Skip to main content

Advertisement

Log in

Recent updates on targeting the molecular mediators of NAFLD

  • Review
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

Nonalcoholic fatty liver disease (NAFLD) is rapidly becoming the most common disease worldwide in an era of rapid economic growth. NAFLD is a multifactorial disease, involving multiple genetic, metabolic, and environmental factors, and is closely associated with metabolic syndrome, obesity, and cardiovascular disease. NAFLD can be classified into nonalcoholic fatty liver disease (NAFL) and nonalcoholic steatohepatitis (NASH), which can both progress to cirrhosis and even hepatocellular carcinoma (HCC). Due to the enormous burden of NAFLD and its complications, no FDA-approved drugs for the treatment of NAFLD are on the market, and therapeutic targets and drug therapies are being actively investigated. In view of the various pathological mechanisms of NAFLD, numbers of preclinical studies and clinical trials have made rapid progress. This review mainly summarizes the most recently characterized mechanisms and therapeutic targets in each mechanism of NAFLD, focusing on the mechanism and application potential.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

Data sharing is not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. Powell EE, Wong VW, Rinella M (2021) Non-alcoholic fatty liver disease. Lancet 397:2212–2224. https://doi.org/10.1016/s0140-6736(20)32511-3

  2. Cai J, Zhang XJ, Li H (2019) Progress and challenges in the prevention and control of nonalcoholic fatty liver disease. Med Res Rev 39:328–348. https://doi.org/10.1002/med.21515

  3. Mundi MS, Velapati S, Patel J, Kellogg TA, Abu Dayyeh BK, Hurt RT (2020) Evolution of NAFLD and its management. Nutr Clin Pract 35:72–84. https://doi.org/10.1002/ncp.10449

  4. Estes C, Anstee QM, Arias-Loste MT, Bantel H, Bellentani S, Caballeria J, Colombo M, Craxi A, Crespo J, Day CP et al (2018) Modeling NAFLD disease burden in China, France, Germany, Italy, Japan, Spain, United Kingdom, and United States for the period 2016–2030. J Hepatol 69:896–904. https://doi.org/10.1016/j.jhep.2018.05.036

  5. Estes C, Chan HLY, Chien RN, Chuang WL, Fung J, Goh GB, Hu TH, Huang JF, Jang BK, Jun DW et al (2020) Modelling NAFLD disease burden in four Asian regions-2019–2030. Aliment Pharmacol Ther 51:801–811. https://doi.org/10.1111/apt.15673

  6. Ballestri S, Nascimbeni F, Baldelli E, Marrazzo A, Romagnoli D, Lonardo A (2017) NAFLD as a sexual dimorphic disease: role of gender and reproductive status in the development and progression of nonalcoholic fatty liver disease and inherent cardiovascular risk. Adv Ther 34:1291–1326. https://doi.org/10.1007/s12325-017-0556-1

  7. Yu Y, Cai J, She Z, Li H (2019) Insights into the epidemiology, pathogenesis, and therapeutics of nonalcoholic fatty liver diseases. Adv Sci (Weinh) 6:1801585. https://doi.org/10.1002/advs.201801585

  8. Reinke H, Asher G (2016) Circadian clock control of liver metabolic functions. Gastroenterology 150:574–580. https://doi.org/10.1053/j.gastro.2015.11.043

  9. Trefts E, Gannon M, Wasserman DH (2017) The liver. Curr Biol 27:R1147-r1151. https://doi.org/10.1016/j.cub.2017.09.019

  10. Jenne CN, Kubes P (2013) Immune surveillance by the liver. Nat Immunol 14:996–1006. https://doi.org/10.1038/ni.2691

  11. Buzzetti E, Pinzani M, Tsochatzis EA (2016) The multiple-hit pathogenesis of non-alcoholic fatty liver disease (NAFLD). Metabolism 65:1038–1048. https://doi.org/10.1016/j.metabol.2015.12.012

  12. Targher G, Tilg H, Byrne CD (2021) Non-alcoholic fatty liver disease: a multisystem disease requiring a multidisciplinary and holistic approach. Lancet Gastroenterol Hepatol 6:578–588. https://doi.org/10.1016/s2468-1253(21)00020-0

  13. Cai J, Zhang XJ, Ji YX, Zhang P, She ZG, Li H (2020) Nonalcoholic fatty liver disease pandemic fuels the upsurge in cardiovascular diseases. Circ Res 126:679–704. https://doi.org/10.1161/circresaha.119.316337

  14. Li W, Liu J, Cai J, Zhang XJ, Zhang P, She ZG, Chen S, Li H (2022) NAFLD as a continuous driver in the whole spectrum of vascular disease. J Mol Cell Cardiol 163:118–132. https://doi.org/10.1016/j.yjmcc.2021.10.007

  15. Alves-Bezerra M, Cohen DE (2017) Triglyceride metabolism in the liver. Comprehensive Physiol 8:1–8. https://doi.org/10.1002/cphy.c170012

  16. Saggerson D (2008) Malonyl-CoA, a key signaling molecule in mammalian cells. Annu Rev Nutr 28:253–272. https://doi.org/10.1146/annurev.nutr.28.061807.155434

  17. Wang Z, Ye M, Zhang XJ, Zhang P, Cai J, Li H, She ZG (2022) Impact of NAFLD and its pharmacotherapy on lipid profile and CVD. Atherosclerosis 355:30–44. https://doi.org/10.1016/j.atherosclerosis.2022.07.010

  18. Kreuz S, Schoelch C, Thomas L, Rist W, Rippmann JF, Neubauer H (2009) Acetyl-CoA carboxylases 1 and 2 show distinct expression patterns in rats and humans and alterations in obesity and diabetes. Diabetes Metab Res Rev 25:577–586. https://doi.org/10.1002/dmrr.997

  19. Fullerton MD, Galic S, Marcinko K, Sikkema S, Pulinilkunnil T, Chen ZP, O’Neill HM, Ford RJ, Palanivel R, O’Brien M et al (2013) Single phosphorylation sites in Acc1 and Acc2 regulate lipid homeostasis and the insulin-sensitizing effects of metformin. Nat Med 19:1649–1654. https://doi.org/10.1038/nm.3372

  20. Goedeke L, Bates J, Vatner DF, Perry RJ, Wang T, Ramirez R, Li L, Ellis MW, Zhang D, Wong KE et al (2018) Acetyl-CoA carboxylase inhibition reverses NAFLD and hepatic insulin resistance but promotes hypertriglyceridemia in rodents. Hepatology 68:2197–2211. https://doi.org/10.1002/hep.30097

  21. Loomba R, Kayali Z, Noureddin M, Ruane P, Lawitz EJ, Bennett M, Wang L, Harting E, Tarrant JM, McColgan BJ et al (2018) GS-0976 reduces hepatic steatosis and fibrosis markers in patients with nonalcoholic fatty liver disease. Gastroenterology 155:1463–1473.e1466. https://doi.org/10.1053/j.gastro.2018.07.027

  22. Loomba R, Noureddin M, Kowdley KV, Kohli A, Sheikh A, Neff G, Bhandari BR, Gunn N, Caldwell SH, Goodman Z et al (2021) Combination therapies including cilofexor and firsocostat for bridging fibrosis and cirrhosis attributable to NASH. Hepatology 73:625–643. https://doi.org/10.1002/hep.31622

  23. Kim CW, Addy C, Kusunoki J, Anderson NN, Deja S, Fu X, Burgess SC, Li C, Ruddy M, Chakravarthy M et al (2017) Acetyl CoA carboxylase inhibition reduces hepatic steatosis but elevates plasma triglycerides in mice and humans: a bedside to bench investigation. Cell Metab 26:394–406.e396. https://doi.org/10.1016/j.cmet.2017.07.009

  24. Bergman A, Carvajal-Gonzalez S, Tarabar S, Saxena AR, Esler WP, Amin NB (2020) Safety, tolerability, pharmacokinetics, and pharmacodynamics of a liver-targeting acetyl-CoA carboxylase inhibitor (PF-05221304): a three-part randomized phase 1 study. Clin Pharmacol Drug Dev 9:514–526. https://doi.org/10.1002/cpdd.782

  25. Calle RA, Amin NB, Carvajal-Gonzalez S, Ross TT, Bergman A, Aggarwal S, Crowley C, Rinaldi A, Mancuso J, Aggarwal N et al (2021) ACC inhibitor alone or co-administered with a DGAT2 inhibitor in patients with non-alcoholic fatty liver disease: two parallel, placebo-controlled, randomized phase 2a trials. Nat Med 27:1836–1848. https://doi.org/10.1038/s41591-021-01489-1

