Skip to main content

Advertisement

Log in

G-quadruplexes from non-coding RNAs

  • Review
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

Non-coding RNAs (ncRNAs) are significant regulators of gene expression in a wide range of biological processes, such as transcription, RNA maturation, or translation. ncRNAs interplay with proteins or other RNAs through not only classical sequence-based mechanisms but also unique higher-order structures such as RNA G-quadruplexes (rG4s). rG4s are predictably formed in guanine-rich sequences and are closely related to various human diseases, such as tumors, neurodegenerative diseases, and infections. This review focuses on the vital role of rG4s in ncRNAs, particularly lncRNAs and miRNAs. We outline the dynamic balance between rG4s and RNA stem-loop/hairpin structures and the interplay between ncRNAs and interactors, thereby modulating gene expression and disease progression. A complete understanding of the biological regulatory role and mechanism of rG4s in ncRNAs affirms the critical importance of folding into the appropriate three-dimensional structure in maintaining or modulating the functions of ncRNAs. It makes them novel therapeutic targets for adjusting potential-G4-containing-ncRNAs-associated diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Availability of data and material

Not applicable.

References

  1. Wang G, Vasquez KM (2022) Dynamic alternative DNA structures in biology and disease. Nat Rev Genet. https://doi.org/10.1038/s41576-022-00539-9

    Article  PubMed  Google Scholar 

  2. Varshney D, Spiegel J, Zyner K, Tannahill D, Balasubramanian S (2020) The regulation and functions of DNA and RNA G-quadruplexes. Nat Rev Mol Cell Biol 21(8):459–474. https://doi.org/10.1038/s41580-020-0236-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Huppert JL, Balasubramanian S (2005) Prevalence of quadruplexes in the human genome. Nucleic Acids Res 33(9):2908–2916. https://doi.org/10.1093/nar/gki609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Rhodes D, Lipps HJ (2015) G-quadruplexes and their regulatory roles in biology. Nucleic Acids Res 43(18):8627–8637. https://doi.org/10.1093/nar/gkv862

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Oh KI, Kim J, Park CJ, Lee JH (2020) Dynamics studies of DNA with non-canonical structure using NMR spectroscopy. Int J Mol Sci 21(8). https://doi.org/10.3390/ijms21082673

  6. Yuan WF, Wan LY, Peng H, Zhong YM, Cai WL, Zhang YQ, Ai WB, Wu JF (2020) The influencing factors and functions of DNA G-quadruplexes. Cell Biochem Funct 38(5):524–532. https://doi.org/10.1002/cbf.3505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Zaccaria F, Paragi G, Fonseca Guerra C (2016) The role of alkali metal cations in the stabilization of guanine quadruplexes: why K(+) is the best. Phys Chem Chem Phys 18(31):20895–20904. https://doi.org/10.1039/c6cp01030j

    Article  CAS  PubMed  Google Scholar 

  8. Bhattacharyya D, Mirihana Arachchilage G, Basu S (2016) Metal cations in G-quadruplex folding and stability. Front Chem 4:38. https://doi.org/10.3389/fchem.2016.00038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Jana J, Mohr S, Vianney YM, Weisz K (2021) Structural motifs and intramolecular interactions in non-canonical G-quadruplexes. RSC Chem Biol 2(2):338–353. https://doi.org/10.1039/d0cb00211a

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Bugaut A, Balasubramanian S (2008) A sequence-independent study of the influence of short loop lengths on the stability and topology of intramolecular DNA G-quadruplexes. Biochemistry 47(2):689–697. https://doi.org/10.1021/bi701873c

    Article  CAS  PubMed  Google Scholar 

  11. Sahakyan AB, Chambers VS, Marsico G, Santner T, Di Antonio M, Balasubramanian S (2017) Machine learning model for sequence-driven DNA G-quadruplex formation. Sci Rep 7(1):14535. https://doi.org/10.1038/s41598-017-14017-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Agarwala P, Pal G, Pandey S, Maiti S (2017) Mutagenesis reveals an unusual combination of guanines in RNA G-quadruplex formation. ACS Omega 2(8):4790–4799. https://doi.org/10.1021/acsomega.7b00377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Zhang DH, Fujimoto T, Saxena S, Yu HQ, Miyoshi D, Sugimoto N (2010) Monomorphic RNA G-quadruplex and polymorphic DNA G-quadruplex structures responding to cellular environmental factors. Biochemistry 49(21):4554–4563. https://doi.org/10.1021/bi1002822

    Article  CAS  PubMed  Google Scholar 

  14. Kankia B (2019) Stability factors of the parallel quadruplexes: DNA versus RNA. J Phys Chem B 123(5):1060–1067. https://doi.org/10.1021/acs.jpcb.8b11559

    Article  CAS  PubMed  Google Scholar 

  15. Xiao CD, Shibata T, Yamamoto Y, Xu Y (2018) An intramolecular antiparallel G-quadruplex formed by human telomere RNA. Chem Commun (Camb) 54(32):3944–3946. https://doi.org/10.1039/c8cc01427b

