modify the properties of immune 
cells. Krausgruber et al. [46] demonstrated that fibroblasts, 
epithelial, and endothelial cells of twelve mouse tissues 
displayed clearly cell-type-specific and tissue-specific 
crosstalk with immune cells. The fibroblasts present in 
many tissues revealed a significant expression of comple-
ment component 3 (C3), NOD-like receptors, and inter-
leukin receptors, as well as the expression of ligands and 
receptors for immune checkpoint proteins and certain 
growth factors in a tissue-specific manner. Moreover, they 
reported that the infection of mice with lymphocytic chori-
omeningitis virus (LCMV) induced an enrichment of dis-
tinct genes in the fibroblasts present in many tissues, e.g., 
the genes involved in viral defense, cytokine production, 
and even antigen processing and presentation. Recently, 
Ngwenyama et al. [47] demonstrated that mouse cardiac 
fibroblasts expressed major histocompatibility complex 
type II (MHCII) protein in inflammatory models. They 
reported that these fibroblasts were able to take up and 
process antigens which subsequently were presented to 
 CD4+ T cells via MHCII proteins. Selective responses of 
fibroblasts were expected considering their heterogene-
ous properties and diverse functions of different tissues 
and pathological states. The fibroblasts are a multifunc-
tional cell type which possesses an impressive adapta-
tion capacity to respond to the changes in their microen-
vironment. There is robust evidence that tissue-resident 
fibroblasts have a key role in the activation and suppres-
sion of immune responses in tissues [48, 49]. Fibroblasts 
are not only able to enhance and maintain inflammatory 
responses, but they can also trigger an immunosuppressive 
state in inflamed tissues.

It is known that activated fibroblasts can express both 
immune-interacting and tissue-remodeling properties [48]. 
Öhlund et al. [50] demonstrated that the CAFs isolated 
from mouse and human pancreatic cancers contained two 
mutually exclusive and reversible fibroblastic subtypes, 
i.e., the inflammatory iCAF population and the myofi-
broblastic myCAF subset. Their transcriptional profiles 
revealed that the iCAFs displayed an increase in the 
expression of many cytokines, chemokines, and some 
other inflammatory mediators as compared to quiescent 
fibroblasts, whereas myCAFs/myofibroblasts showed 
an upregulation of αSMA and collagen proteins. The 
expression of cytokines IL-6, IL-11, and LIF as well as 
chemokines CXCL1 and CXCL2 was the most extensively 
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increased factors in the iCAF population. Subsequently, 
several single-cell transcriptomic studies have confirmed 
these results and revealed several other subgroups with 
novel properties, e.g., immunosuppressive properties (see 
the “Cancer-associated immunosuppressive myofibro-
blasts” section). Several later studies have revealed the 
presence of iCAF populations in other tumor types [19, 51, 
52]. The antigen-presenting CAFs (apCAF) are the third 
subpopulation of fibroblasts commonly observed in tumor 
microenvironments [53]. The apCAFs express the proteins 
of the major histocompatibility complex class II (MHC 
II), but they are also able to stimulate the differentiation 
of immunosuppressive Tregs [53]. Recently, Bryce et al. 
[54] proposed a putative classification for CAFs contain-
ing also the subtypes of metabolic CAFs (meCAF) and 
the complement-secreting CAFs (csCAF), in addition to 
the iCAF, myCAF, and apCAF subsets. The activation of 
iCAFs from tissue-resident quiescent fibroblasts in tumor 
microenvironments has a crucial role in the progression 
of tumor growth. For instance, the iCAFs secrete many 
chemokines and colony-stimulating factors which stimu-
late the maturation of myeloid and lymphoid cells in the 
BM from which they will be recruited into tumor sites.

Although the role of CAFs as an enhancer of inflamma-
tion and tumorigenesis has been studied in detail, the func-
tion of fibroblasts in chronic age-related inflammatory states 
still needs to be clarified. It is known that cardiac fibroblasts 
are central players in shaping both the inflammatory and 
fibrotic processes taking place in myocardial postinfarction 
repair [55, 56]. Daseke et al. [55] described the transitions 
of fibroblasts after mouse myocardial infarction (MI); (day 
1 MI) fibroblasts were pro-inflammatory and anti-migratory, 
(day 3 MI) fibroblasts were anti-inflammatory/immunosup-
pressive and pro-angiogenic, and (day 7 MI) fibroblasts were 
fibrogenic and anti-angiogenic. Moreover, Venugopal et al. 
[56] characterized the maturation phases after MI; (day 7 
MI) fibroblasts were proliferative myofibroblasts and (day 
28 MI) fibroblasts were highly fibrotic matrifibrocytes. 
These results indicate that the resident fibroblastic popu-
lation can adapt to the requirements of the microenviron-
ment, adopting either inflammatory, immunosuppressive, 
or fibrogenic properties. In fact, there exists an extensive 
bi-directional communication between tissue fibroblasts and 
the immune system, not only in the tumor microenvironment 
but also in many other inflammatory and fibrotic conditions 
[57–59]. Pro-inflammatory fibroblasts secrete cytokines, 
chemokines, and colony-stimulating factors which stimulate 
immune cells in damaged tissue; in addition, these inflam-
matory mediators can activate hematopoietic stem cells gen-
erating myeloid and lymphoid cells which will be recruited 
into inflamed tissues. Within tissues, activated inflamma-
tory fibroblasts enhance the differentiation of myofibro-
blasts which also display immunosuppressive properties 

and are able to activate the immunosuppressive network, as 
described below [6, 60]. Moreover, in injured tissues, pro-
inflammatory fibroblasts can trigger the transdifferentiation 
of some cell types into myofibroblasts. It seems that tissue-
resident quiescent fibroblasts can become activated in tissue 
damage and they are able to express many classical immune 
properties which help in their cooperation with immune cells 
during the tissue repair and remodeling processes.