  26. Zhang XJ, Ji YX, Cheng X, Cheng Y, Yang H, Wang J, Zhao LP, Huang YP, Sun D, Xiang H et al (2021) A small molecule targeting ALOX12-ACC1 ameliorates nonalcoholic steatohepatitis in mice and macaques. Sci Transl Med 13:eabg8116. https://doi.org/10.1126/scitranslmed.abg8116

  27. Zhang XJ, She ZG, Wang J, Sun D, Shen LJ, Xiang H, Cheng X, Ji YX, Huang YP, Li PL et al (2021) Multiple omics study identifies an interspecies conserved driver for nonalcoholic steatohepatitis. Sci Transl Med 13:eabg8117. https://doi.org/10.1126/scitranslmed.abg8117

  28. Miyazaki M, Dobrzyn A, Man W, Chu K, Sampath H, Kim H, Ntambi J (2004) Stearoyl-CoA desaturase 1 gene expression is necessary for fructose-mediated induction of lipogenic gene expression by sterol regulatory element-binding protein-1c-dependent and -independent mechanisms. The Journal of biological chemistry 279:25164–25171. https://doi.org/10.1074/jbc.M402781200

  29. Zhou Y, Zhong L, Yu S, Shen W, Cai C, Yu H (2020) Inhibition of stearoyl-coenzyme A desaturase 1 ameliorates hepatic steatosis by inducing AMPK-mediated lipophagy. Aging (Albany NY) 12:7350–7362. https://doi.org/10.18632/aging.103082

  30. Safadi R, Konikoff FM, Mahamid M, Zelber-Sagi S, Halpern M, Gilat T, Oren R (2014) The fatty acid-bile acid conjugate Aramchol reduces liver fat content in patients with nonalcoholic fatty liver disease. Clin Gastroenterol Hepatol 12:2085–2091.e2081. https://doi.org/10.1016/j.cgh.2014.04.038

  31. Ratziu V, de Guevara L, Safadi R, Poordad F, Fuster F, Flores-Figueroa J, Arrese M, Fracanzani AL, Ben Bashat D, Lackner K et al (2021) Aramchol in patients with nonalcoholic steatohepatitis: a randomized, double-blind, placebo-controlled phase 2b trial. Nat Med 27:1825–1835. https://doi.org/10.1038/s41591-021-01495-3

  32. Dorn C, Riener M-O, Kirovski G, Saugspier M, Steib K, Weiss TS, Gäbele E, Kristiansen G, Hartmann A, Hellerbrand C (2010) Expression of fatty acid synthase in nonalcoholic fatty liver disease. Int J Clin Exp Pathol 3:505–514

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Hu Y, He W, Huang Y, Xiang H, Guo J, Che Y, Cheng X, Hu F, Hu M, Ma T et al (2021) Fatty acid synthase-suppressor screening identifies sorting nexin 8 as a therapeutic target for NAFLD. Hepatology 74:2508–2525. https://doi.org/10.1002/hep.32045

  34. Su M, Cao D, Wang Z, Duan Y, Huang Y (2021) Fatty acid synthase inhibitor platensimycin intervenes the development of nonalcoholic fatty liver disease in a mouse model. Biomedicines 10:5. https://doi.org/10.3390/biomedicines10010005

  35. Duke G, Wagman AS, Buckley D, McCulloch W, Kemble G (2017) LBP-515 - establishing the foundation for a novel, first-in-class, fatty acid synthase inhibitor, TVB-2640, for the treatment of NASH. J Hepatol 66:S99-S100. https://doi.org/10.1016/S0168-8278(17)30460-9

  36. Syed-Abdul MM, Parks EJ, Gaballah AH, Bingham K, Hammoud GM, Kemble G, Buckley D, McCulloch W, Manrique-Acevedo C (2020) Fatty acid synthase inhibitor TVB-2640 reduces hepatic de novo lipogenesis in males with metabolic abnormalities. Hepatology 72:103–118. https://doi.org/10.1002/hep.31000

  37. Falchook G, Infante J, Arkenau HT, Patel MR, Dean E, Borazanci E, Brenner A, Cook N, Lopez J, Pant S et al (2021) First-in-human study of the safety, pharmacokinetics, and pharmacodynamics of first-in-class fatty acid synthase inhibitor TVB-2640 alone and with a taxane in advanced tumors. EClinicalMedicine 34:100797. https://doi.org/10.1016/j.eclinm.2021.100797

  38. Loomba R, Mohseni R, Lucas KJ, Gutierrez JA, Perry RG, Trotter JF, Rahimi RS, Harrison SA, Ajmera V, Wayne JD et al (2021) TVB-2640 (FASN inhibitor) for the treatment of nonalcoholic steatohepatitis: FASCINATE-1, a randomized, placebo-controlled phase 2a trial. Gastroenterology 161:1475–1486. https://doi.org/10.1053/j.gastro.2021.07.025

  39. Beysen C, Schroeder P, Wu E, Brevard J, Ribadeneira M, Lu W, Dole K, O’Reilly T, Morrow L, Hompesch M et al (2021) Inhibition of fatty acid synthase with FT-4101 safely reduces hepatic de novo lipogenesis and steatosis in obese subjects with non-alcoholic fatty liver disease: results from two early-phase randomized trials. Diabetes Obes Metab 23:700–710. https://doi.org/10.1111/dom.14272

  40. Yen CL, Stone SJ, Koliwad S, Harris C, Farese RV, Jr. (2008) Thematic review series: glycerolipids. DGAT enzymes and triacylglycerol biosynthesis. J Lipid Res 49:2283–2301. https://doi.org/10.1194/jlr.R800018-JLR200

  41. Gluchowski NL, Gabriel KR, Chitraju C, Bronson RT, Mejhert N, Boland S, Wang K, Lai ZW, Farese RV, Jr., Walther TC (2019) Hepatocyte deletion of triglyceride-synthesis enzyme acyl CoA: diacylglycerol acyltransferase 2 reduces steatosis without increasing inflammation or fibrosis in mice. Hepatology 70:1972–1985. https://doi.org/10.1002/hep.30765

  42. Loomba R, Morgan E, Watts L, Xia S, Hannan LA, Geary RS, Baker BF, Bhanot S (2020) Novel antisense inhibition of diacylglycerol O-acyltransferase 2 for treatment of non-alcoholic fatty liver disease: a multicentre, double-blind, randomised, placebo-controlled phase 2 trial. Lancet Gastroenterol Hepatol 5:829–838. https://doi.org/10.1016/s2468-1253(20)30186-2

  43. Horton JD, Goldstein JL, Brown MS (2002) SREBPs: activators of the complete program of cholesterol and fatty acid synthesis in the liver. The Journal of clinical investigation 109:1125–1131. https://doi.org/10.1172/JCI15593

  44. Dentin R, Girard J, Postic C (2005) Carbohydrate responsive element binding protein (ChREBP) and sterol regulatory element binding protein-1c (SREBP-1c): two key regulators of glucose metabolism and lipid synthesis in liver. Biochimie 87:81–86. https://doi.org/10.1016/j.biochi.2004.11.008

  45. Iizuka K, Bruick RK, Liang G, Horton JD, Uyeda K (2004) Deficiency of carbohydrate response element-binding protein (ChREBP) reduces lipogenesis as well as glycolysis. Proceedings of the National Academy of Sciences of the United States of America 101:7281–7286. https://doi.org/10.1073/pnas.0401516101

  46. Ai ZL, Zhu CH, Min M, Wang J, Lan CH, Fan LL, Sun WJ, Chen DF (2011) The role of hepatic liver X receptor α- and sterol regulatory element binding protein-1c-mediated lipid disorder in the pathogenesis of non-alcoholic steatohepatitis in rats. J Int Med Res 39:1219–1229. https://doi.org/10.1177/147323001103900410

  47. Sozen E, Demirel-Yalciner T, Sari D, Avcilar C, Samanci TF, Ozer NK (2021) Deficiency of SREBP1c modulates autophagy mediated lipid droplet catabolism during oleic acid induced steatosis. Metabol Open 12:100138. https://doi.org/10.1016/j.metop.2021.100138