    Article  CAS  PubMed  Google Scholar 

  16. Xiao CD, Ishizuka T, Xu Y (2017) Antiparallel RNA G-quadruplex formed by human telomere RNA containing 8-bromoguanosine. Sci Rep 7(1):6695. https://doi.org/10.1038/s41598-017-07050-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Banco MT, Ferré-D’Amaré AR (2021) The emerging structural complexity of G-quadruplex RNAs. RNA 27(4):390–402. https://doi.org/10.1261/rna.078238.120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Yu H, Qi Y, Yang B, Yang X, Ding Y (2023) G4Atlas: a comprehensive transcriptome-wide G-quadruplex database. Nucleic Acids Res 51(D1):D126-d134. https://doi.org/10.1093/nar/gkac896

    Article  PubMed  Google Scholar 

  19. Lyu K, Chow EY, Mou X, Chan TF, Kwok CK (2021) RNA G-quadruplexes (rG4s): genomics and biological functions. Nucleic Acids Res 49(10):5426–5450. https://doi.org/10.1093/nar/gkab187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ransohoff JD, Wei Y, Khavari PA (2018) The functions and unique features of long intergenic non-coding RNA. Nat Rev Mol Cell Biol 19(3):143–157. https://doi.org/10.1038/nrm.2017.104

    Article  CAS  PubMed  Google Scholar 

  21. Cech TR, Steitz JA (2014) The noncoding RNA revolution-trashing old rules to forge new ones. Cell 157(1):77–94. https://doi.org/10.1016/j.cell.2014.03.008

    Article  CAS  PubMed  Google Scholar 

  22. Ganser LR, Kelly ML, Herschlag D, Al-Hashimi HM (2019) The roles of structural dynamics in the cellular functions of RNAs. Nat Rev Mol Cell Biol 20(8):474–489. https://doi.org/10.1038/s41580-019-0136-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Tassinari M, Richter SN, Gandellini P (2021) Biological relevance and therapeutic potential of G-quadruplex structures in the human noncoding transcriptome. Nucleic Acids Res 49(7):3617–3633. https://doi.org/10.1093/nar/gkab127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kopp F, Mendell JT (2018) Functional classification and experimental dissection of long noncoding RNAs. Cell 172(3):393–407. https://doi.org/10.1016/j.cell.2018.01.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Rinn JL, Kertesz M, Wang JK, Squazzo SL, Xu X, Brugmann SA, Goodnough LH, Helms JA, Farnham PJ, Segal E et al (2007) Functional demarcation of active and silent chromatin domains in human HOX loci by noncoding RNAs. Cell 129(7):1311–1323. https://doi.org/10.1016/j.cell.2007.05.022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Dimitrova N, Zamudio JR, Jong RM, Soukup D, Resnick R, Sarma K, Ward AJ, Raj A, Lee JT, Sharp PA et al (2014) LincRNA-p21 activates p21 in cis to promote Polycomb target gene expression and to enforce the G1/S checkpoint. Mol Cell 54(5):777–790. https://doi.org/10.1016/j.molcel.2014.04.025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Tripathi V, Ellis JD, Shen Z, Song DY, Pan Q, Watt AT, Freier SM, Bennett CF, Sharma A, Bubulya PA et al (2010) The nuclear-retained noncoding RNA MALAT1 regulates alternative splicing by modulating SR splicing factor phosphorylation. Mol Cell 39(6):925–938. https://doi.org/10.1016/j.molcel.2010.08.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Su K, Wang N, Shao Q, Liu H, Zhao B, Ma S (2021) The role of a ceRNA regulatory network based on lncRNA MALAT1 site in cancer progression. Biomed Pharmacother 137:111389. https://doi.org/10.1016/j.biopha.2021.111389

  29. Johnsson P, Lipovich L, Grandér D, Morris KV (2014) Evolutionary conservation of long non-coding RNAs; sequence, structure, function. Biochim Biophys Acta 1840(3):1063–1071. https://doi.org/10.1016/j.bbagen.2013.10.035

    Article  CAS  PubMed  Google Scholar 

  30. Ulitsky I, Shkumatava A, Jan CH, Sive H, Bartel DP (2011) Conserved function of lincRNAs in vertebrate embryonic development despite rapid sequence evolution. Cell 147(7):1537–1550. https://doi.org/10.1016/j.cell.2011.11.055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Mercer TR, Dinger ME, Mattick JS (2009) Long non-coding RNAs: insights into functions. Nat Rev Genet 10(3):155–159. https://doi.org/10.1038/nrg2521

    Article  CAS  PubMed  Google Scholar 

  32. Pang KC, Frith MC, Mattick JS (2006) Rapid evolution of noncoding RNAs: lack of conservation does not mean lack of function. Trends Genet 22(1):1–5. https://doi.org/10.1016/j.tig.2005.10.003