Human diploid fibroblasts have provided an excellent 
cell culture model when examining the properties associ-
ated with replicative senescence [7, 61]. Subsequently, it 
has been revealed that many other cell types also display 
signs of cellular senescence, either via excessive replica-
tion or the changes associated with harmful insults. Interest-
ingly, Campisi and her collaborators revealed that senescent 
fibroblasts and many other senescent cells exhibited a pro-
inflammatory phenotype, called the senescence-associated 
secretory phenotype (SASP) [9, 62] (Fig. 2). In cultured 
human fibroblasts, the most robust increases in terms of 
cytokine secretion were observed for GM-CSF, CXCL1/2, 
CXCL8, MCP1/2, MIP-1α, and IL-1α [9, 62]. These results 
indicated that the secretion of fibroblasts with SASP stimu-
lated hematopoiesis in the BM and increased the recruitment 
of immune cells into aged/inflamed tissues. Subsequently, 
it has been demonstrated that cellular senescence not only 
appears in aged tissues, but this phenomenon is clearly evi-
dent in many age-related diseases, such as atherosclerosis, 
idiopathic pulmonary fibrosis, and systemic sclerosis [41, 
42, 63, 64]. There seems to exist a substantial heterogeneity 
in the secretion profiles of senescent fibroblasts with respect 
to the experimental model being utilized, e.g., between the 
age-related and injury-associated senescent fibroblasts [65]. 
Single-cell studies of fibroblasts from aged tissues have also 
revealed a significant difference between aged fibroblasts 
with respect to their transcriptomic profiles in mouse heart 
[66] and human skin [67]. It is known that NF-κB signal-
ing has a crucial role in the expression of pro-inflammatory 
mediators in senescent fibroblasts [68, 69]. Acosta et al. 
[69] demonstrated that the NLRP3 inflammasomes coor-
dinated the secretory program in senescent human fibro-
blasts. There is convincing evidence that colony-stimulating 
factors, cytokines, and chemokines secreted by senescent 
fibroblasts not only activate the differentiation of tissue-
resident fibroblasts into myofibroblasts but also stimulate 
the generation and differentiation of myeloid and lymphoid 
immune cells into immunosuppressive myofibroblasts. 
Lopez-Antona et al. [70] demonstrated that the senescence 
of myofibroblasts in culture was associated with a robust 
loss of myofibroblastic properties, e.g., the expression of 
α-SMA and collagens. They also revealed that the myofi-
broblastic phenotype of human fibroblasts was controlled 
by the NF-κB and Notch/TGF-β signaling pathways in a 
paracrine manner, i.e., Notch/TGF-β signaling enhanced 
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fibrogenic properties, whereas NF-κB signaling stimulated 
inflammatory properties and decreased fibrogenic activity. 
Mellone et al. [71] reported that the senescence of human 
foreskin fibroblasts promoted a myofibroblastic differentia-
tion which, however, expressed a reduced level of fibrotic 
proteins both in culture and the skin. The high fibrogenic 
activity encountered in senescent myofibroblasts was associ-
ated with an increased cancer incidence.

Interactions of myofibroblasts 
with the immunosuppressive network

Given that tissue-resident fibroblasts have a crucial role in 
the maintenance of tissue homeostasis, it requires a close 
interaction between immune and non-immune cells [72–74]. 
This collaboration is emphasized in pathological conditions 
when the fibroblasts organize acute inflammatory responses 
and subsequently adapt to chronic inflammatory conditions. 
As discussed below, fibroblasts/myofibroblasts are key play-
ers in the generation and maintenance of immunosuppres-
sive states, e.g., in the cancer microenvironment [6, 75, 76].

Immunosuppressive network

Inflammatory responses associated with pathological condi-
tions stimulate a compensatory anti-inflammatory response, 
thus preventing the expansion of detrimental inflammation 
[77–79]. In particular, the chronic presence of an inflamma-
tory microenvironment evokes an immunosuppressive state 
which counteracts inflammatory responses in many age-
related diseases, e.g., atherosclerosis, Alzheimer’s disease, 
cancer, and macular degeneration [80–83]. Inflammatory 
insults initially stimulate the expression and subsequently 
increase the secretion of a variety of cytokines, chemokines, 
and CSFs. These secreted factors not only control the pheno-
type of tissue-resident immune cells, such as macrophages 
and innate lymphoid cells, but also augment myelopoiesis 
in the BM [84]. For instance, CSFs and some chemokines 
trigger the generation of myeloid-derived suppressor cells 
(MDSC) which are released from the BM into the circulation 
and recruited into inflamed tissues [85]. There are two sub-
groups of MDSCs, i.e., the monocytic MDSCs (M-MDSC) 
and granulocytic MDSCs (G-MDSC), which are immuno-
suppressive cells although they have specific functions in 
pathological conditions [85]. MDSCs are very plastic cells 
which can be differentiated into certain other myeloid cells, 
e.g., macrophages, in inflammatory and fibrotic states. Acti-
vation of the immune system also promotes the generation of 
other immune cells in the BM, lymphoid organs, and also in 
affected tissues. The state of chronic inflammation modifies 
the phenotypes of immune cells, either by secreting anti-
inflammatory factors, such as TGF-β, IL-4, and IL-10, or 

through the contact-dependent interactions, e.g., via inhibi-
tory immune checkpoint receptors [86]. For example, the 
pro-inflammatory M1-type of macrophages can be con-
verted into immunosuppressive M2 macrophages [87] and 
T cells into different types of regulatory T cells (Treg) [88]; 
i.e., immunosuppressive cells can augment the immunosup-
pressive properties of many immune cells inducing the so-
called regulatory phenotypes. In addition to MDSCs and M2 
macrophages, the immunosuppressive network includes also 
the regulatory B cells (Breg) and regulatory dendritic cells 
(DCreg), as well as the regulatory natural killer (NKreg) 
and type II natural killer T (NKT) cells. The properties and 
functions of the immunosuppressive network have been elu-
cidated in detail in many extensive reviews [10, 85, 89, 90]. 
Moreover, we have reviewed the properties of immunosup-
pressive cells in association with the aging process [10, 91].