  48. Chen A, Chen X, Cheng S, Shu L, Yan M, Yao L, Wang B, Huang S, Zhou L, Yang Z et al (2018) FTO promotes SREBP1c maturation and enhances CIDEC transcription during lipid accumulation in HepG2 cells. Biochim Biophys Acta Mol Cell Biol Lipids 1863:538–548. https://doi.org/10.1016/j.bbalip.2018.02.003

  49. Moore MP, Cunningham RP, Meers GM, Johnson SA, Wheeler AA, Ganga RR, Spencer NM, Pitt JB, Diaz-Arias A, Swi AIA et al (2022) Compromised hepatic mitochondrial fatty acid oxidation and reduced markers of mitochondrial turnover in human NAFLD. Hepatology. https://doi.org/10.1002/hep.32324

  50. Nassir F, Ibdah JA (2014) Role of mitochondria in nonalcoholic fatty liver disease. International journal of molecular sciences 15:8713–8742. https://doi.org/10.3390/ijms15058713

  51. Song S, Attia RR, Connaughton S, Niesen MI, Ness GC, Elam MB, Hori RT, Cook GA, Park EA (2010) Peroxisome proliferator activated receptor alpha (PPARalpha) and PPAR gamma coactivator (PGC-1alpha) induce carnitine palmitoyltransferase IA (CPT-1A) via independent gene elements. Mol Cell Endocrinol 325:54–63. https://doi.org/10.1016/j.mce.2010.05.019

  52. Weber M, Mera P, Casas J, Salvador J, Rodríguez A, Alonso S, Sebastián D, Soler-Vázquez MC, Montironi C, Recalde S et al (2020) Liver CPT1A gene therapy reduces diet-induced hepatic steatosis in mice and highlights potential lipid biomarkers for human NAFLD. Faseb j 34:11816–11837. https://doi.org/10.1096/fj.202000678R

  53. Bougarne N, Weyers B, Desmet SJ, Deckers J, Ray DW, Staels B, De Bosscher K (2018) Molecular actions of PPARα in lipid metabolism and inflammation. Endocr Rev 39:760–802. https://doi.org/10.1210/er.2018-00064

  54. Iershov A, Nemazanyy I, Alkhoury C, Girard M, Barth E, Cagnard N, Montagner A, Chretien D, Rugarli EI, Guillou H et al (2019) The class 3 PI3K coordinates autophagy and mitochondrial lipid catabolism by controlling nuclear receptor PPARα. Nat Commun 10:1566. https://doi.org/10.1038/s41467-019-09598-9

  55. Wang Y, Nakajima T, Gonzalez FJ, Tanaka N (2020) PPARs as metabolic regulators in the liver: lessons from liver-specific PPAR-null mice. Int J Mol Sci 21. https://doi.org/10.3390/ijms21062061

  56. Zarei M, Barroso E, Palomer X, Dai J, Rada P, Quesada-López T, Escolà-Gil JC, Cedó L, Zali MR, Molaei M et al (2018) Hepatic regulation of VLDL receptor by PPARβ/δ and FGF21 modulates non-alcoholic fatty liver disease. Molecular Metabolism 8:117–131. https://doi.org/10.1016/j.molmet.2017.12.008

  57. Girroir EE, Hollingshead HE, He P, Zhu B, Perdew GH, Peters JM (2008) Quantitative expression patterns of peroxisome proliferator-activated receptor-beta/delta (PPARbeta/delta) protein in mice. Biochem Biophys Res Commun 371:456–461. https://doi.org/10.1016/j.bbrc.2008.04.086

  58. Zhang HA, Yang XY, Xiao YF (2016) AMPKα1 overexpression alleviates the hepatocyte model of nonalcoholic fatty liver disease via inactivating p38MAPK pathway. Biochem Biophys Res Commun 474:364–370. https://doi.org/10.1016/j.bbrc.2016.04.111

  59. Diniz TA, de Lima Junior EA, Teixeira AA, Biondo LA, da Rocha LAF, Valadão IC, Silveira LS, Cabral-Santos C, de Souza CO, Rosa Neto JC (2021) Aerobic training improves NAFLD markers and insulin resistance through AMPK-PPAR-α signaling in obese mice. Life Sci 266:118868. https://doi.org/10.1016/j.lfs.2020.118868

  60. Dusabimana T, Park EJ, Je J, Jeong K, Yun SP, Kim HJ, Kim H, Park SW (2021) P2Y2R deficiency ameliorates hepatic steatosis by reducing lipogenesis and enhancing fatty acid β-oxidation through AMPK and PGC-1α induction in high-fat diet-fed mice. Int J Mol Sci 22. https://doi.org/10.3390/ijms22115528

  61. Bojic LA, Telford DE, Fullerton MD, Ford RJ, Sutherland BG, Edwards JY, Sawyez CG, Gros R, Kemp BE, Steinberg GR et al (2014) PPARδ activation attenuates hepatic steatosis in Ldlr-/- mice by enhanced fat oxidation, reduced lipogenesis, and improved insulin sensitivity. J Lipid Res 55:1254–1266. https://doi.org/10.1194/jlr.M046037

  62. Tong L, Wang L, Yao S, Jin L, Yang J, Zhang Y, Ning G, Zhang Z (2019) PPARδ attenuates hepatic steatosis through autophagy-mediated fatty acid oxidation. Cell Death Dis 10:197. https://doi.org/10.1038/s41419-019-1458-8

  63. Lee HJ, Yeon JE, Ko EJ, Yoon EL, Suh SJ, Kang K, Kim HR, Kang SH, Yoo YJ, Je J et al (2015) Peroxisome proliferator-activated receptor-delta agonist ameliorated inflammasome activation in nonalcoholic fatty liver disease. World J Gastroenterol 21:12787–12799. https://doi.org/10.3748/wjg.v21.i45.12787

  64. Montagner A, Polizzi A, Fouché E, Ducheix S, Lippi Y, Lasserre F, Barquissau V, Régnier M, Lukowicz C, Benhamed F et al (2016) Liver PPARα is crucial for whole-body fatty acid homeostasis and is protective against NAFLD. Gut 65:1202–1214. https://doi.org/10.1136/gutjnl-2015-310798

  65. Yoo J, Jeong IK, Ahn KJ, Chung HY, Hwang YC (2021) Fenofibrate, a PPARα agonist, reduces hepatic fat accumulation through the upregulation of TFEB-mediated lipophagy. Metabolism 120:154798. https://doi.org/10.1016/j.metabol.2021.154798

  66. Cheng HS, Tan WR, Low ZS, Marvalim C, Lee JYH, Tan NS (2019) Exploration and development of PPAR modulators in health and disease: an update of clinical evidence. International journal of molecular sciences 20:5055. https://doi.org/10.3390/ijms20205055

  67. Tutunchi H, Ostadrahimi A, Saghafi-Asl M, Maleki V (2019) The effects of oleoylethanolamide, an endogenous PPAR-α agonist, on risk factors for NAFLD: a systematic review. Obes Rev 20:1057–1069. https://doi.org/10.1111/obr.12853

  68. Fruchart JC, Hermans MP, Fruchart-Najib J, Kodama T (2021) Selective peroxisome proliferator-activated receptor alpha modulators (SPPARMα) in the metabolic syndrome: is pemafibrate light at the end of the tunnel? Curr Atheroscler Rep 23:3. https://doi.org/10.1007/s11883-020-00897-x

  69. Nakajima A, Eguchi Y, Yoneda M, Imajo K, Tamaki N, Suganami H, Nojima T, Tanigawa R, Iizuka M, Iida Y et al (2021) Randomised clinical trial: pemafibrate, a novel selective peroxisome proliferator-activated receptor α modulator (SPPARMα), versus placebo in patients with non-alcoholic fatty liver disease. Aliment Pharmacol Ther 54:1263–1277. https://doi.org/10.1111/apt.16596

  70. Chen Z, Yu Y, Cai J, Li H (2019) Emerging molecular targets for treatment of nonalcoholic fatty liver disease. Trends Endocrinol Metab 30:903–914. https://doi.org/10.1016/j.tem.2019.08.006

  71. Kazankov K, Jørgensen SMD, Thomsen KL, Møller HJ, Vilstrup H, George J, Schuppan D, Grønbæk H (2019) The role of macrophages in nonalcoholic fatty liver disease and nonalcoholic steatohepatitis. Nat Rev Gastroenterol Hepatol 16:145–159. https://doi.org/10.1038/s41575-018-0082-x

  72. Cai J, Zhang XJ, Li H (2019) The role of innate immune cells in nonalcoholic steatohepatitis. Hepatology 70:1026–1037. https://doi.org/10.1002/hep.30506