    Article  CAS  PubMed  Google Scholar 

  33. Smith MA, Gesell T, Stadler PF, Mattick JS (2013) Widespread purifying selection on RNA structure in mammals. Nucleic Acids Res 41(17):8220–8236. https://doi.org/10.1093/nar/gkt596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Diederichs S (2014) The four dimensions of noncoding RNA conservation. Trends Genet 30(4):121–123. https://doi.org/10.1016/j.tig.2014.01.004

    Article  CAS  PubMed  Google Scholar 

  35. Jayaraj GG, Pandey S, Scaria V, Maiti S (2012) Potential G-quadruplexes in the human long non-coding transcriptome. RNA Biol 9(1):81–86. https://doi.org/10.4161/rna.9.1.18047

    Article  CAS  PubMed  Google Scholar 

  36. Kwok CK, Marsico G, Sahakyan AB, Chambers VS, Balasubramanian S (2016) rG4-seq reveals widespread formation of G-quadruplex structures in the human transcriptome. Nat Methods 13(10):841–844. https://doi.org/10.1038/nmeth.3965

    Article  CAS  PubMed  Google Scholar 

  37. Yang SY, Lejault P, Chevrier S, Boidot R, Robertson AG, Wong JMY, Monchaud D (2018) Transcriptome-wide identification of transient RNA G-quadruplexes in human cells. Nat Commun 9(1):4730. https://doi.org/10.1038/s41467-018-07224-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Guo JU, Bartel DP (2016) RNA G-quadruplexes are globally unfolded in eukaryotic cells and depleted in bacteria. Science 353(6306). https://doi.org/10.1126/science.aaf5371

  39. Yang SY, Monchaud D, Wong JMY (2022) Global mapping of RNA G-quadruplexes (G4-RNAs) using G4RP-seq. Nat Protoc 17(3):870–889. https://doi.org/10.1038/s41596-021-00671-6

    Article  CAS  PubMed  Google Scholar 

  40. Mendoza O, Bourdoncle A, Boulé JB, Brosh RM Jr, Mergny JL (2016) G-quadruplexes and helicases. Nucleic Acids Res 44(5):1989–2006. https://doi.org/10.1093/nar/gkw079

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Brosh Jr RM, Matson SW (2020) History of DNA helicases. Genes (Basel) 11(3). https://doi.org/10.3390/genes11030255

  42. Samatanga B, Dominguez C, Jelesarov I, Allain FH (2013) The high kinetic stability of a G-quadruplex limits hnRNP F qRRM3 binding to G-tract RNA. Nucleic Acids Res 41(4):2505–2516. https://doi.org/10.1093/nar/gks1289

    Article  CAS  PubMed  Google Scholar 

  43. von Hacht A, Seifert O, Menger M, Schütze T, Arora A, Konthur Z, Neubauer P, Wagner A, Weise C, Kurreck J (2014) Identification and characterization of RNA guanine-quadruplex binding proteins. Nucleic Acids Res 42(10):6630–6644. https://doi.org/10.1093/nar/gku290

    Article  CAS  Google Scholar 

  44. Santos T, Salgado GF, Cabrita EJ, Cruz C (2022) Nucleolin: a binding partner of G-quadruplex structures. Trends Cell Biol 32(7):561–564. https://doi.org/10.1016/j.tcb.2022.03.003

    Article  CAS  PubMed  Google Scholar 

  45. Herviou P, Le Bras M, Dumas L, Hieblot C, Gilhodes J, Cioci G, Hugnot JP, Ameadan A, Guillonneau F, Dassi E et al (2020) hnRNP H/F drive RNA G-quadruplex-mediated translation linked to genomic instability and therapy resistance in glioblastoma. Nat Commun 11(1):2661. https://doi.org/10.1038/s41467-020-16168-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Bourdon S, Herviou P, Dumas L, Destefanis E, Zen A, Cammas A, Millevoi S, Dassi E (2023) QUADRatlas: the RNA G-quadruplex and RG4-binding proteins database. Nucleic Acids Res 51(D1):D240-d247. https://doi.org/10.1093/nar/gkac782

    Article  PubMed  Google Scholar 

  47. Bhatt U, Kretzmann AL, Guédin A, Ou A, Kobelke S, Bond CS, Evans CW, Hurley LH, Mergny JL, Iyer KS et al (2021) The role of G-quadruplex DNA in paraspeckle formation in cancer. Biochimie 190:124–131. https://doi.org/10.1016/j.biochi.2021.07.008

    Article  CAS  PubMed  Google Scholar 

  48. Simko EAJ, Liu H, Zhang T, Velasquez A, Teli S, Haeusler AR, Wang J (2020) G-quadruplexes offer a conserved structural motif for NONO recruitment to NEAT1 architectural lncRNA. Nucleic Acids Res 48(13):7421–7438. https://doi.org/10.1093/nar/gkaa475

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Fox AH, Nakagawa S, Hirose T, Bond CS (2018) Paraspeckles: where long noncoding RNA meets phase separation. Trends Biochem Sci 43(2):124–135. https://doi.org/10.1016/j.tibs.2017.12.001