Immunosuppression is associated with several crucial 
beneficial responses in acute inflammatory states, but in 
chronic inflammatory conditions, it exerts many detrimental 
effects since it can inhibit the resolution of inflammation and 
thus prevent the repair process of tissue injuries [78, 90, 92, 
93]. Activation of the immunosuppressive network reduces 
the functional activity of the immune system, especially that 
of adaptive immunity. The decline in the efficiency of the 
immune system with aging has been called immunosenes-
cence [94]. Immunosenescence is also an important player 
in the pathogenesis of cancer and many age-related diseases 
[95, 96]. Interestingly, the activation of immunosuppressive 
cells, such as MDSCs, Tregs, and M2 macrophages, induces 
alterations in effector immune cells which are reminiscent 
of those encountered in immunosenescence [93, 97]. For 
instance, immunosuppressive cells (i) inhibit the prolifera-
tion of immune cells, (ii) prevent antigen presentation and 
antibody production, and (ii) reduce the cytotoxic activity of 
NK and CD8T cells and thus impair immune surveillance. 
Furthermore, it is known that CAFs suppress the function 
of NK cells and in this way impair the ability of the immune 
system to detect and destroy malignant cells [98, 99]. On 
the other hand, NK cells can kill the hepatic stellate cell-
derived myofibroblasts and thus limit the severity of liver 
fibrosis [100]. The immunosuppressive armament contains 
many tools which suppress the function of immune cells, 
such as the secretion of reactive oxygen and nitrogen species 
(ROS/RNS) and anti-inflammatory cytokines, e.g., TGF-β 
and IL-10. These products not only have direct effects on 
immune cells, but they can also induce deteriorations in the 
functions of neighboring cells and thus induce tissue atro-
phy and fibrosis [11]. Fibrosis is most likely associated with 
the TGF-β-induced activation of myofibroblasts in stressed 
tissues. Immunosuppressive cells also repress the function 
of immune effector cells by enhancing the catabolism of 
arginine and tryptophan in inflamed tissues by increas-
ing the synthesis of arginase 1 (ARG1) and indoleamine 
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2,3-dioxygenase 1 (IDO1) [11]. In this case, the immunosup-
pressive cells exploit the auxotrophy of many immune cells; 
i.e., these cells are unable to synthesize either arginine or 
tryptophan amino acids. Consequently, the deprivation of 
those two amino acids associated with the immunosuppres-
sive state also impairs the protein synthesis and homeostasis 
in non-immune cells located in inflamed tissues.

Crosstalk between myofibroblasts 
and immunosuppressive cells

Tissue-resident immunosuppressive myofibroblasts, i.e., 
the subsets of CAFs or activated fibroblasts in fibrotic and 
inflammatory states, are evidently a part of the immunosup-
pressive network and are able to cooperate with immune 
cells [6, 19, 59, 60, 101]. As stated above, inflammatory 
fibroblasts/myofibroblasts secrete several chemokines and 
CSFs, e.g., CCL2, CXCL12, and GM-CSF, which stimulate 
myelopoiesis in the BM. Increased myelopoiesis augments 
the generation and release of many myeloid cells, e.g., 
monocytes, MDSCs, and fibrocytes, which are subsequently 
recruited into the affected tissues. Interestingly, TGF-β 
has a key role in stress conditions; i.e., TGF-β secreted by 
immunosuppressive cells stimulates the differentiation of 
myofibroblasts, whereas TGF-β produced by CAFs/myofi-
broblasts induces the differentiation of MDSC, Tregs, and 
M2 macrophages [6, 60, 101] (Fig. 2). Meng et al. [24] 
reported that inflammatory macrophages were able to trans-
differentiate into myofibroblasts in mouse kidney fibrosis. 
The depletion of the myeloid lineage attenuated the accu-
mulation of myofibroblasts and accordingly reduced a 
severity of renal fibrosis. It is known that TGF-β exposure 
also triggers an alternative activation of M2 macrophages, 
i.e., the generation of the immunosuppressive M2 phe-
notype [102]. M2 macrophages secrete TGF-β and IL-10 
cytokines in chronic diseases, and thus, they are not only 
able to induce myofibroblast differentiation but also acti-
vate several immunosuppressive cells [103]. For instance, 
Sheng et al. [104] demonstrated that the M2 macrophages 
induced the differentiation of tissue-resident fibroblasts into 
myofibroblasts through the secretion of TGF-β and IL-4 
cytokines in human benign prostatic hyperplasia. They also 
reported that TGF-β treatment induced the differentiation 
through the Smad3 signaling pathway, whereas IL-4 uti-
lized the STAT6/AKT/ERK axis. It does seem clear that 
the M2 macrophages are able to induce the differentiation 
of fibroblasts into myofibroblasts and thus promote fibrosis 
in pathological conditions [105, 106].

Tissue-resident fibroblasts/myofibroblasts also undertake 
a crosstalk with MDSCs and Tregs in the generation of the 
immunosuppressive microenvironment. Sun et al. [107] dem-
onstrated that G-MDSCs promoted the age-related mouse 
cardiac fibrosis by activating myofibroblasts via the secretion 

of S100A8/A9 proteins. It is also known that peroxynitrite, 
e.g., a reactive radical produced by MDSCs [108], stimulated 
the differentiation of human embryonic lung fibroblasts into 
myofibroblasts [109]. Accordingly, Liu et al. [110] demon-
strated that the amounts of MDSCs in the circulation were 
significantly increased in human idiopathic pulmonary fibro-
sis. They also revealed that MDSCs were able to promote the 
differentiation of mouse lung fibroblasts into myofibroblasts. 
Moreover, they reported that a deficiency of mouse MDSCs 
reduced the severity of lung fibrosis highlighting the crucial 
role of MDSCs in fibrotic diseases. However, the MDSC-
induced myofibroblast differentiation seems to be depend-
ent on the type of MDSCs or the experimental context since 
the M-MDSCs inhibited the myofibroblastic differentia-
tion of mesenchymal stem cells [111]. Moreover, Pinchuk 
et al. [112] demonstrated that human colonic myofibroblasts 
enhanced the expansion of the FoxP3-positive Tregs and thus 
suppressed the symptoms of inflammatory bowel disease. 
Saxena et al. [113] revealed that Treg cells recruited into 
mouse infarcted cardiac muscle modulated the phenotype of 
fibroblasts; e.g., they reduced the expression of α-SMA and 
attenuated the contraction of fibroblast-populated collagen 
pads, thus combatting the myofibroblast-induced cardiac 
fibrosis. Accordingly, a depletion of Tregs aggravated the 
postinfarction inflammatory response. These few examples 
indicate that myofibroblasts collaborate with the cells of 
the immunosuppressive network, thus enhancing the devel-
opment of an immunosuppressive microenvironment. The 
cooperation between tissue-resident fibroblasts and recruited 
immunosuppressive cells has been extensively studied in the 
initiation and progression of cancers.