  73. Cai J, Zhang XJ, Li H (2018) Role of innate immune signaling in non-alcoholic fatty liver disease. Trends Endocrinol Metab 29:712–722. https://doi.org/10.1016/j.tem.2018.08.003

  74. Stienstra R, Saudale F, Duval C, Keshtkar S, Groener JEM, van Rooijen N, Staels B, Kersten S, Müller M (2010) Kupffer cells promote hepatic steatosis via interleukin-1β-dependent suppression of peroxisome proliferator-activated receptor α activity. Hepatology 51:511–522. https://doi.org/10.1002/hep.23337

  75. Kazankov K, Jorgensen SMD, Thomsen KL, Moller HJ, Vilstrup H, George J, Schuppan D, Gronbaek H (2019) The role of macrophages in nonalcoholic fatty liver disease and nonalcoholic steatohepatitis. Nat Rev Gastroenterol Hepatol 16:145–159. https://doi.org/10.1038/s41575-018-0082-x

  76. Deng KQ, Huang X, Lei F, Zhang XJ, Zhang P, She ZG, Cai J, Ji YX, Li H (2022) Role of hepatic lipid species in the progression of nonalcoholic fatty liver disease. Am J Physiol Cell Physiol. https://doi.org/10.1152/ajpcell.00123.2022

  77. Csak T, Ganz M, Pespisa J, Kodys K, Dolganiuc A, Szabo G (2011) Fatty acid and endotoxin activate inflammasomes in mouse hepatocytes that release danger signals to stimulate immune cells. Hepatology 54:133–144. https://doi.org/10.1002/hep.24341

  78. Takeuchi O, Akira S (2010) Pattern recognition receptors and inflammation. Cell 140:805–820. https://doi.org/10.1016/j.cell.2010.01.022

  79. Kawai T, Akira S (2010) The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nat Immunol 11:373–384. https://doi.org/10.1038/ni.1863

  80. Nie L, Cai SY, Shao JZ, Chen J (2018) Toll-like receptors, associated biological roles, and signaling networks in non-mammals. Front Immunol 9:1523. https://doi.org/10.3389/fimmu.2018.01523

  81. Bai L, Li H (2019) Innate immune regulatory networks in hepatic lipid metabolism. J Mol Med 97:593–604. https://doi.org/10.1007/s00109-019-01765-1

  82. Zhao GN, Jiang DS, Li H (2015) Interferon regulatory factors: at the crossroads of immunity, metabolism, and disease. Biochim Biophys Acta 1852:365–378. https://doi.org/10.1016/j.bbadis.2014.04.030

  83. Cai J, Xu M, Zhang X, Li H (2019) Innate immune signaling in nonalcoholic fatty liver disease and cardiovascular diseases. Annu Rev Pathol 14:153–184. https://doi.org/10.1146/annurev-pathmechdis-012418-013003

  84. Wang PX, Zhang XJ, Li H (2016) Liver capsule: IRFs in hepatocytes: pathophysiology. Hepatology 63:1706. https://doi.org/10.1002/hep.28433

  85. Mitsuyoshi H, Yasui K, Hara T, Taketani H, Ishiba H, Okajima A, Seko Y, Umemura A, Nishikawa T, Yamaguchi K et al (2017) Hepatic nucleotide binding oligomerization domain-like receptors pyrin domain-containing 3 inflammasomes are associated with the histologic severity of non-alcoholic fatty liver disease. Hepatol Res 47:1459–1468. https://doi.org/10.1111/hepr.12883

  86. Huang C, Liu Q, Tang Q, Jing X, Wu T, Zhang J, Zhang G, Zhou J, Zhang Z, Zhao Y et al (2021) Hepatocyte-specific deletion of Nlrp6 in mice exacerbates the development of non-alcoholic steatohepatitis. Free Radic Biol Med 169:110–121. https://doi.org/10.1016/j.freeradbiomed.2021.04.008

  87. Wang P-X, Zhang X-J, Luo P, Jiang X, Zhang P, Guo J, Zhao G-N, Zhu X, Zhang Y, Yang S et al (2016) Hepatocyte TRAF3 promotes liver steatosis and systemic insulin resistance through targeting TAK1-dependent signalling. Nature Communications 7:10592. https://doi.org/10.1038/ncomms10592

  88. Gao L, Wang PX, Zhang Y, Yu CJ, Ji Y, Wang X, Zhang P, Jiang X, Jin H, Huang Z et al (2016) Tumor necrosis factor receptor-associated factor 5 (Traf5) acts as an essential negative regulator of hepatic steatosis. J Hepatol 65:125–136. https://doi.org/10.1016/j.jhep.2016.03.006

  89. Duan Y, Pan X, Luo J, Xiao X, Li J, Bestman PL, Luo M (2022) Association of inflammatory cytokines with non-alcoholic fatty liver disease. Front Immunol 13:880298. https://doi.org/10.3389/fimmu.2022.880298

  90. Mirea AM, Tack CJ, Chavakis T, Joosten LAB, Toonen EJM (2018) IL-1 family cytokine pathways underlying NAFLD: towards new treatment strategies. Trends Mol Med 24:458–471. https://doi.org/10.1016/j.molmed.2018.03.005

  91. Negrin KA, Roth Flach RJ, DiStefano MT, Matevossian A, Friedline RH, Jung D, Kim JK, Czech MP (2014) IL-1 signaling in obesity-induced hepatic lipogenesis and steatosis. PLoS One 9:e107265. https://doi.org/10.1371/journal.pone.0107265

  92. Palomera LF, Gómez-Arauz AY, Villanueva-Ortega E, Meléndez-Mier G, Islas-Andrade SA, Escobedo G (2018) Serum levels of interleukin-1 beta associate better with severity of simple steatosis than liver function tests in morbidly obese patients. J Res Med Sci 23:93. https://doi.org/10.4103/jrms.JRMS_142_18

  93. Larsen CM, Faulenbach M, Vaag A, Vølund A, Ehses JA, Seifert B, Mandrup-Poulsen T, Donath MY (2007) Interleukin-1–receptor antagonist in type 2 diabetes mellitus. New England Journal of Medicine 356:1517–1526. https://doi.org/10.1056/NEJMoa065213

  94. van Asseldonk EJP, van Poppel PCM, Ballak DB, Stienstra R, Netea MG, Tack CJ (2015) One week treatment with the IL-1 receptor antagonist anakinra leads to a sustained improvement in insulin sensitivity in insulin resistant patients with type 1 diabetes mellitus. Clinical Immunology 160:155–162. https://doi.org/10.1016/j.clim.2015.06.003

  95. Sun D, Yang X, Wu B, Zhang XJ, Li H, She ZG (2021) Therapeutic potential of G protein-coupled receptors against nonalcoholic steatohepatitis. Hepatology 74:2831–2838. https://doi.org/10.1002/hep.31852

  96. Ratziu V, Sanyal A, Harrison SA, Wong VW, Francque S, Goodman Z, Aithal GP, Kowdley KV, Seyedkazemi S, Fischer L et al (2020) Cenicriviroc treatment for adults with nonalcoholic steatohepatitis and fibrosis: final analysis of the phase 2b CENTAUR study. Hepatology 72:892–905. https://doi.org/10.1002/hep.31108

  97. Francque S, Verrijken A, Caron S, Prawitt J, Paumelle R, Derudas B, Lefebvre P, Taskinen MR, Van Hul W, Mertens I et al (2015) PPARα gene expression correlates with severity and histological treatment response in patients with non-alcoholic steatohepatitis. J Hepatol 63:164–173. https://doi.org/10.1016/j.jhep.2015.02.019

  98. Brocker CN, Yue J, Kim D, Qu A, Bonzo JA, Gonzalez FJ (2017) Hepatocyte-specific PPARA expression exclusively promotes agonist-induced cell proliferation without influence from nonparenchymal cells. Am J Physiol Gastrointest Liver Physiol 312:G283-g299. https://doi.org/10.1152/ajpgi.00205.2016

  99. Wang PX, Ji YX, Zhang XJ, Zhao LP, Yan ZZ, Zhang P, Shen LJ, Yang X, Fang J, Tian S et al (2017) Targeting CASP8 and FADD-like apoptosis regulator ameliorates nonalcoholic steatohepatitis in mice and nonhuman primates. Nat Med 23:439–449. https://doi.org/10.1038/nm.4290