    Article  CAS  PubMed  Google Scholar 

  50. Haldar S, Zhang Y, Xia Y, Islam B, Liu S, Gervasio FL, Mulholland AJ, Waller ZAE, Wei D, Haider S (2022) Mechanistic Insights into the ligand-induced unfolding of an RNA G-quadruplex. J Am Chem Soc 144(2):935–950. https://doi.org/10.1021/jacs.1c11248

    Article  CAS  PubMed  Google Scholar 

  51. Morris MJ, Wingate KL, Silwal J, Leeper TC, Basu S (2012) The porphyrin TmPyP4 unfolds the extremely stable G-quadruplex in MT3-MMP mRNA and alleviates its repressive effect to enhance translation in eukaryotic cells. Nucleic Acids Res 40(9):4137–4145. https://doi.org/10.1093/nar/gkr1308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Wang SR, Zhang QY, Wang JQ, Ge XY, Song YY, Wang YF, Li XD, Fu BS, Xu GH, Shu B et al (2016) Chemical targeting of a G-quadruplex RNA in the ebola virus L gene. Cell Chem Biol 23(9):1113–1122. https://doi.org/10.1016/j.chembiol.2016.07.019

    Article  CAS  PubMed  Google Scholar 

  53. Mulholland K, Sullivan HJ, Garner J, Cai J, Chen B, Wu C (2020) Three-dimensional structure of RNA monomeric G-quadruplex containing ALS and FTD related G4C2 repeat and its binding with TMPyP4 probed by homology modeling based on experimental constraints and molecular dynamics simulations. ACS Chem Neurosci 11(1):57–75. https://doi.org/10.1021/acschemneuro.9b00572

    Article  CAS  PubMed  Google Scholar 

  54. Xu Y, Komiyama M (2012) Structure, function and targeting of human telomere RNA. Methods 57(1):100–105. https://doi.org/10.1016/j.ymeth.2012.02.015

    Article  CAS  PubMed  Google Scholar 

  55. Martadinata H, Heddi B, Lim KW, Phan AT (2011) Structure of long human telomeric RNA (TERRA): G-quadruplexes formed by four and eight UUAGGG repeats are stable building blocks. Biochemistry 50(29):6455–6461. https://doi.org/10.1021/bi200569f

    Article  CAS  PubMed  Google Scholar 

  56. Ghisays F, Garzia A, Wang H, Canasto-Chibuque C, Hohl M, Savage SA, Tuschl T, Petrini JHJ (2021) RTEL1 influences the abundance and localization of TERRA RNA. Nat Commun 12(1):3016. https://doi.org/10.1038/s41467-021-23299-2

    Article  PubMed  PubMed Central  Google Scholar 

  57. Biffi G, Tannahill D, Balasubramanian S (2012) An intramolecular G-quadruplex structure is required for binding of telomeric repeat-containing RNA to the telomeric protein TRF2. J Am Chem Soc 134(29):11974–11976. https://doi.org/10.1021/ja305734x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Mei Y, Deng Z, Vladimirova O, Gulve N, Johnson FB, Drosopoulos WC, Schildkraut CL, Lieberman PM (2021) TERRA G-quadruplex RNA interaction with TRF2 GAR domain is required for telomere integrity. Sci Rep 11(1):3509. https://doi.org/10.1038/s41598-021-82406-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Hirschi A, Martin WJ, Luka Z, Loukachevitch LV, Reiter NJ (2016) G-quadruplex RNA binding and recognition by the lysine-specific histone demethylase-1 enzyme. RNA 22(8):1250–1260. https://doi.org/10.1261/rna.057265.116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Hirashima K, Seimiya H (2015) Telomeric repeat-containing RNA/G-quadruplex-forming sequences cause genome-wide alteration of gene expression in human cancer cells in vivo. Nucleic Acids Res 43(4):2022–2032. https://doi.org/10.1093/nar/gkv063

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Zhang Y, Zeng D, Cao J, Wang M, Shu B, Kuang G, Ou TM, Tan JH, Gu LQ, Huang ZS et al (2017) Interaction of quindoline derivative with telomeric repeat-containing RNA induces telomeric DNA-damage response in cancer cells through inhibition of telomeric repeat factor 2. Biochim Biophys Acta Gen Subj 1861(12):3246–3256. https://doi.org/10.1016/j.bbagen.2017.09.015

    Article  CAS  PubMed  Google Scholar 

  62. Ghosh A, Pandey SP, Ansari AH, Sundar JS, Singh P, Khan Y, Ekka MK, Chakraborty D, Maiti S (2022) Alternative splicing modulation mediated by G-quadruplex structures in MALAT1 lncRNA. Nucleic Acids Res 50(1):378–396. https://doi.org/10.1093/nar/gkab1066

    Article  CAS  PubMed  Google Scholar 

  63. Mou X, Liew SW, Kwok CK (2022) Identification and targeting of G-quadruplex structures in MALAT1 long non-coding RNA. Nucleic Acids Res 50(1):397–410. https://doi.org/10.1093/nar/gkab1208