Cancer‑associated immunosuppressive 
myofibroblasts

During the last decade, there has been dramatic progress 
made in our understanding of the functions of fibroblasts 
in tumorigenesis. Currently, it is known that CAF subpop-
ulations are the architects of tumor initiation, growth, and 
spreading in a close cooperation with immunosuppressive 
cells [6, 59, 60, 101]. The multifunctional role of CAFs is 
based on their plasticity; several single-cell transcriptomic 
studies have revealed the extensive heterogeneity of CAF 
populations with respect to both the growth of tumors and 
their appearance in different types of tumors. Costa et al. [19] 
revealed that specimens of human breast cancer contained 
four different CAF subsets of which CAF-S1 displayed many 
myofibroblastic and immunosuppressive properties. For 
instance, the myCAF-S1 cells enhanced the recruitment of 
 CD4+CD25+ T lymphocytes into cancers and subsequently 
induced their differentiation into the immunosuppressive 
FoxP3-positive Treg cells. The myCAF-S1 subgroup was 
characterized by its high expression of fibroblast activation 
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protein (FAP), α-SMA, PDGFR, and CD73 [114, 115]. CD73 
is an ecto-5’-nucleotidase enzyme which in pathological con-
ditions converts AMP and ADP into adenosine. Extracel-
lular adenosine is a potent enhancer of immunosuppression 
induced by Tregs and MDSCs [116, 117]. Subsequently, 
Kieffer et al. [118] characterized several subclusters in the 
myCAF-S1 subset in human breast cancer specimens. They 
observed that there existed a positive feedback loop between 
specific clusters and the immunosuppressive activity of 
Tregs, i.e., indicating a crosstalk between the TGF-β secre-
tion by myCAFs and the induction of two immunosuppres-
sive checkpoint proteins, PD-1 and CTLA4, in human Tregs. 
Moreover, myCAF-S1 cells were highly FAP-positive not 
only in human breast cancer [118] but also in many other can-
cers and pathological conditions [119]. Interestingly, Yang 
et al. [120] demonstrated that the FAP enzyme activated 
STAT3 signaling via the FAK-Src-JAK2 pathway in fibro-
blasts isolated from mouse hepatoma. They also reported that 
the induction of FAP stimulated the expression and secretion 
of the CCL2 chemokine which promoted the infiltration of 
MDSCs into mouse liver tumors and enhanced their growth.

It is known that there is a close metabolic interaction 
between CAFs and cancer cells and that this crosstalk 
enhances the growth of tumors [121, 122]. Interestingly, sev-
eral studies have indicated that both cancer cells and myofi-
broblasts/CAFs exploit aerobic glycolysis in their energy 
metabolism, a process called the Warburg effect [123, 124]. 
In aerobic glycolysis, glucose is metabolized to lactate which 
has a crucial role in tumor growth. In fact, there is clear evi-
dence that CAFs and cancer cells establish a reciprocal lac-
tate shuttle which promotes cancer progression [124, 125]. 
It is now known that tumor-secreted lactate activates CAFs 
in diverse cancer microenvironments [126, 127]. Lactate is 
not only an endpoint metabolite, but it is also a signaling 
molecule that can control many immune processes; e.g., 
it can evoke immunosuppression and suppress inflamma-
tory responses [128, 129]. For instance, Husain et al. [128] 
reported that lactate exposure stimulated the proliferation 
and activity of MDSCs in mouse pancreatic cancer cells. 
Accordingly, they revealed that lactate suppressed the cyto-
toxic activity of NK cells by inhibiting the expression of the 
activating NKp46 receptor in mouse NK cells. Lactate can 
induce the lactylation of histones and in this way enhance 
the immunosuppressive activity of immune cells; e.g., it 
increases the activity and proliferation of MDSCs and Tregs 
and enhances the M2 polarization of macrophages [130]. 
It seems evident that CAFs possess several mechanisms 
through which they can promote the development and main-
tenance of immunosuppressive microenvironment in tumors.

The plasticity of fibroblasts is able to shape various 
aspects of tumor growth, e.g., by promoting the prolifera-
tion and survival of cancer cells, increasing angiogenesis 
and ECM remodeling, and enhancing the metastatic spread 

of cancer cells [121, 131]. In fact, cancer cells seem to be 
able to educate CAFs not only to enhance their growth and 
metastasis but also to help them to escape from the immune 
surveillance by NK cells and cytotoxic T cells [98, 132]. 
Shortly, CAFs orchestrate an immunosuppressive state in the 
cancer microenvironment by recruiting immune cells into 
tumor sites and subsequently promoting their differentia-
tion into regulatory phenotypes, such as MDSCs, Tregs, M2 
macrophages, and tumor-associated macrophages (TAM). 
These immunosuppressive cells secrete a wide range of 
compounds, e.g., TGF-β and IL-10, which accordingly pro-
mote the immunosuppressive activity of CAFs. In addition, 
CAFs induce the expression of inhibitory immune check-
point receptors or their ligands and in that way inactivate the 
functions of tumor-invading lymphocytes [133]. Currently, it 
is known that immunosuppressive CAFs can mount a crucial 
blockage impairing successful tumor immunotherapy. There 
are different strategies for the CAF-targeted anticancer ther-
apies, e.g., inhibiting the function of immunosuppressive 
FAP and preventing the actions of TGF-β and IL-6 cytokines 
[6]. There are a number of extensive review articles depict-
ing in detail the role of immunosuppressive CAFs in tumor 
progression and their importance in the disruption of suc-
cessful cancer therapy [6, 60, 101, 134].

Myofibroblasts associated with fibrotic lesions

Myofibroblasts are key players in the formation of fibrotic 
lesions; this is attributed to their role as a major source of 
the components of fibrous connective tissue [3, 5, 135]. 
Fibrosis is typically associated with tissue injuries, i.e., 
wound healing and acute scarring, but an excessive depo-
sition of fibrous components within tissues can also be a 
reactive process associated with diverse pathological states 
involving chronic inflammation. Fibrosis can occur in all 
tissues, but more commonly, it appears in the lungs (IPF), 
myocardium (infarcts, aging), skin (systemic sclerosis, 
keloids), bone marrow (myelofibrosis), joints (arthrofibro-
sis), bowel (inflammatory bowel disease), vascular tissues 
(arthrofibrosis, systemic sclerosis), and internal organs (sys-
temic sclerosis). TGF-β cytokine is a master regulator of 
the deposition of fibrotic components into fibrotic lesions 
[136]. In addition to TGF-β signaling, the Wingless (WNT) 
and Yes-associated protein 1 (YAP/TAZ)-mediated signal-
ing pathways have also been implicated in the formation of 
fibrosis [137]. Currently, it is known that epigenetic path-
ways regulate both the progression and the maintenance of 
fibrosis, e.g., in systemic sclerosis and pulmonary fibrosis 
[36, 138]. There is robust evidence that the TGF-β and WNT 
signaling pathways enhance the differentiation of myofibro-
blasts and control their profibrotic state. However, several 
single-cell transcriptomic studies have revealed that there 
is a wide heterogeneity in the properties of fibroblasts and 
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myofibroblasts present in fibrotic tissues [139, 140]. This 
is not surprising since in fibrosis myofibroblasts can have 
been differentiated from a variety of precursor cell types, 
such as macrophages, fibrocytes, tissue-resident fibroblasts, 
pericytes, smooth muscle cells, and endothelial cells.