  100. Zhang X, Yang H, Zeng S, Tian S, Hu S, Yang L, Ma T, Liu Z, Wan J, Zhong Y et al (2022) Melanoma differentiation-associated gene 5 protects against NASH in mice. Hepatology 75:924–938. https://doi.org/10.1002/hep.32139

  101. Boaru SG, Borkham-Kamphorst E, Tihaa L, Haas U, Weiskirchen R (2012) Expression analysis of inflammasomes in experimental models of inflammatory and fibrotic liver disease. Journal of Inflammation 9:49. https://doi.org/10.1186/1476-9255-9-49

  102. de Carvalho Ribeiro M, Szabo G (2022) Role of the inflammasome in liver disease. Annual Review of Pathology: Mechanisms of Disease 17:345–365. https://doi.org/10.1146/annurev-pathmechdis-032521-102529

  103. Wang X, Sun K, Zhou Y, Wang H, Zhou Y, Liu S, Nie Y, Li Y (2021) NLRP3 inflammasome inhibitor CY-09 reduces hepatic steatosis in experimental NAFLD mice. Biochem Biophys Res Commun 534:734–739. https://doi.org/10.1016/j.bbrc.2020.11.009

  104. Sun K, Wang J, Lan Z, Li L, Wang Y, Li A, Liu S, Li Y (2020) Sleeve gastroplasty combined with the NLRP3 inflammasome inhibitor CY-09 reduces body weight, improves insulin resistance and alleviates hepatic steatosis in mouse model. Obes Surg 30:3435–3443. https://doi.org/10.1007/s11695-020-04571-8

  105. Dwivedi DK, Jena GB (2020) NLRP3 inhibitor glibenclamide attenuates high-fat diet and streptozotocin-induced non-alcoholic fatty liver disease in rat: studies on oxidative stress, inflammation, DNA damage and insulin signalling pathway. Naunyn Schmiedebergs Arch Pharmacol 393:705–716. https://doi.org/10.1007/s00210-019-01773-5

  106. Coll RC, Hill JR, Day CJ, Zamoshnikova A, Boucher D, Massey NL, Chitty JL, Fraser JA, Jennings MP, Robertson AAB et al (2019) MCC950 directly targets the NLRP3 ATP-hydrolysis motif for inflammasome inhibition. Nat Chem Biol 15:556–559. https://doi.org/10.1038/s41589-019-0277-7

  107. Hattori K, Naguro I, Runchel C, Ichijo H (2009) The roles of ASK family proteins in stress responses and diseases. Cell Commun Signal 7:9. https://doi.org/10.1186/1478-811x-7-9

  108. Brenner C, Galluzzi L, Kepp O, Kroemer G (2013) Decoding cell death signals in liver inflammation. J Hepatol 59:583–594. https://doi.org/10.1016/j.jhep.2013.03.033

  109. Xiang M, Wang P-X, Wang A-B, Zhang X-J, Zhang Y, Zhang P, Mei F-H, Chen M-H, Li H (2016) Targeting hepatic TRAF1-ASK1 signaling to improve inflammation, insulin resistance, and hepatic steatosis. Journal of Hepatology 64:1365–1377. https://doi.org/10.1016/j.jhep.2016.02.002

  110. Xie L, Wang PX, Zhang P, Zhang XJ, Zhao GN, Wang A, Guo J, Zhu X, Zhang Q, Li H (2016) DKK3 expression in hepatocytes defines susceptibility to liver steatosis and obesity. J Hepatol 65:113–124. https://doi.org/10.1016/j.jhep.2016.03.008

  111. Wang Y, Wen H, Fu J, Cai L, Li PL, Zhao CL, Dong ZF, Ma JP, Wang X, Tian H et al (2020) Hepatocyte TNF receptor-associated factor 6 aggravates hepatic inflammation and fibrosis by promoting lysine 6-linked polyubiquitination of apoptosis signal-regulating kinase 1. Hepatology 71:93–111. https://doi.org/10.1002/hep.30822

  112. Loomba R, Lawitz E, Mantry PS, Jayakumar S, Caldwell SH, Arnold H, Diehl AM, Djedjos CS, Han L, Myers RP et al (2018) The ASK1 inhibitor selonsertib in patients with nonalcoholic steatohepatitis: a randomized, phase 2 trial. Hepatology 67:549–559. https://doi.org/10.1002/hep.29514

  113. Harrison SA, Wong VW, Okanoue T, Bzowej N, Vuppalanchi R, Younes Z, Kohli A, Sarin S, Caldwell SH, Alkhouri N et al (2020) Selonsertib for patients with bridging fibrosis or compensated cirrhosis due to NASH: results from randomized phase III STELLAR trials. J Hepatol 73:26–39. https://doi.org/10.1016/j.jhep.2020.02.027

  114. Shi Y (2002) Mechanisms of caspase activation and inhibition during apoptosis. Mol Cell 9:459–470. https://doi.org/10.1016/s1097-2765(02)00482-3

  115. Schneider KS, Groß CJ, Dreier RF, Saller BS, Mishra R, Gorka O, Heilig R, Meunier E, Dick MS, Ćiković T et al (2017) The inflammasome drives GSDMD-independent secondary pyroptosis and IL-1 release in the absence of caspase-1 protease activity. Cell Rep 21:3846–3859. https://doi.org/10.1016/j.celrep.2017.12.018

  116. Downs KP, Nguyen H, Dorfleutner A, Stehlik C (2020) An overview of the non-canonical inflammasome. Mol Aspects Med 76:100924. https://doi.org/10.1016/j.mam.2020.100924

  117. Garcia-Tsao G, Bosch J, Kayali Z, Harrison SA, Abdelmalek MF, Lawitz E, Satapathy SK, Ghabril M, Shiffman ML, Younes ZH et al (2020) Randomized placebo-controlled trial of emricasan for non-alcoholic steatohepatitis-related cirrhosis with severe portal hypertension. J Hepatol 72:885–895. https://doi.org/10.1016/j.jhep.2019.12.010

  118. Shiffman M, Freilich B, Vuppalanchi R, Watt K, Chan JL, Spada A, Hagerty DT, Schiff E (2019) Randomised clinical trial: emricasan versus placebo significantly decreases ALT and caspase 3/7 activation in subjects with non-alcoholic fatty liver disease. Aliment Pharmacol Ther 49:64–73. https://doi.org/10.1111/apt.15030

  119. Harrison SA, Goodman Z, Jabbar A, Vemulapalli R, Younes ZH, Freilich B, Sheikh MY, Schattenberg JM, Kayali Z, Zivony A et al (2020) A randomized, placebo-controlled trial of emricasan in patients with NASH and F1-F3 fibrosis. J Hepatol 72:816–827. https://doi.org/10.1016/j.jhep.2019.11.024

  120. Frenette C, Kayali Z, Mena E, Mantry PS, Lucas KJ, Neff G, Rodriguez M, Thuluvath PJ, Weinberg E, Bhandari BR et al (2021) Emricasan to prevent new decompensation in patients with NASH-related decompensated cirrhosis. J Hepatol 74:274–282. https://doi.org/10.1016/j.jhep.2020.09.029

  121. Lefebvre E, Moyle G, Reshef R, Richman LP, Thompson M, Hong F, Chou HL, Hashiguchi T, Plato C, Poulin D et al (2016) Antifibrotic effects of the dual CCR2/CCR5 antagonist cenicriviroc in animal models of liver and kidney fibrosis. PLoS One 11:e0158156. https://doi.org/10.1371/journal.pone.0158156

  122. Tacke F (2018) Cenicriviroc for the treatment of non-alcoholic steatohepatitis and liver fibrosis. Expert Opin Investig Drugs 27:301–311. https://doi.org/10.1080/13543784.2018.1442436

  123. Friedman SL, Ratziu V, Harrison SA, Abdelmalek MF, Aithal GP, Caballeria J, Francque S, Farrell G, Kowdley KV, Craxi A et al (2018) A randomized, placebo-controlled trial of cenicriviroc for treatment of nonalcoholic steatohepatitis with fibrosis. Hepatology 67:1754–1767. https://doi.org/10.1002/hep.29477

  124. Anstee QM, Neuschwander-Tetri BA, Wong VW, Abdelmalek MF, Younossi ZM, Yuan J, Pecoraro ML, Seyedkazemi S, Fischer L, Bedossa P et al (2020) Cenicriviroc for the treatment of liver fibrosis in adults with nonalcoholic steatohepatitis: AURORA Phase 3 study design. Contemp Clin Trials 89:105922. https://doi.org/10.1016/j.cct.2019.105922