    Article  CAS  PubMed  Google Scholar 

  64. Heddi B, Cheong VV, Martadinata H, Phan AT (2015) Insights into G-quadruplex specific recognition by the DEAH-box helicase RHAU: solution structure of a peptide-quadruplex complex. Proc Natl Acad Sci U S A 112(31):9608–9613. https://doi.org/10.1073/pnas.1422605112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Umar MI, Kwok CK (2020) Specific suppression of D-RNA G-quadruplex-protein interaction with an L-RNA aptamer. Nucleic Acids Res 48(18):10125–10141. https://doi.org/10.1093/nar/gkaa759

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Matsumura K, Kawasaki Y, Miyamoto M, Kamoshida Y, Nakamura J, Negishi L, Suda S, Akiyama T (2017) The novel G-quadruplex-containing long non-coding RNA GSEC antagonizes DHX36 and modulates colon cancer cell migration. Oncogene 36(9):1191–1199. https://doi.org/10.1038/onc.2016.282

    Article  CAS  PubMed  Google Scholar 

  67. Wu R, Li L, Bai Y, Yu B, Xie C, Wu H, Zhang Y, Huang L, Yan Y, Li X et al (2020) The long noncoding RNA LUCAT1 promotes colorectal cancer cell proliferation by antagonizing nucleolin to regulate MYC expression. Cell Death Dis 11(10):908. https://doi.org/10.1038/s41419-020-03095-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Ma Y, Yang Y, Wang F, Moyer MP, Wei Q, Zhang P, Yang Z, Liu W, Zhang H, Chen N et al (2016) Long non-coding RNA CCAL regulates colorectal cancer progression by activating Wnt/β-catenin signalling pathway via suppression of activator protein 2α. Gut 65(9):1494–1504. https://doi.org/10.1136/gutjnl-2014-308392

    Article  CAS  PubMed  Google Scholar 

  69. Li XL, Subramanian M, Jones MF, Chaudhary R, Singh DK, Zong X, Gryder B, Sindri S, Mo M, Schetter A et al (2017) Long noncoding RNA PURPL suppresses basal p53 levels and promotes tumorigenicity in colorectal cancer. Cell Rep 20(10):2408–2423. https://doi.org/10.1016/j.celrep.2017.08.041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Gil N, Ulitsky I (2018) Production of spliced long noncoding RNAs specifies regions with increased enhancer activity. Cell Syst 7(5):537-547.e533. https://doi.org/10.1016/j.cels.2018.10.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Tan JY, Biasini A, Young RS, Marques AC (2020) Splicing of enhancer-associated lincRNAs contributes to enhancer activity. Life Sci Alliance 3(4). https://doi.org/10.26508/lsa.202000663

  72. Natoli G, Andrau JC (2012) Noncoding transcription at enhancers: general principles and functional models. Annu Rev Genet 46:1–19. https://doi.org/10.1146/annurev-genet-110711-155459

    Article  CAS  PubMed  Google Scholar 

  73. Chambers VS, Marsico G, Boutell JM, Di Antonio M, Smith GP, Balasubramanian S (2015) High-throughput sequencing of DNA G-quadruplex structures in the human genome. Nat Biotechnol 33(8):877–881. https://doi.org/10.1038/nbt.3295

    Article  CAS  PubMed  Google Scholar 

  74. Hou Y, Zhang R, Sun X (2019) Enhancer lncRNAs influence chromatin interactions in different ways. Front Genet 10:936. https://doi.org/10.3389/fgene.2019.00936

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Borchert GM, Lanier W, Davidson BL (2006) RNA polymerase III transcribes human microRNAs. Nat Struct Mol Biol 13(12):1097–1101. https://doi.org/10.1038/nsmb1167

    Article  CAS  PubMed  Google Scholar 

  76. Lee Y, Kim M, Han J, Yeom KH, Lee S, Baek SH, Kim VN (2004) MicroRNA genes are transcribed by RNA polymerase II. Embo j 23(20):4051–4060. https://doi.org/10.1038/sj.emboj.7600385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Denli AM, Tops BB, Plasterk RH, Ketting RF, Hannon GJ (2004) Processing of primary microRNAs by the microprocessor complex. Nature 432(7014):231–235. https://doi.org/10.1038/nature03049

    Article  CAS  PubMed  Google Scholar 

  78. Ha M, Kim VN (2014) Regulation of microRNA biogenesis. Nat Rev Mol Cell Biol 15(8):509–524. https://doi.org/10.1038/nrm3838

    Article  CAS  PubMed  Google Scholar 

  79. Rouleau SG, Garant JM, Bolduc F, Bisaillon M, Perreault JP (2018) G-quadruplexes influence pri-microRNA processing. RNA Biol 15(2):198–206. https://doi.org/10.1080/15476286.2017.1405211