There is an intimate crosstalk between myofibro-
blasts and immune cells during the progression of fibrosis 
[141–143]. This is attributed to the fact that TGF-β and sev-
eral chemokines and cytokines are regulators in both myofi-
broblasts and many immunosuppressive cells. In brief, tissue 
injuries and the associated inflammatory responses involving 
the activation of myofibroblasts recruit immunosuppressive 
cells, such as regulatory lymphocytes (Treg, Breg) and mye-
loid cells (MDSC, M2 macrophages), which strive to coun-
teract the pro-inflammatory responses. Consequently, these 
immunosuppressive cells secrete TGF-β and other cytokines 
which are potent enhancers of the differentiation and fibrotic 
activation of myofibroblasts; i.e., the immunosuppressive 
cells stimulate fibrosis in affected tissues. Subsequently, the 
initiation of the fibrogenic process increases the stiffness of 
the matrix, thus enhancing myofibroblast differentiation and 
fibrotic activity [144, 145]. For instance, Sheng et al. [104] 
demonstrated that M2 macrophages secreted IL-4, an anti-
inflammatory cytokine, which induced the phenoconversion 
of fibroblasts into myofibroblasts in human prostatic hyper-
plasia. Birjandi et al. [146] demonstrated that the increased 
level of Tregs aggravated the bleomycin-induced mouse pul-
monary fibrosis. Moreover, Liu et al. [110] reported that the 
levels of MDSCs and Tregs were increased in the circulation 
of IPF patients. In the mouse model of bleomycin-induced 
pulmonary fibrosis, they observed that MDSCs increased 
myofibroblast differentiation and enhanced the suppression of 
T cell proliferation. Liu et al. [110] also observed that immu-
nosuppression was mediated via the B7H3 inhibitory check-
point receptor in mouse MDSCs. Treatment of mice with anti-
B7H3 antibodies inhibited the recruitment of MDSCs into 
fibrotic lungs and reduced severity of the pulmonary fibrosis.

While fibrosis can be a reversible process, it is recog-
nized that its impaired resolution aggravates tissue fibrosis 
[39, 147]. The resolution of fibrosis is dependent on the 
elimination of the fibrogenic myofibroblasts and the degra-
dation of the fibrotic ECM. There are studies indicating that 
myofibroblasts can be removed by apoptosis or modified 
into non-fibrotic cells through cellular senescence, dedif-
ferentiation, and reprogramming. For instance, the apoptotic 
clearance of myofibroblasts is clearly declined in systemic 
sclerosis [135, 148]. It is known that mechanosensing via 
increased stiffness of ECM activates the Rho-associated 
kinase (ROCK) which subsequently increases the expres-
sion of anti-apoptotic BCL2 proteins and thus suppresses the 
elimination of myofibroblasts [135]. Moreover, an increased 
activity of PI3K/AKT pathway in systemic sclerosis inhibits 
the activity of pro-apoptotic BAX protein, thus enhancing 

the survival of myofibroblasts in systemic sclerosis. Cur-
rently, there is a debate on what role of the increased num-
ber of senescent myofibroblasts plays during the expansion 
of fibrosis; i.e., the senescent phenotype of myofibroblasts 
seems to limit fibrosis although on the other hand, senes-
cence has been associated with a pro-inflammatory SASP 
which might augment compensatory immunosuppression 
and enhance the fibrotic activity of myofibroblasts via 
TGF-β exposure [63].

Myofibroblasts in aging and age‑related diseases

Fibrosis is a typical hallmark of the aging process in several 
tissues [4, 149, 150]. Age-related tissue fibrosis is associ-
ated with profound changes in the molecular components and 
physical structure of the ECM although there are many spe-
cies- and tissue-specific differences [150–152]. For example, 
there is a decline in collagen synthesis, and thus, while the 
amount of collagen decreases with aging, conversely, the stiff-
ness of ECM clearly increases due to an age-related increase 
in the level of collagen cross-linking. As described earlier, via 
a process called mechanosensing, the matrix stiffness regu-
lates the differentiation of fibroblasts into myofibroblasts. For 
instance, Levental et al. [153] demonstrated that an increased 
amount of collagen cross-linking and greater stiffness of 
the ECM promoted the progression of mouse breast cancer. 
These modifications of the ECM increased integrin signaling 
and focal adhesions leading to enhanced tissue fibrosis. It is 
known that integrins, e.g., integrin α1β1, control myofibro-
blast differentiation in human tissues [154]. ECM and inte-
grin signaling also regulate many immunological functions 
in aging tissues. For instance, Xing et al. [155] reported that 
an increase in matrix stiffness promoted the polarization of 
human macrophages into the immunosuppressive M2 phe-
notype. Increased substrate stiffness also enhanced the activ-
ity of human Tregs [156]. Moreover, matricellular proteins 
stimulated the immunosuppressive activity of MDSCs in 
human breast cancer [157]. These studies indicate that age-
related increase in collagen cross-linking and matrix stiffness 
can promote the differentiation of myofibroblasts and thus 
create the condition for the development of an immunosup-
pressive microenvironment. Age-related fibrosis can also be 
attributed to a decline in the resolution of fibrosis. Kato et al. 
[39] reported that in many tissues, age-related fibrosis was 
connected to an increased resistance to apoptosis of myofi-
broblasts preventing their apoptotic cell death. It is recognized 
that resistance to apoptosis increases with aging and cellular 
senescence, thus promoting the aging process [158, 159]. It 
seems that the increased matrix stiffness of aged tissues both 
enhances the survival of myofibroblasts and augments the 
immunosuppressive microenvironment.

