Skip to main content

Advertisement

Log in

A novel RBBP8(p.E281*) germline mutation is a predisposing mutation in familial hereditary cancer syndrome

  • Original Article
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

Screening tumor susceptibility genes helps in identifying powerful biomarkers for hereditary cancer monitoring, prevention, and diagnosis, providing opportunities for understanding potential molecular mechanisms and biomarkers for the precise treatment of hereditary cancer syndromes. Whole-exome sequencing of blood and bioinformatics analysis uncovered a novel RBBP8(p.E281*) germline mutation in a family with hereditary cancer syndrome, which was verified by Sanger sequencing. Cell proliferation, colony formation, cell migration, and in vivo tumorigenesis were investigated by CCK8, colony formation, Transwell, and in vivo xenograft assays. Protein localization and interaction were detected by immunofluorescence, nuclear and cytoplasmic protein extraction kits, and Co-IP. A new heterozygous germline mutation of the RBBP8(p.E281*) gene was found to be associated with familial hereditary cancer syndrome. RBBP8-WT was mainly detected in the nucleus and interacts with BRCA1. In contrast, RBBP8(p.E281*) is mainly located in the cytoplasm, with no interaction with BRCA1. RBBP8(p.E281*) variant plays an oncogenic role in the cytoplasm in addition to its loss of function in the nucleus, which promotes breast cancer proliferation, in vivo tumorigenesis, and migration. Compared with the control group, RBBP8(p.E281*) showed elevated cell death in response to cisplatin and olaparib treatment. A novel RBBP8(p.E281*) germline mutation was identified from familial hereditary cancer syndrome. RBBP8(p.E281*) is not able to enter the nucleus or interact with BRCA1 through the lost binding motif, and RBBP8(p.E281*) variant appears to promote tumorigenesis in the cytoplasm in addition to its loss of function in the nucleus. RBBP8(p.E281*) variant may promote tumor susceptibility and serve as a precision medicine biomarker in familial hereditary cancer syndrome.

Key messages

  • RBBP8(p.E281*) is a susceptibility gene in this familial hereditary cancer syndrome

  • RBBP8(p.E281*) lost its ability to enter the nucleus and the BRCA1 binding motif

  • A novel RBBP8(p.E281*) germline mutation promotes breast cancer tumorigenesis

  • Patients with RBBP8(p.E281*) germline mutation may benefit from Olaparib, Cisplatin

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Availability of data and material

The data that support the findings of our study are available from the corresponding author Shubing Zhang (shubingzhang@csu.edu.cn), upon reasonable request.

References

  1. Samadder NJ, Giridhar KV, Baffy N et al (2019) Hereditary cancer syndromes-a primer on diagnosis and management: part 1: breast-ovarian cancer syndromes. Mayo Clin Proc 94(6):1084–1098

    Article  PubMed  Google Scholar 

  2. Liu Q, Tan YQ (2019) Advances in identification of susceptibility gene defects of hereditary colorectal cancer. J Cancer 10(3):643–653

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. McKay GE, Zakas AL, Osman F et al (2021) Factors affecting genetic consultation in adolescent and young adult patients with sarcoma. J Natl Compr Canc Netw 1-8

  4. Hereditary cancer syndromes and risk assessment (2019) ACOG committee opinion, Number 793. Obstet Gynecol 134(6):e143–e149

    Article  Google Scholar 

  5. Futreal PA, Liu Q, Shattuck-Eidens D et al (1994) BRCA1 mutations in primary breast and ovarian carcinomas. Science 266(5182):120–122

    Article  CAS  PubMed  Google Scholar 

  6. Wang Q (2016) Cancer predisposition genes: molecular mechanisms and clinical impact on personalized cancer care: examples of Lynch and HBOC syndromes. Acta Pharmacol Sin 37(2):143–149

    Article  PubMed  Google Scholar 

  7. Powell SN, Kachnic LA (2003) Roles of BRCA1 and BRCA2 in homologous recombination, DNA replication fidelity and the cellular response to ionizing radiation. Oncogene 22(37):5784–5791

    Article  CAS  PubMed  Google Scholar 

  8. Yurgelun MB, Kulke MH, Fuchs CS et al (2017) Cancer susceptibility gene mutations in individuals with colorectal cancer. J Clin Oncol 35(10):1086–1095

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Lynch HT, Snyder CL, Shaw TG et al (2015) Milestones of Lynch syndrome: 1895–2015. Nat Rev Cancer 15(3):181–194

    Article  CAS  PubMed  Google Scholar 

  10. Thariat J, Chevalier F, Orbach D et al (2021) Avoidance or adaptation of radiotherapy in patients with cancer with Li-Fraumeni and heritable TP53-related cancer syndromes. Lancet Oncol 22(12):e562–e574

    Article  CAS  PubMed  Google Scholar 

  11. Huang R, Zhou PK (2021) DNA damage repair: historical perspectives, mechanistic pathways and clinical translation for targeted cancer therapy. Signal Transduct Target Ther 6(1):254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Perkhofer L, Gout J, Roger E et al (2021) DNA damage repair as a target in pancreatic cancer: state-of-the-art and future perspectives. Gut 70(3):606–617