  125. Eckstein SS, Weigert C, Lehmann R (2017) Divergent roles of IRS (insulin receptor substrate) 1 and 2 in liver and skeletal muscle. Curr Med Chem 24:1827–1852. https://doi.org/10.2174/0929867324666170426142826

  126. Khan RS, Bril F, Cusi K, Newsome PN (2019) Modulation of insulin resistance in nonalcoholic fatty liver disease. Hepatology 70:711–724. https://doi.org/10.1002/hep.30429

  127. Azzu V, Vacca M, Virtue S, Allison M, Vidal-Puig A (2020) Adipose tissue-liver cross talk in the control of whole-body metabolism: implications in nonalcoholic fatty liver disease. Gastroenterology 158:1899–1912. https://doi.org/10.1053/j.gastro.2019.12.054

  128. Guilherme A, Virbasius JV, Puri V, Czech MP (2008) Adipocyte dysfunctions linking obesity to insulin resistance and type 2 diabetes. Nat Rev Mol Cell Biol 9:367–377. https://doi.org/10.1038/nrm2391

  129. Polyzos SA, Kountouras J, Mantzoros CS (2016) Adipokines in nonalcoholic fatty liver disease. Metabolism 65:1062–1079. https://doi.org/10.1016/j.metabol.2015.11.006

  130. Ahmadian M, Suh JM, Hah N, Liddle C, Atkins AR, Downes M, Evans RM (2013) PPARγ signaling and metabolism: the good, the bad and the future. Nature Medicine 19:557–566. https://doi.org/10.1038/nm.3159

  131. Zheng F, Cai Y (2019) Concurrent exercise improves insulin resistance and nonalcoholic fatty liver disease by upregulating PPAR-γ and genes involved in the beta-oxidation of fatty acids in ApoE-KO mice fed a high-fat diet. Lipids Health Dis 18:6. https://doi.org/10.1186/s12944-018-0933-z

  132. Day EA, Ford RJ, Steinberg GR (2017) AMPK as a therapeutic target for treating metabolic diseases. Trends in Endocrinology & Metabolism 28:545–560. https://doi.org/10.1016/j.tem.2017.05.004

  133. Koliaki C, Szendroedi J, Kaul K, Jelenik T, Nowotny P, Jankowiak F, Herder C, Carstensen M, Krausch M, Knoefel WT et al (2015) Adaptation of hepatic mitochondrial function in humans with non-alcoholic fatty liver is lost in steatohepatitis. Cell Metab 21:739–746. https://doi.org/10.1016/j.cmet.2015.04.004

  134. Tilg H, Moschen AR, Roden M (2017) NAFLD and diabetes mellitus. Nat Rev Gastroenterol Hepatol 14:32–42. https://doi.org/10.1038/nrgastro.2016.147

  135. Yan FJ, Zhang XJ, Wang WX, Ji YX, Wang PX, Yang Y, Gong J, Shen LJ, Zhu XY, Huang Z et al (2017) The E3 ligase tripartite motif 8 targets TAK1 to promote insulin resistance and steatohepatitis. Hepatology 65:1492–1511. https://doi.org/10.1002/hep.28971

  136. Zhai L, Wu J, Lam YY, Kwan HY, Bian ZX, Wong HLX (2021) Gut-microbial metabolites, probiotics and their roles in type 2 diabetes. Int J Mol Sci 22. https://doi.org/10.3390/ijms222312846

  137. Ghosal S, Datta D, Sinha B (2021) A meta-analysis of the effects of glucagon-like-peptide 1 receptor agonist (GLP1-RA) in nonalcoholic fatty liver disease (NAFLD) with type 2 diabetes (T2D). Sci Rep 11:22063. https://doi.org/10.1038/s41598-021-01663-y

  138. Fang Y, Ji L, Zhu C, Xiao Y, Zhang J, Lu J, Yin J, Wei L (2020) Liraglutide alleviates hepatic steatosis by activating the TFEB-regulated autophagy-lysosomal pathway. Front Cell Dev Biol 8:602574. https://doi.org/10.3389/fcell.2020.602574

  139. Li L, Zha M, Zhang LY, Wang XF, Zhu ZH, Zou DJ (2019) [Glucagon-like peptide-1 regulates lipid metabolism in hepatocytes through Foxo1/3]. Zhonghua Nei Ke Za Zhi 58:39–42. https://doi.org/10.3760/cma.j.issn.0578-1426.2019.01.007

  140. Dichtel LE (2021) The glucagon-like peptide-1 receptor agonist, semaglutide, for the treatment of nonalcoholic steatohepatitis. Hepatology 74:2290–2292. https://doi.org/10.1002/hep.31886

  141. Barchetta I, Ceccarelli V, Cimini FA, Barone E, Sentinelli F, Coluzzi M, Chiappetta C, Bertoccini L, Tramutola A, Labbadia G et al (2021) Circulating dipeptidyl peptidase-4 is independently associated with the presence and severity of NAFLD/NASH in individuals with and without obesity and metabolic disease. J Endocrinol Invest 44:979–988. https://doi.org/10.1007/s40618-020-01392-5

  142. Wang Z, Park H, Bae EJ (2019) Efficacy of evogliptin and cenicriviroc against nonalcoholic steatohepatitis in mice: a comparative study. Korean J Physiol Pharmacol 23:459–466. https://doi.org/10.4196/kjpp.2019.23.6.459

  143. Kim G, Lim S, Kwon HS, Park IB, Ahn KJ, Park CY, Kwon SK, Kim HS, Park SW, Kim SG et al (2020) Efficacy and safety of evogliptin treatment in patients with type 2 diabetes: a multicentre, active-controlled, randomized, double-blind study with open-label extension (the EVERGREEN study). Diabetes Obes Metab 22:1527–1536. https://doi.org/10.1111/dom.14061

  144. Han E, Huh JH, Lee EY, Bae JC, Chun SW, Yu SH, Kwak SH, Park KS, Lee BW (2022) Efficacy and safety of evogliptin in patients with type 2 diabetes and non-alcoholic fatty liver disease: a multicentre, double-blind, randomized, comparative trial. Diabetes Obes Metab 24:752–756. https://doi.org/10.1111/dom.14623

  145. de Mendonça M, Dos Santos BAC, de Sousa É, Rodrigues AC (2019) Adiponectin is required for pioglitazone-induced improvements in hepatic steatosis in mice fed a high-fat diet. Mol Cell Endocrinol 493:110480. https://doi.org/10.1016/j.mce.2019.110480

  146. Grey A (2008) Skeletal consequences of thiazolidinedione therapy. Osteoporos Int 19:129–137. https://doi.org/10.1007/s00198-007-0477-y

  147. Tolman KG (2011) The safety of thiazolidinediones. Expert Opin Drug Saf 10:419–428. https://doi.org/10.1517/14740338.2011.534982

  148. Yoneda M, Honda Y, Ogawa Y, Kessoku T, Kobayashi T, Imajo K, Ozaki A, Nogami A, Taguri M, Yamanaka T et al (2021) Comparing the effects of tofogliflozin and pioglitazone in non-alcoholic fatty liver disease patients with type 2 diabetes mellitus (ToPiND study): a randomized prospective open-label controlled trial. BMJ Open Diabetes Res Care 9. https://doi.org/10.1136/bmjdrc-2020-001990

  149. Jain MR, Giri SR, Bhoi B, Trivedi C, Rath A, Rathod R, Ranvir R, Kadam S, Patel H, Swain P et al (2018) Dual PPARα/γ agonist saroglitazar improves liver histopathology and biochemistry in experimental NASH models. Liver Int 38:1084–1094. https://doi.org/10.1111/liv.13634

  150. Kumar DP, Caffrey R, Marioneaux J, Santhekadur PK, Bhat M, Alonso C, Koduru SV, Philip B, Jain MR, Giri SR et al (2020) The PPAR α/γ agonist saroglitazar improves insulin resistance and steatohepatitis in a diet induced animal model of nonalcoholic fatty liver disease. Sci Rep 10:9330. https://doi.org/10.1038/s41598-020-66458-z

  151. Gawrieh S, Noureddin M, Loo N, Mohseni R, Awasty V, Cusi K, Kowdley KV, Lai M, Schiff E, Parmar D et al (2021) Saroglitazar, a PPAR-α/γ agonist, for treatment of NAFLD: a randomized controlled double-blind phase 2 trial. Hepatology 74:1809–1824. https://doi.org/10.1002/hep.31843