Age-related diseases are progressive disorders which are 
typically associated with chronic inflammation and frequently 
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also with fibrotic lesions. Moreover, the immunosuppressive 
network is commonly activated in order to counteract the 
chronic inflammation. However, the interactions between 
myofibroblasts and immunosuppressive immune cells still 
need to be clarified although they both are involved in the 
pathogenesis of these diseases. Studies on many cancers 
and idiopathic pulmonary fibrosis, both of which are com-
mon age-related diseases, have revealed that there is a close 
interaction between myofibroblasts and immunosuppressive 
cells, as described above. Currently, it is known that the pres-
ence of myofibroblasts as well as M2 macrophages, Tregs, 
and MDSCs can be detected in several age-related diseases. 
For instance, the early phase of atherosclerosis is associated 
with the activation of tissue fibroblasts, i.e., the differen-
tiation of the fibroblasts into myofibroblasts, which produce 
important profibrotic factors, like TGF-β and angiotensin 
II [160]. Myofibroblasts in atherogenesis can also originate 
from macrophages, endothelial cells, pericytes, and fibrocytes. 
Especially, myofibroblasts have a crucial role in the patho-
genesis of arterial restenosis and remodeling processes [161, 
162]. Inflammatory fibroblasts/myofibroblasts are involved 
in the recruitment of immunosuppressive cells into athero-
genic lesions although the interactions between fibrogenic and 
immunosuppressive cells in the pathogenesis of this vascular 
disease still need to be clarified. However, it seems that Tregs 
and M2 macrophages promote anti-atherogenic functions, thus 
enhancing resolving processes in atherosclerosis [163, 164]. 
The myofibroblast population has also an important role in 
cardiac fibrosis in cardiovascular diseases [3], chronic kidney 
disease [165], age-related macular fibrosis and degeneration 
[166], and some autoimmune diseases, such as rheumatoid 
arthritis and systemic sclerosis [135, 148, 167]. For instance, 
in systemic sclerosis, several immune cells, such as mono-
cytes, macrophages, neutrophils, and Th2/Th17 cells, are able 
to stimulate the differentiation of myofibroblasts and enhance 
their functions [135]. Immune cells secrete several cytokines, 
e.g., IL-4, IL-6, IL-10, and TGF-β, which induce the differen-
tiation of myofibroblasts and thus aggravate tissue fibrosis in 
systemic sclerosis [135]. It is known that the immunosuppres-
sive network is clearly activated in aging-associated chronic 
diseases, but it has still to be clarified how the interactions with 
myofibroblasts promote the pathogenesis of these diseases.

Activation of the immunosuppressive 
network with aging and age‑related 
diseases

Activation of immunosuppressive network 
with aging

Common immune hallmarks of the aging process are chronic 
low-grade inflammation, increased immunosuppression, 

and a decline in the functional efficiency of the immune 
system [8, 10, 168–171]. A low-grade induction of inflam-
matory responses with aging has been observed in different 
tissues using diverse research approaches, such as transcrip-
tomic and single-cell analyses [170, 172, 173]. Accordingly, 
an increased immunosuppression has been revealed in sev-
eral experimental and clinical studies [10, 171, 174, 175]. 
Enhanced immunosuppression with aging is most likely an 
effect intended to counteract the presence of chronic low-
grade inflammation. There is clear evidence that the aging 
process in humans and mice increases myelopoiesis in the 
BM and simultaneously induces the expansion of MDSCs 
in the circulation and within different tissues [91, 174, 
176–178]. It has also been shown that MDSCs displayed 
improved immunosuppressive properties with aging, such 
as an enhanced suppression of T cell activity. In addition, 
the frequency of Tregs was upregulated with aging in the 
blood and many tissues [174, 179, 180]. It is also known 
that there is an increased presence of the immunosuppres-
sive M2 macrophages in several mouse tissues with aging, 
e.g., in the bone marrow, spleen, and lungs [181]. There 
are many clinical consequences of the age-related increase 
in immunosuppression and immunosenescence; e.g., the 
cancer risk increases, vaccination efficiency decreases, 
and susceptibility to infections is enhanced, but conversely, 
transplantation tolerance is improved [171]. Currently, the 
role of myofibroblasts in the age-related degeneration of 
tissues needs to be clarified. There is abundant indirect evi-
dence that myofibroblasts have significant roles in various 
aspects of the aging process, e.g., as a part of the activated 
immunosuppressive network.

Immunosuppression associated with age‑related 
diseases

As described above, a chronic inflammatory state has a 
crucial role in the development and maintenance of many 
common age-related diseases, such as cancer and cardio-
vascular diseases [182]. The presence of chronic local and 
systemic inflammation stimulates immunosuppressive 
responses which evoke immune deficiencies and thus pro-
mote premature aging. For example, there is convincing 
evidence that cancer survivors, even young patients, have 
an increased risk for showing signs of premature aging, e.g., 
osteoporosis, muscle atrophy, pulmonary fibrosis, and the 
characteristics of frailty [183–185]. It is known that tumo-
rigenesis stimulates both local and systemic immunosup-
pression involving the activation of the immunosuppressive 
network [81] as well as the induction of CAFs. There are 
several other age-related chronic inflammatory states, e.g., 
chronic kidney disease (CKD), chronic obstructive pulmo-
nary disease (COPD), and rheumatoid arthritis in which 
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immunosuppression and immunosenescence are enhanced 
and as a result the aging process is accelerated [186–188]. 
These inflammatory diseases are also accompanied by many 
comorbidities. Moreover, the immunosuppression encoun-
tered in CKD and COPD is associated with an accumula-
tion of the cells of the immunosuppressive network in the 
circulation and the diseases tissues [189–191]. Age-related 
diseases are also accompanied by an increased accumula-
tion of myofibroblasts and fibrotic lesions. Tissue fibrosis 
with aging has been commonly associated with the state 
of chronic immunosuppression [192]. For instance, in idi-
opathic pulmonary fibrosis, the cells of the immunosuppres-
sive network, such as MDSCs, Tregs, and M2 macrophages, 
have a crucial role in triggering the differentiation of myofi-
broblasts, and thus, they act as enhancers of tissue fibrosis 
[143]. The activation of the immunosuppressive network in 
cardiovascular diseases (CVD) induces an immunosuppres-
sive state which has both beneficial and detrimental effects; 
e.g., the enhanced differentiation of myofibroblasts pro-
motes harmful fibrosis in the cardiovascular system. While 
counteracting the chronic inflammation, it does seem that 
the immunosuppressive cells present in many age-related 
chronic diseases concurrently promote the appearance of 
the myofibroblast-driven fibrotic lesions.