    Article  CAS  PubMed  Google Scholar 

  13. Mehibel M, Xu Y, Li CG et al (2021) Eliminating hypoxic tumor cells improves response to PARP inhibitors in homologous recombination-deficient cancer models. J Clin Invest 131(11)

  14. Heeke AL, Xiu J, Elliott A et al (2020) Actionable co-alterations in breast tumors with pathogenic mutations in the homologous recombination DNA damage repair pathway. Breast Cancer Res Treat 184(2):265–275

    Article  CAS  PubMed  Google Scholar 

  15. Palicelli A, Croci S, Bisagni A et al (2022) What do we have to know about PD-L1 expression in prostate cancer? A systematic literature review (part 6): correlation of PD-L1 expression with the status of mismatch repair system, BRCA, PTEN, and other genes. Biomedicines 10(2)

  16. Locke AJ, Hossain L, McCrostie G et al (2021) SUMOylation mediates CtIP’s functions in DNA end resection and replication fork protection. Nucleic Acids Res 49(2):928–953

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Howard SM, Ceppi I, Anand R et al (2020) The internal region of CtIP negatively regulates DNA end resection. Nucleic Acids Res 48(10):5485–5498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Mohiuddin M, Rahman MM, Sale JE et al (2019) CtIP-BRCA1 complex and MRE11 maintain replication forks in the presence of chain terminating nucleoside analogs. Nucleic Acids Res 47(6):2966–2980

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Przetocka S, Porro A, Bolck HA et al (2018) CtIP-mediated fork protection synergizes with BRCA1 to suppress genomic instability upon DNA replication stress. Mol Cell 72(3):568–582

    Article  CAS  PubMed  Google Scholar 

  20. Stroik S, Kurtz K, Hendrickson EA (2019) CtIP is essential for telomere replication. Nucleic Acids Res 47(17):8927–8940

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Molloy DP, Barral PM, Bremner KH et al (2001) Structural determinants outside the PXDLS sequence affect the interaction of adenovirus E1A, C-terminal interacting protein and Drosophila repressors with C-terminal binding protein. Biochim Biophys Acta 1546(1):55–70

    Article  CAS  PubMed  Google Scholar 

  22. Yu X, Wu LC, Bowcock AM et al (1998) The C-terminal (BRCT) domains of BRCA1 interact in vivo with CtIP, a protein implicated in the CtBP pathway of transcriptional repression. J Biol Chem 273(39):25388–25392

    Article  CAS  PubMed  Google Scholar 

  23. Li S, Chen PL, Subramanian T et al (1999) Binding of CtIP to the BRCT repeats of BRCA1 involved in the transcription regulation of p21 is disrupted upon DNA damage. J Biol Chem 274(16):11334–11338

    Article  CAS  PubMed  Google Scholar 

  24. Guirouilh-Barbat J, Gelot C, Xie A et al (2016) 53BP1 Protects against CtIP-dependent capture of ectopic chromosomal sequences at the junction of distant double-strand breaks. PLoS Genet 12(10):e1006230

    Article  PubMed  PubMed Central  Google Scholar 

  25. Anglada T, Genesca A, Martin M (2020) Age-associated deficient recruitment of 53BP1 in G1 cells directs DNA double-strand break repair to BRCA1/CtIP-mediated DNA-end resection. Aging (Albany NY) 12(24):24872–24893

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Bakr A, Kocher S, Volquardsen J et al (2016) Impaired 53BP1/RIF1 DSB mediated end-protection stimulates CtIP-dependent end resection and switches the repair to PARP1-dependent end joining in G1. Oncotarget 7(36):57679–57693

    Article  PubMed  PubMed Central  Google Scholar 

  27. Aparicio T, Baer R, Gottesman M et al (2016) MRN, CtIP, and BRCA1 mediate repair of topoisomerase II-DNA adducts. J Cell Biol 212(4):399–408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Rozier L, Guo Y, Peterson S et al (2013) The MRN-CtIP pathway is required for metaphase chromosome alignment. Mol Cell 49(6):1097–1107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Fusco C, Reymond A, Zervos AS (1998) Molecular cloning and characterization of a novel retinoblastoma-binding protein. Genomics 51(3):351–358

    Article  CAS  PubMed  Google Scholar 

  30. Zarrizi R, Higgs MR, Vossgrone K et al (2020) Germline RBBP8 variants associated with early-onset breast cancer compromise replication fork stability. J Clin Invest 130(8):4069–4080

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Yadav S, Anbalagan M, Baddoo M et al (2020) Somatic mutations in the DNA repairome in prostate cancers in African Americans and Caucasians. Oncogene 39(21):4299–4311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Fiala EM, Ortiz MV, Kennedy JA et al (2020) 11p15.5 epimutations in children with Wilms tumor and hepatoblastoma detected in peripheral blood. Cancer 126(13):3114-3121

  33. Wang J, Ding Q, Fujimori H et al (2016) Loss of CtIP disturbs homologous recombination repair and sensitizes breast cancer cells to PARP inhibitors. Oncotarget 7(7):7701–7714