    Article  PubMed  Google Scholar 

  80. Garant JM, Perreault JP, Scott MS (2017) Motif independent identification of potential RNA G-quadruplexes by G4RNA screener. Bioinformatics 33(22):3532–3537. https://doi.org/10.1093/bioinformatics/btx498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Pandolfini L, Barbieri I, Bannister AJ, Hendrick A, Andrews B, Webster N, Murat P, Mach P, Brandi R, Robson SC et al (2019) METTL1 promotes let-7 microRNA processing via m7G methylation. Mol Cell 74(6):1278–1290.e1279. https://doi.org/10.1016/j.molcel.2019.03.040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. MacRae IJ, Zhou K, Doudna JA (2007) Structural determinants of RNA recognition and cleavage by Dicer. Nat Struct Mol Biol 14(10):934–940. https://doi.org/10.1038/nsmb1293

    Article  CAS  PubMed  Google Scholar 

  83. Feng Y, Zhang X, Graves P, Zeng Y (2012) A comprehensive analysis of precursor microRNA cleavage by human Dicer. RNA 18(11):2083–2092. https://doi.org/10.1261/rna.033688.112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Atanasov J, Groher F, Weigand JE, Suess B (2017) Design and implementation of a synthetic pre-miR switch for controlling miRNA biogenesis in mammals. Nucleic Acids Res 45(22):e181. https://doi.org/10.1093/nar/gkx858

  85. Koralewska N, Szczepanska A, Ciechanowska K, Wojnicka M, Pokornowska M, Milewski MC, Gudanis D, Baranowski D, Nithin C, Bujnicki JM et al (2021) RNA and DNA G-quadruplexes bind to human dicer and inhibit its activity. Cell Mol Life Sci 78(7):3709–3724. https://doi.org/10.1007/s00018-021-03795-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Soemedi R, Cygan KJ, Rhine CL, Glidden DT, Taggart AJ, Lin CL, Fredericks AM, Fairbrother WG (2017) The effects of structure on pre-mRNA processing and stability. Methods 125:36–44. https://doi.org/10.1016/j.ymeth.2017.06.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Matsumoto S, Tateishi-Karimata H, Takahashi S, Ohyama T, Sugimoto N (2020) Effect of molecular crowding on the stability of RNA G-quadruplexes with various numbers of quartets and lengths of loops. Biochemistry 59(28):2640–2649. https://doi.org/10.1021/acs.biochem.0c00346

    Article  CAS  PubMed  Google Scholar 

  88. Pandey S, Agarwala P, Jayaraj GG, Gargallo R, Maiti S (2015) The RNA stem-loop to G-quadruplex equilibrium controls mature microRNA production inside the cell. Biochemistry 54(48):7067–7078. https://doi.org/10.1021/acs.biochem.5b00574

    Article  CAS  PubMed  Google Scholar 

  89. Kikin O, D'Antonio L, Bagga PS (2006) QGRS Mapper: a web-based server for predicting G-quadruplexes in nucleotide sequences. Nucleic Acids Res 34(Web Server issue):W676–682. https://doi.org/10.1093/nar/gkl253

  90. Mirihana Arachchilage G, Dassanayake AC, Basu S (2015) A potassium ion-dependent RNA structural switch regulates human pre-miRNA 92b maturation. Chem Biol 22(2):262–272. https://doi.org/10.1016/j.chembiol.2014.12.013

    Article  CAS  PubMed  Google Scholar 

  91. Komatsu KR, Taya T, Matsumoto S, Miyashita E, Kashida S, Saito H (2020) RNA structure-wide discovery of functional interactions with multiplexed RNA motif library. Nat Commun 11(1):6275. https://doi.org/10.1038/s41467-020-19699-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Mirihana Arachchilage G, Kharel P, Reid J, Basu S (2018) Targeting of G-quadruplex harboring pre-miRNA 92b by LNA rescues PTEN expression in NSCL cancer cells. ACS Chem Biol 13(4):909–914. https://doi.org/10.1021/acschembio.7b00749

    Article  CAS  PubMed  Google Scholar 

  93. Kwok CK, Sahakyan AB, Balasubramanian S (2016) Structural analysis using SHALiPE to reveal RNA G-quadruplex formation in human precursor microRNA. Angew Chem Int Ed Engl 55(31):8958–8961. https://doi.org/10.1002/anie.201603562

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Ghosh A, Ekka MK, Tawani A, Kumar A, Chakraborty D, Maiti S (2019) Restoration of miRNA-149 expression by TmPyP4 induced unfolding of quadruplex within its precursor. Biochemistry 58(6):514–525. https://doi.org/10.1021/acs.biochem.8b00880

    Article  CAS  PubMed  Google Scholar 

  95. Liu G, Du W, Xu H, Sun Q, Tang D, Zou S, Zhang Y, Ma M, Zhang G, Du X et al (2020) RNA G-quadruplex regulates microRNA-26a biogenesis and function. J Hepatol 73(2):371–382. https://doi.org/10.1016/j.jhep.2020.02.032

    Article  CAS  PubMed  Google Scholar 

  96. Imperatore JA, Then ML, McDougal KB, Mihailescu MR (2020) Characterization of a G-quadruplex structure in pre-miRNA-1229 and in its Alzheimer's disease-associated variant rs2291418: implications for miRNA-1229 maturation. Int J Mol Sci 21(3). https://doi.org/10.3390/ijms21030767