  152. Androutsakos T, Nasiri-Ansari N, Bakasis AD, Kyrou I, Efstathopoulos E, Randeva HS, Kassi E (2022) SGLT-2 inhibitors in NAFLD: expanding their role beyond diabetes and cardioprotection. Int J Mol Sci 23. https://doi.org/10.3390/ijms23063107

  153. Nasiri-Ansari N, Nikolopoulou C, Papoutsi K, Kyrou I, Mantzoros CS, Kyriakopoulos G, Chatzigeorgiou A, Kalotychou V, Randeva MS, Chatha K et al (2021) Empagliflozin attenuates non-alcoholic fatty liver disease (NAFLD) in high fat diet fed ApoE((-/-)) mice by activating autophagy and reducing ER stress and apoptosis. Int J Mol Sci 22. https://doi.org/10.3390/ijms22020818

  154. Kuchay MS, Krishan S, Mishra SK, Farooqui KJ, Singh MK, Wasir JS, Bansal B, Kaur P, Jevalikar G, Gill HK et al (2018) Effect of empagliflozin on liver fat in patients with type 2 diabetes and nonalcoholic fatty liver disease: a randomized controlled trial (E-LIFT Trial). Diabetes Care 41:1801–1808. https://doi.org/10.2337/dc18-0165

  155. Kahl S, Gancheva S, Straßburger K, Herder C, Machann J, Katsuyama H, Kabisch S, Henkel E, Kopf S, Lagerpusch M et al (2020) Empagliflozin effectively lowers liver fat content in well-controlled type 2 diabetes: a randomized, double-blind, phase 4, placebo-controlled trial. Diabetes Care 43:298–305. https://doi.org/10.2337/dc19-0641

  156. Kahl S, Ofstad AP, Zinman B, Wanner C, Schüler E, Sattar N, Inzucchi SE, Roden M (2022) Effects of empagliflozin on markers of liver steatosis and fibrosis and their relationship to cardiorenal outcomes. Diabetes Obes Metab 24:1061–1071. https://doi.org/10.1111/dom.14670

  157. Mantovani A, Byrne CD, Scorletti E, Mantzoros CS, Targher G (2020) Efficacy and safety of anti-hyperglycaemic drugs in patients with non-alcoholic fatty liver disease with or without diabetes: an updated systematic review of randomized controlled trials. Diabetes Metab 46:427–441. https://doi.org/10.1016/j.diabet.2019.12.007

  158. Jalali M, Rahimlou M, Mahmoodi M, Moosavian SP, Symonds ME, Jalali R, Zare M, Imanieh MH, Stasi C (2020) The effects of metformin administration on liver enzymes and body composition in non-diabetic patients with non-alcoholic fatty liver disease and/or non-alcoholic steatohepatitis: an up-to date systematic review and meta-analysis of randomized controlled trials. Pharmacol Res 159:104799. https://doi.org/10.1016/j.phrs.2020.104799

  159. Green CJ, Marjot T, Walsby-Tickle J, Charlton C, Cornfield T, Westcott F, Pinnick KE, Moolla A, Hazlehurst JM, McCullagh J et al (2022) Metformin maintains intrahepatic triglyceride content through increased hepatic de novo lipogenesis. Eur J Endocrinol 186:367–377. https://doi.org/10.1530/EJE-21-0850

  160. Ford RJ, Fullerton MD, Pinkosky SL, Day EA, Scott JW, Oakhill JS, Bujak AL, Smith BK, Crane JD, Blümer RM et al (2015) Metformin and salicylate synergistically activate liver AMPK, inhibit lipogenesis and improve insulin sensitivity. Biochem J 468:125–132. https://doi.org/10.1042/bj20150125

  161. Chen Z, Tian R, She Z, Cai J, Li H (2020) Role of oxidative stress in the pathogenesis of nonalcoholic fatty liver disease. Free Radic Biol Med 152:116–141. https://doi.org/10.1016/j.freeradbiomed.2020.02.025

  162. Arroyave-Ospina JC, Wu Z, Geng Y, Moshage H (2021) Role of oxidative stress in the pathogenesis of non-alcoholic fatty liver disease: implications for prevention and therapy. Antioxidants (Basel) 10. https://doi.org/10.3390/antiox10020174

  163. Han CY, Umemoto T, Omer M, Den Hartigh LJ, Chiba T, LeBoeuf R, Buller CL, Sweet IR, Pennathur S, Abel ED et al (2012) NADPH oxidase-derived reactive oxygen species increases expression of monocyte chemotactic factor genes in cultured adipocytes. J Biol Chem 287:10379–10393. https://doi.org/10.1074/jbc.M111.304998

  164. Li S, Tan HY, Wang N, Zhang ZJ, Lao L, Wong CW, Feng Y (2015) The role of oxidative stress and antioxidants in liver diseases. Int J Mol Sci 16:26087–26124. https://doi.org/10.3390/ijms161125942

  165. Zheng X, Dai W, Chen X, Wang K, Zhang W, Liu L, Hou J (2015) Caffeine reduces hepatic lipid accumulation through regulation of lipogenesis and ER stress in zebrafish larvae. J Biomed Sci 22:105. https://doi.org/10.1186/s12929-015-0206-3

  166. Vadarlis A, Antza C, Bakaloudi DR, Doundoulakis I, Kalopitas G, Samara M, Dardavessis T, Maris T, Chourdakis M (2021) Systematic review with meta-analysis: the effect of vitamin E supplementation in adult patients with non-alcoholic fatty liver disease. J Gastroenterol Hepatol 36:311–319. https://doi.org/10.1111/jgh.15221

  167. Sanyal AJ, Chalasani N, Kowdley KV, McCullough A, Diehl AM, Bass NM, Neuschwander-Tetri BA, Lavine JE, Tonascia J, Unalp A et al (2010) Pioglitazone, vitamin E, or placebo for nonalcoholic steatohepatitis. N Engl J Med 362:1675–1685. https://doi.org/10.1056/NEJMoa0907929

  168. Lavine JE, Schwimmer JB, Van Natta ML, Molleston JP, Murray KF, Rosenthal P, Abrams SH, Scheimann AO, Sanyal AJ, Chalasani N et al (2011) Effect of vitamin E or metformin for treatment of nonalcoholic fatty liver disease in children and adolescents: the TONIC randomized controlled trial. Jama 305:1659–1668. https://doi.org/10.1001/jama.2011.520

  169. Bril F, Biernacki DM, Kalavalapalli S, Lomonaco R, Subbarayan SK, Lai J, Tio F, Suman A, Orsak BK, Hecht J et al (2019) Role of vitamin E for nonalcoholic steatohepatitis in patients with type 2 diabetes: a randomized controlled trial. Diabetes Care 42:1481–1488. https://doi.org/10.2337/dc19-0167

  170. Ritter MJ, Amano I, Hollenberg AN (2020) Thyroid hormone signaling and the liver. Hepatology 72:742–752. https://doi.org/10.1002/hep.31296

  171. Adams AC, Astapova I, Fisher FM, Badman MK, Kurgansky KE, Flier JS, Hollenberg AN, Maratos-Flier E (2010) Thyroid hormone regulates hepatic expression of fibroblast growth factor 21 in a PPARalpha-dependent manner. J Biol Chem 285:14078–14082. https://doi.org/10.1074/jbc.C110.107375

  172. Liu L, Yu Y, Zhao M, Zheng D, Zhang X, Guan Q, Xu C, Gao L, Zhao J, Zhang H (2017) Benefits of levothyroxine replacement therapy on nonalcoholic fatty liver disease in subclinical hypothyroidism patients. Int J Endocrinol 2017:5753039. https://doi.org/10.1155/2017/5753039

  173. Loomba R, Neutel J, Mohseni R, Bernard D, Severance R, Dao M, Saini S, Margaritescu C, Homer K, Tran B et al (2019) LBP-20-VK2809, a novel liver-directed thyroid receptor beta agonist, significantly reduces liver fat with both low and high doses in patients with non-alcoholic fatty liver disease: a phase 2 randomized, placebo-controlled trial. Journal of Hepatology 70:e150-e151. https://doi.org/10.1016/s0618-8278(19)30266-x

  174. Harrison SA, Ruane PJ, Freilich BL, Neff G, Patil R, Behling CA, Hu C, Fong E, de Temple B, Tillman EJ et al (2021) Efruxifermin in non-alcoholic steatohepatitis: a randomized, double-blind, placebo-controlled, phase 2a trial. Nat Med 27:1262–1271. https://doi.org/10.1038/s41591-021-01425-3