Are immunosuppressive myofibroblasts 
promoting the aging process?

Enhancers of the aging process are inducers 
of myofibroblast differentiation

The hallmarks of the aging process have been clarified 
although the primary cause driving the aging process still 
needs to be revealed [193]. Many of the hallmarks of aging, 
e.g., chronic low-grade inflammation, genomic instability, 
telomere attrition, mitochondrial dysfunction, and cellular 
senescence, can be induced by oxidative stress. In fact, oxi-
dative stress induced by free radicals was one of the earli-
est postulated theories of aging [194]. Afterwards, the role 
of oxidative stress has been abundantly investigated as the 
cause underpinning the aging process and age-related dis-
eases [195]. Reactive oxygen species (ROS) are generated 
by a wide variety of sources, such as macrophages and neu-
trophils in inflammatory states as well as mitochondrial res-
piration, NADPH oxidases (NOX), and ionizing radiation at 
the cellular level. ROS compounds have been demonstrated 
to be potent inducers of myofibroblast differentiation in 
diverse experimental setups [196–199] as well as enhancers 
of tissue fibrosis [200] (Fig. 3). Interestingly, the activation 
of TGF-β signaling induces the expression of the NOX4 
enzyme via either the Smad3 or the Rho kinase pathways 
[198, 201]. Subsequently, the NOX4 enzyme stimulates ROS 

signaling which triggers the activation of myofibroblasts and 
promotes the generation of fibrotic lesions. For instance, 
Canugovi et al. [202] demonstrated that an increase in mito-
chondrial NOX4 expression with aging caused a stiffening 
of the aorta in mice and humans. Not only do ROS stimu-
late myofibroblast differentiation, but these reactive radicals 
can also activate immunosuppressive cells. For instance, the 
NOX enzyme-induced production of ROS stimulated the 
polarization of mouse M1 macrophages into M2 and tumor-
associated macrophages (TAM) which are the two immuno-
suppressive phenotypes of macrophages [203]. Accordingly, 
the ROS produced by the NOX enzyme in rat and human 
macrophages induced the generation of immunosuppressive 
Tregs [204]. Nagaraj et al. [108] demonstrated that mouse 
MDSCs generated ROS and NO compounds which inhibited 
the T cell receptor (TCR) and thus suppressed the function 
of  CD8+ T cells. Moreover, it is known that ROS compounds 
can activate the latent TGF-β1 complexes secreted by cells 
into the extracellular space and in that way enhance TGF-β 
signaling [205]. There is now convincing evidence that ROS 
compounds are signaling messengers in the immunosuppres-
sive network and they can inhibit the function of immune 
cells and probably induce immune aging.

Oxidative stress also causes ROS-induced oxidation dam-
ages in both the intra- and extracellular spaces. For instance, 
these compounds can increase tissue stiffness and fibrosis 
with aging by promoting disturbances in the ECM and stimu-
lating myofibroblast differentiation [206, 207]. As discussed 
above, stiffness and structural disturbances are major activa-
tors of myofibroblasts via mechanosensing of the changes 
in the ECM. ROS compounds also impair the integrity of 
genomic DNA, especially it is known that telomere dysfunc-
tions promote the differentiation of human fibroblasts into 
myofibroblasts [208]. Razdan et al. [208] demonstrated that 
TGF-β exposure of human fibroblasts induced telomere dys-
function and the myofibroblast differentiation through the 
SMAD3/NOX4-dependent ROS production. Liu et al. [209] 
reported that the loss of the telomerase enzyme stimulated 
the differentiation of rat lung fibroblasts into myofibroblasts. 
Interestingly, telomere dysfunction has been recognized as a 
hallmark of aging and age-related diseases [210].

Given that fibroblasts can express both inflammatory and 
immunosuppressive properties, it does seem likely that these 
cells are involved in the regulation of the inflammaging pro-
cess. It is known that age-related stresses, such as oxidative 
stress and endoplasmic reticulum (ER) stress, can trigger 
inflammatory responses and thus promote the aging process. 
Similar to oxidative stress, ER stress also stimulates the dif-
ferentiation of myofibroblasts and enhances tissue fibrosis 
[211, 212]. There seems to exist diverse mechanisms which 
induce myofibroblast differentiation and fibrotic lesions 
although the major routes are mediated via the coopera-
tion between TGF-β and NF-κB signaling, especially via 
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the activation of NLRP3 inflammasomes [213–215]. It is 
known that the inhibitors of NF-κB and NLRP3 signaling 
are able to suppress the differentiation of myofibroblasts. For 
instance, TGF-β can stimulate NF-κB signaling which pro-
motes the activation of the NLRP3 inflammasomes. There 
is also robust evidence that ROS compounds are potent 
activators of NLRP3 inflammasomes [216]. The mecha-
nisms of the NLRP3-induced myofibroblast differentiation 
and generation of fibrotic lesions still need to be clarified 
although there are reports indicating that the IL-18 cytokine, 
a product of NLRP3 activation, enhances fibrosis in many 
experimental models [215, 217]. The activation of NLRP3 
inflammasomes has been associated with the aging process 
and many age-related diseases [218]. Chronic inflamma-
tion is associated with several other factors which are able 
to induce myofibroblast differentiation and evoke fibrotic 
lesions, e.g., advanced glycation end-product and its recep-
tor (AGE/RAGE) [219], high-mobility group box protein 
1 (HMGB1) [220], CXC-type chemokines, e.g., CXCL12/
CXCR4 [197, 221], and osteopontin protein [222] (Fig. 3). 
For instance, the osteopontin protein can (i) induce myofi-
broblast differentiation and promote fibrosis, (ii) control 
immunosuppression in tumors, and (iii) elicit many of the 
degenerative processes associated with aging and age-related 

diseases [222, 223]. To conclude, there is convincing evi-
dence that enhancers of the aging process stimulate the dif-
ferentiation of myofibroblasts and thus promote fibrosis both 
in aging tissues and age-related diseases.