  97. Santos T, Miranda A, Imbert L, Monchaud D, Salgado GF, Cabrita EJ, Cruz C (2022) Targeting a G-quadruplex from let-7e pre-miRNA with small molecules and nucleolin. J Pharm Biomed Anal 215: 114757. https://doi.org/10.1016/j.jpba.2022.114757

  98. Chan KL, Peng B, Umar MI, Chan CY, Sahakyan AB, Le MTN, Kwok CK (2018) Structural analysis reveals the formation and role of RNA G-quadruplex structures in human mature microRNAs. Chem Commun (Camb) 54(77):10878–10881. https://doi.org/10.1039/c8cc04635b

    Article  CAS  PubMed  Google Scholar 

  99. Tan W, Zhou J, Gu J, Xu M, Xu X, Yuan G (2016) Probing the G-quadruplex from hsa-miR-3620-5p and inhibition of its interaction with the target sequence. Talanta 154:560–566. https://doi.org/10.1016/j.talanta.2016.02.037

    Article  CAS  PubMed  Google Scholar 

  100. Tan W, Yi L, Zhu Z, Zhang L, Zhou J, Yuan G (2018) Hsa-miR-1587 G-quadruplex formation and dimerization induced by NH(4)(+), molecular crowding environment and jatrorrhizine derivatives. Talanta 179:337–343. https://doi.org/10.1016/j.talanta.2017.11.041

    Article  CAS  PubMed  Google Scholar 

  101. Li F, Tan W, Chen H, Zhou J, Xu M, Yuan G (2019) Up- and downregulation of mature miR-1587 function by modulating its G-quadruplex structure and using small molecules. Int J Biol Macromol 121:127–134. https://doi.org/10.1016/j.ijbiomac.2018.10.017

    Article  CAS  PubMed  Google Scholar 

  102. Eckburg A, Dein J, Berei J, Schrank Z, Puri N (2020) Oligonucleotides and microRNAs targeting telomerase subunits in cancer therapy. Cancers (Basel) 12(9). https://doi.org/10.3390/cancers12092337

  103. Rouleau S, Jodoin R, Garant JM, Perreault JP (2020) RNA G-quadruplexes as key motifs of the transcriptome. Adv Biochem Eng Biotechnol 170:1–20. https://doi.org/10.1007/10_2017_8

    Article  CAS  PubMed  Google Scholar 

  104. Vorlíčková M, Kejnovská I, Sagi J, Renčiuk D, Bednářová K, Motlová J, Kypr J (2012) Circular dichroism and guanine quadruplexes. Methods 57(1):64–75. https://doi.org/10.1016/j.ymeth.2012.03.011

    Article  CAS  PubMed  Google Scholar 

  105. Mergny JL, Lacroix L (2009) UV Melting of G-quadruplexes. Curr Protoc Nucleic Acid Chem Chapter 17:17.11.11–17.11.15. https://doi.org/10.1002/0471142700.nc1701s37

  106. Dhayan H, Baydoun AR, Kukol A (2014) G-quadruplex formation of FXYD1 pre-mRNA indicates the possibility of regulating expression of its protein product. Arch Biochem Biophys 560:52–58. https://doi.org/10.1016/j.abb.2014.07.016

    Article  CAS  PubMed  Google Scholar 

  107. Criscuolo A, Napolitano E, Riccardi C, Musumeci D, Platella C, Montesarchio D (2022) Insights into the small molecule targeting of biologically relevant G-quadruplexes: an overview of NMR and crystal structures. Pharmaceutics 14(11). https://doi.org/10.3390/pharmaceutics14112361

  108. Merino EJ, Wilkinson KA, Coughlan JL, Weeks KM (2005) RNA structure analysis at single nucleotide resolution by selective 2’-hydroxyl acylation and primer extension (SHAPE). J Am Chem Soc 127(12):4223–4231. https://doi.org/10.1021/ja043822v

    Article  CAS  PubMed  Google Scholar 

  109. Kwok CK, Balasubramanian S (2015) Targeted detection of G-quadruplexes in cellular RNAs. Angew Chem Int Ed Engl 54(23):6751–6754. https://doi.org/10.1002/anie.201500891

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Ziehler WA, Engelke DR (2001) Probing RNA structure with chemical reagents and enzymes. Curr Protoc Nucleic Acid Chem Chapter 6: Unit 6.1. https://doi.org/10.1002/0471142700.nc0601s00