    Article  PubMed  Google Scholar 

  34. Chen PL, Liu F, Cai S et al (2005) Inactivation of CtIP leads to early embryonic lethality mediated by G1 restraint and to tumorigenesis by haploid insufficiency. Mol Cell Biol 25(9):3535–3542

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Soria-Bretones I, Saez C, Ruiz-Borrego M et al (2013) Prognostic value of CtIP/RBBP8 expression in breast cancer. Cancer Med 2(6):774–783

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Wu M, Soler DR, Abba MC et al (2007) CtIP silencing as a novel mechanism of tamoxifen resistance in breast cancer. Mol Cancer Res 5(12):1285–1295

    Article  CAS  PubMed  Google Scholar 

  37. Yu Y, Chen L, Zhao G et al (2020) RBBP8/CtIP suppresses P21 expression by interacting with CtBP and BRCA1 in gastric cancer. Oncogene 39(6):1273–1289

    Article  CAS  PubMed  Google Scholar 

  38. Ren J, Wu Y, Wang Y et al (2021) CtIP suppresses primary microRNA maturation and promotes metastasis of colon cancer cells in a xenograft mouse model. J Biol Chem 296:100707

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Wong AK, Ormonde PA, Pero R et al (1998) Characterization of a carboxy-terminal BRCA1 interacting protein. Oncogene 17(18):2279–2285

    Article  CAS  PubMed  Google Scholar 

  40. Zhang W, Song Y, He X et al (2020) Prognosis value of RBBP8 expression in plasma cell myeloma. Cancer Gene Ther 27(1–2):22–29

    Article  CAS  PubMed  Google Scholar 

  41. Vilkki S, Launonen V, Karhu A et al (2002) Screening for microsatellite instability target genes in colorectal cancers. J Med Genet 39(11):785–789

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Reczek CR, Shakya R, Miteva Y et al (2016) The DNA resection protein CtIP promotes mammary tumorigenesis. Oncotarget 7(22):32172–32183

    Article  PubMed  PubMed Central  Google Scholar 

  43. Gaymes TJ, Mohamedali AM, Patterson M et al (2013) Microsatellite instability induced mutations in DNA repair genes CtIP and MRE11 confer hypersensitivity to poly (ADP-ribose) polymerase inhibitors in myeloid malignancies. Haematologica 98(9):1397–1406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Ray CA, Callen E, Ding X et al (2016) Replication fork stability confers chemoresistance in BRCA-deficient cells. Nature 535(7612):382–387

    Article  Google Scholar 

  45. Jackson LM, Dhoonmoon A, Hale A et al (2021) Loss of MED12 activates the TGFbeta pathway to promote chemoresistance and replication fork stability in BRCA-deficient cells. Nucleic Acids Res 49(22):12855–12869

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Mirza MR, Avall LE, Birrer MJ et al (2019) Niraparib plus bevacizumab versus niraparib alone for platinum-sensitive recurrent ovarian cancer (NSGO-AVANOVA2/ENGOT-ov24): a randomised, phase 2, superiority trial. Lancet Oncol 20(10):1409–1419

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are thankful to the individual patients with hereditary cancer syndromes for contributing to our research.

Funding

This research work was supported by the National Natural Science Foundation of China (Grant Nos. 81972312, 81672632, and 82103184), the Natural Science Foundation of Hunan Province of China (Nos. 2021JJ30912 and 2021JJ40720), and the graduate student independent exploration and innovation project of Central South University (2021zzts0081 and 1053320215711).

Author information

Authors and Affiliations

Authors

Contributions

Jinhua Yan: methodology, formal analysis, data curation, investigation, writing (original draft), and visualization. Jinzheng Wu: planning, formal analysis, resources, data curation, writing (original draft), and visualization. Yang Wang: software, investigation, and writing (review and editing). Xiaotang Di: visualization, resources, and writing (review and editing). Hao Jiang: formal analysis, visualization, resources, and writing (review and editing). Doudou Wen: visualization, resources, and writing (review and editing). Duo Li: conceptualization, supervision, project administration, and writing (review and editing). Shubing Zhang: conceptualization, supervision, project administration, funding acquisition, resources, and writing (review and editing). The work reported in the paper has been performed by the authors unless clearly specified in the text.

Corresponding authors

Correspondence to Duo Li or Shubing Zhang.

Ethics declarations

Ethics approval and consent to participate

The study protocol was approved by the ethics committee of the School of Life Sciences, Central South University (No. 2022-1-13). All participants signed informed consent. The blood of the proband’s brother and sister was collected. CT, B-ultrasound imaging, and medical record investigation were performed on the subjects. The laboratory animals were approved by the medical laboratory animal ethics committee of the School of Life Sciences, Central South University (No. 2022-2-18).

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Table 2 Patients with mutations genes (XLS 29 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, J., Wu, J., Wang, Y. et al. A novel RBBP8(p.E281*) germline mutation is a predisposing mutation in familial hereditary cancer syndrome. J Mol Med 101, 1255–1265 (2023). https://doi.org/10.1007/s00109-023-02354-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-023-02354-z

Keywords

Navigation