Anti‑aging treatments suppress myofibroblast 
differentiation

Although the primary cause of aging is unknown, there have 
been promising results emerging from the anti-aging thera-
peutic experiments conducted in rodents with metformin and 
rapamycin [224, 225]. Metformin is an activator of AMPK 
signaling, and rapamycin is an inhibitor of mTOR activity. It 
is known that AMPK signaling activates autophagy by phos-
phorylating the Ulk1 protein at Ser317 and Ser777 [226]. 
Accordingly, mTORC1 phosphorylates the Ulk1 protein at 
Ser757, thus disrupting the interaction between the AMPK 
and Ulk1 proteins; i.e., both metformin and rapamycin stim-
ulate autophagy. Autophagy is a crucial cellular cleansing 
mechanism, and it is known that its efficiency declines with 
aging disturbing healthy aging process and promoting many 
age-related diseases [227]. Interestingly, there is robust evi-
dence that metformin exposure inhibits the differentiation of 
myofibroblasts and thus can prevent and even reverses tissue 
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Fig. 3  Age-related signaling stimulates the differentiation of myofi-
broblasts, whereas anti-aging treatments inhibit fibroblast differen-
tiation. Age-related stimuli, e.g., oxidative stress and inflammatory 
mediators, can (i) induce the differentiation of myofibroblasts, (ii) 
enhance the recruitment of immunosuppressive cells into tissues, and 
(iii) create an immunosuppressive microenvironment in aged tissues. 
Accordingly, anti-aging treatments with metformin and rapamycin are 
able to suppress the differentiation of myofibroblasts in tissues and in 

this way inhibit the development of fibrotic lesions and prevent tis-
sue degeneration. Abbreviations; AGE/RAGE, advanced glycation 
end-product/receptor of advanced glycation end-product; AICAR, 
5-aminoimidazole-4-carboxamide ribonucleotide; DAMP, damage-
associated molecular pattern; ECM, extracellular matrix; ER, endo-
plasmic reticulum; HMGB1, high-mobility group box  1 protein; 
mTOR, mammalian target of rapamycin; ROS, reactive oxygen spe-
cies; SASP, senescence-associated secretory phenotype
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fibrosis in many experimental models [228–230] (Fig. 3). 
Two other activators of AMPK, i.e., AICAR and A-769662, 
also inhibited the TGF-β-induced myofibroblast differen-
tiation of human primary mesangial cells. Chen et al. [231] 
reported that AICAR prevented the TGF-β-induced fibro-
blast–myofibroblast transdifferentiation and subsequently 
reduced the severity of kidney fibrosis in a mouse model of 
the ureteral obstruction. Several studies have revealed that 
AMPK signaling inhibits the TGF-β-induced activation of 
the Smad2/3 factor and alleviates its downstream functions, 
e.g., the expression of α-SMA and collagen proteins [228]. 
Several phytochemicals are also potent activators of AMPK 
signaling, and thus, they can inhibit myofibroblast differen-
tiation and reduce the degree of tissue fibrosis. For instance, 
resveratrol suppressed the TGF-β-induced myofibroblast 
phenoconversion in human primary prostate and lung fibro-
blasts [232]. However, phytochemicals have commonly sev-
eral cellular targets. Jiang et al. [233] have reviewed the stud-
ies investigating the role of AMPK signaling in the protection 
of fibrosis in different organs.

The mTOR kinase is a crucial factor in the regulation of 
the aging process and age-related diseases via its role in the 
control of protein synthesis, autophagy, and many metabolic 
processes [234]. There is clear evidence that rapamycin, an 
inhibitor of mTOR signaling, can inhibit fibrotic processes in 
different tissues [235, 236]. It is known that treatments with 
rapamycin represses the differentiation of myofibroblasts 
induced by TGF-β exposure in diverse cellular models [237] 
(Fig. 3). The activation of autophagy by rapamycin treatment 
seems to be a major mechanism accounting for the increase 
of health span by rapamycin. In addition to the regulation of 
mTOR and Ulk1 pathway, AMPK signaling also stimulates 
the activity of FoxO3, a recognized longevity factor [238]. 
Interestingly, Vivar et al. [239] reported that FoxO3a factor 
inhibited the TGF-β-induced differentiation of rat cardiac 
fibroblasts into contractile myofibroblasts. In conclusion, 
there is robust evidence emerging from work done with dif-
ferent experimental models indicating that the signaling path-
ways aggravating the aging process promote myofibroblast 
differentiation and age-related fibrosis, whereas anti-aging 
treatments suppress the differentiation of myofibroblasts.

Conclusions

Currently, the tissue-resident fibroblasts have been over-
looked players in the studies attempting to elucidate the 
mechanisms underpinning the aging process. Fibroblasts 
possess a number of properties which indicate that they 
have a major role in the aging process, e.g., (i) they possess 
an impressive cellular plasticity, (ii) they control the integ-
rity of the ECM and the accumulation of fibrotic lesions, 
and (iii) they have multiple interactions with immune cells, 

and (iv) they are able to exhibit both the inflammatory and 
immunosuppressive phenotypes. The common hallmarks of 
aging involve a disruption of the ECM and the appearance of 
pro-inflammatory senescent cells which mediate a low-grade 
chronic inflammation. The interactions between fibroblasts 
and immune cells are especially interesting since fibroblasts 
are the sensors of diverse disturbances in tissue homeosta-
sis. For instance, fibroblasts respond to acute insults, e.g., 
myocardial infarction, by adopting a pro-inflammatory 
phenotype, and thus, they are able to secrete cytokines and 
chemokines which activate tissue-resident immune cells and 
recruit immunosuppressive cells into the affected tissues. 
Interestingly, TGF-β and ROS compounds are not only the 
master inducers of myofibroblast differentiation, but they are 
also major messengers in the signaling between immunosup-
pressive cells, and thus, they promote the development of 
an immunosuppressive microenvironment in tissues. It does 
appear that the age-related low-grade inflammation pro-
motes a compensatory immunosuppressive state in tissues 
by activating MDSCs, Tregs, and M2 macrophages. In view 
of the fact that myofibroblasts secrete TGF-β and some other 
immunosuppressive mediators, it seems that myofibroblasts 
collaborate with the immunosuppressive network which is 
not only activated with aging but especially in age-related 
diseases. By cooperating with myofibroblasts, immunosup-
pressive cells can regulate both the inflammatory state and 
repair processes underway in injured tissues. This might 
explain why immunosuppressive cells have such an impor-
tant role in the development of the fibrotic processes occur-
ring in the tissues of aged people.
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