  111. Weng X, Gong J, Chen Y, Wu T, Wang F, Yang S, Yuan Y, Luo G, Chen K, Hu L et al (2020) Keth-seq for transcriptome-wide RNA structure mapping. Nat Chem Biol 16(5):489–492. https://doi.org/10.1038/s41589-019-0459-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Yang X, Cheema J, Zhang Y, Deng H, Duncan S, Umar MI, Zhao J, Liu Q, Cao X, Kwok CK et al (2020) RNA G-quadruplex structures exist and function in vivo in plants. Genome Biol 21(1):226. https://doi.org/10.1186/s13059-020-02142-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Zhao J, Chow EY, Yeung PY, Zhang QC, Chan TF, Kwok CK (2022) Enhanced transcriptome-wide RNA G-quadruplex sequencing for low RNA input samples with rG4-seq 2.0. BMC Biol 20(1):257. https://doi.org/10.1186/s12915-022-01448-3

  114. Chow EY, Lyu K, Kwok CK, Chan TF (2020) rG4-seeker enables high-confidence identification of novel and non-canonical rG4 motifs from rG4-seq experiments. RNA Biol 17(7):903–917. https://doi.org/10.1080/15476286.2020.1740470

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Puig Lombardi E, Londoño-Vallejo A (2020) A guide to computational methods for G-quadruplex prediction. Nucleic Acids Res 48(1):1–15. https://doi.org/10.1093/nar/gkz1097

    Article  CAS  PubMed  Google Scholar 

  116. Beaudoin JD, Jodoin R, Perreault JP (2014) New scoring system to identify RNA G-quadruplex folding. Nucleic Acids Res 42(2):1209–1223. https://doi.org/10.1093/nar/gkt904

    Article  CAS  PubMed  Google Scholar 

  117. Bedrat A, Lacroix L, Mergny JL (2016) Re-evaluation of G-quadruplex propensity with G4Hunter. Nucleic Acids Res 44(4):1746–1759. https://doi.org/10.1093/nar/gkw006

    Article  PubMed  PubMed Central  Google Scholar 

  118. Turner M, Danino YM, Barshai M, Yacovzada NS, Cohen Y, Olender T, Rotkopf R, Monchaud D, Hornstein E, Orenstein Y (2022) rG4detector, a novel RNA G-quadruplex predictor, uncovers their impact on stress granule formation. Nucleic Acids Res 50(20):11426–11441. https://doi.org/10.1093/nar/gkac950

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. O’Day E, Le MTN, Imai S, Tan SM, Kirchner R, Arthanari H, Hofmann O, Wagner G, Lieberman J (2015) An RNA-binding protein, Lin28, recognizes and remodels G-quartets in the microRNAs (miRNAs) and mRNAs it regulates. J Biol Chem 290(29):17909–17922. https://doi.org/10.1074/jbc.M115.665521

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Kenny PJ, Kim M, Skariah G, Nielsen J, Lannom MC, Ceman S (2020) The FMRP-MOV10 complex: a translational regulatory switch modulated by G-quadruplexes. Nucleic Acids Res 48(2):862–878. https://doi.org/10.1093/nar/gkz1092

    Article  CAS  PubMed  Google Scholar 

  121. Kumar S, Choudhary D, Patra A, Bhavesh NS, Vivekanandan P (2020) Analysis of G-quadruplexes upstream of herpesvirus miRNAs: evidence of G-quadruplex mediated regulation of KSHV miR-K12-1-9,11 cluster and HCMV miR-US33. BMC Mol Cell Biol 21(1):67. https://doi.org/10.1186/s12860-020-00306-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Duarte AR, Cadoni E, Ressurreição AS, Moreira R, Paulo A (2018) Design of modular G-quadruplex ligands. ChemMedChem 13(9):869–893. https://doi.org/10.1002/cmdc.201700747

    Article  CAS  PubMed  Google Scholar 

  123. Platella C, Trajkovski M, Doria F, Freccero M, Plavec J, Montesarchio D (2020) On the interaction of an anticancer trisubstituted naphthalene diimide with G-quadruplexes of different topologies: a structural insight. Nucleic Acids Res 48(21):12380–12393. https://doi.org/10.1093/nar/gkaa1001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Santos T, Miranda A, Campello MPC, Paulo A, Salgado G, Cabrita EJ, Cruz C (2021) Recognition of nucleolin through interaction with RNA G-quadruplex. Biochem Pharmacol 189:114208. https://doi.org/10.1016/j.bcp.2020.114208

  125. Santos T, Miranda A, Imbert L, Jardim A, Caneira CRF, Chu V, Conde JP, Campello MPC, Paulo A, Salgado G et al (2022) Pre-miRNA-149 G-quadruplex as a molecular agent to capture nucleolin. Eur J Pharm Sci 169:106093. https://doi.org/10.1016/j.ejps.2021.106093

Download references

Funding

This study was funded by National Natural Science Foundation of China, grant numbers 32101043 and 21976005, and by Beijing Natural Science Foundation, grant number 5204041.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, J.Z. and FY.L.; writing—original draft preparation, FY.L.; writing—review and editing, J.Z.; supervision, J.Z.; funding acquisition, J.Z. and FY.L. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Jiang Zhou.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, F., Zhou, J. G-quadruplexes from non-coding RNAs. J Mol Med 101, 621–635 (2023). https://doi.org/10.1007/s00109-023-02314-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-023-02314-7

Keywords

Navigation