  175. Tillman EJ, Rolph T (2020) FGF21: an emerging therapeutic target for non-alcoholic steatohepatitis and related metabolic diseases. Front Endocrinol (Lausanne) 11:601290. https://doi.org/10.3389/fendo.2020.601290

  176. Sanyal A, Charles ED, Neuschwander-Tetri BA, Loomba R, Harrison SA, Abdelmalek MF, Lawitz EJ, Halegoua-DeMarzio D, Kundu S, Noviello S et al (2018) Pegbelfermin (BMS-986036), a PEGylated fibroblast growth factor 21 analogue, in patients with non-alcoholic steatohepatitis: a randomised, double-blind, placebo-controlled, phase 2a trial. The Lancet 392:2705–2717. https://doi.org/10.1016/s0140-6736(18)31785-9

  177. Abdelmalek MF, Charles ED, Sanyal AJ, Harrison SA, Neuschwander-Tetri BA, Goodman Z, Ehman RA, Karsdal M, Nakajima A, Du S et al (2021) The FALCON program: two phase 2b randomized, double-blind, placebo-controlled studies to assess the efficacy and safety of pegbelfermin in the treatment of patients with nonalcoholic steatohepatitis and bridging fibrosis or compensated cirrhosis. Contemp Clin Trials 104:106335. https://doi.org/10.1016/j.cct.2021.106335

  178. Harrison SA, Bashir M, Moussa SE, McCarty K, Pablo Frias J, Taub R, Alkhouri N (2021) Effects of resmetirom on noninvasive endpoints in a 36-week phase 2 active treatment extension study in patients with NASH. Hepatol Commun 5:573–588. https://doi.org/10.1002/hep4.1657

  179. Rader DJ, Maratos-Flier E, Nguyen A, Hom D, Ferriere M, Li Y, Kompa J, Martic M, Hinder M, Basson CT et al (2022) LLF580, an FGF21 analog, reduces triglycerides and hepatic fat in obese adults with modest hypertriglyceridemia. J Clin Endocrinol Metab 107:e57-e70. https://doi.org/10.1210/clinem/dgab624

  180. Mouries J, Brescia P, Silvestri A, Spadoni I, Sorribas M, Wiest R, Mileti E, Galbiati M, Invernizzi P, Adorini L et al (2019) Microbiota-driven gut vascular barrier disruption is a prerequisite for non-alcoholic steatohepatitis development. J Hepatol 71:1216–1228. https://doi.org/10.1016/j.jhep.2019.08.005

  181. Ma J, Zhou Q, Li H (2017) Gut microbiota and nonalcoholic fatty liver disease: insights on mechanisms and therapy. Nutrients 9. https://doi.org/10.3390/nu9101124

  182. Rahman K, Desai C, Iyer SS, Thorn NE, Kumar P, Liu Y, Smith T, Neish AS, Li H, Tan S et al (2016) Loss of junctional adhesion molecule a promotes severe steatohepatitis in mice on a diet high in saturated fat, fructose, and cholesterol. Gastroenterology 151:733–746.e712. https://doi.org/10.1053/j.gastro.2016.06.022

  183. Corbin KD, Zeisel SH (2012) Choline metabolism provides novel insights into nonalcoholic fatty liver disease and its progression. Curr Opin Gastroenterol 28:159–165. https://doi.org/10.1097/MOG.0b013e32834e7b4b

  184. Wang HB, Wang PY, Wang X, Wan YL, Liu YC (2012) Butyrate enhances intestinal epithelial barrier function via up-regulation of tight junction protein Claudin-1 transcription. Dig Dis Sci 57:3126–3135. https://doi.org/10.1007/s10620-012-2259-4

  185. Zhao GN, Zhang P, Gong J, Zhang XJ, Wang PX, Yin M, Jiang Z, Shen LJ, Ji YX, Tong J et al (2017) Tmbim1 is a multivesicular body regulator that protects against non-alcoholic fatty liver disease in mice and monkeys by targeting the lysosomal degradation of Tlr4. Nat Med 23:742–752. https://doi.org/10.1038/nm.4334

  186. Wu L, Feng J, Li J, Yu Q, Ji J, Wu J, Dai W, Guo C (2021) The gut microbiome-bile acid axis in hepatocarcinogenesis. Biomed Pharmacother 133:111036. https://doi.org/10.1016/j.biopha.2020.111036

  187. Gadaleta RM, van Erpecum KJ, Oldenburg B, Willemsen EC, Renooij W, Murzilli S, Klomp LW, Siersema PD, Schipper ME, Danese S et al (2011) Farnesoid X receptor activation inhibits inflammation and preserves the intestinal barrier in inflammatory bowel disease. Gut 60:463–472. https://doi.org/10.1136/gut.2010.212159

  188. Gadaleta RM, Garcia-Irigoyen O, Cariello M, Scialpi N, Peres C, Vetrano S, Fiorino G, Danese S, Ko B, Luo J et al (2020) Fibroblast Growth Factor 19 modulates intestinal microbiota and inflammation in presence of Farnesoid X Receptor. EBioMedicine 54:102719. https://doi.org/10.1016/j.ebiom.2020.102719

  189. Ahn SB, Jun DW, Kang BK, Lim JH, Lim S, Chung MJ (2019) Randomized, double-blind, placebo-controlled study of a multispecies probiotic mixture in nonalcoholic fatty liver disease. Sci Rep 9:5688. https://doi.org/10.1038/s41598-019-42059-3

  190. Mofidi F, Poustchi H, Yari Z, Nourinayyer B, Merat S, Sharafkhah M, Malekzadeh R, Hekmatdoost A (2017) Synbiotic supplementation in lean patients with non-alcoholic fatty liver disease: a pilot, randomised, double-blind, placebo-controlled, clinical trial. Br J Nutr 117:662–668. https://doi.org/10.1017/S0007114517000204

  191. Scorletti E, Afolabi PR, Miles EA, Smith DE, Almehmadi A, Alshathry A, Childs CE, Del Fabbro S, Bilson J, Moyses HE et al (2020) Synbiotics alter fecal microbiomes, but not liver fat or fibrosis, in a randomized trial of patients with nonalcoholic fatty liver disease. Gastroenterology 158 (6):1597–1610. e7. https://doi.org/10.1053/j.gastro.2020.01.031

  192. Harrison SA, Rossi SJ, Paredes AH, Trotter JF, Bashir MR, Guy CD, Banerjee R, Jaros MJ, Owers S, Baxter BA et al (2020) NGM282 improves liver fibrosis and histology in 12 weeks in patients with nonalcoholic steatohepatitis. Hepatology 71:1198–1212. https://doi.org/10.1002/hep.30590

  193. Loomba R, Ling L, Dinh DM, DePaoli AM, Lieu HD, Harrison SA, Sanyal AJ (2021) The commensal microbe Veillonella as a marker for response to an FGF19 analog in NASH. Hepatology 73:126–143. https://doi.org/10.1002/hep.31523

  194. Loomba R, Neuschwander-Tetri BA, Sanyal A, Chalasani N, Diehl AM, Terrault N, Kowdley K, Dasarathy S, Kleiner D, Behling C et al (2020) Multicenter validation of association between decline in MRI-PDFF and histologic response in NASH. Hepatology 72:1219–1229. https://doi.org/10.1002/hep.31121

  195. Traussnigg S, Halilbasic E, Hofer H, Munda P, Stojakovic T, Fauler G, Kashofer K, Krssak M, Wolzt M, Trauner M (2021) Open-label phase II study evaluating safety and efficacy of the non-steroidal farnesoid X receptor agonist PX-104 in non-alcoholic fatty liver disease. Wien Klin Wochenschr 133:441–451. https://doi.org/10.1007/s00508-020-01735-5

  196. Harrison SA, Bashir MR, Lee KJ, Shim-Lopez J, Lee J, Wagner B, Smith ND, Chen HC, Lawitz EJ (2021) A structurally optimized FXR agonist, MET409, reduced liver fat content over 12 weeks in patients with non-alcoholic steatohepatitis. J Hepatol 75:25–33. https://doi.org/10.1016/j.jhep.2021.01.047

  197. Guirguis E, Grace Y, Bolson A, DellaVecchia MJ, Ruble M (2021) Emerging therapies for the treatment of nonalcoholic steatohepatitis: a systematic review. Pharmacotherapy 41:315–328. https://doi.org/10.1002/phar.2489

  198. Fraile JM, Palliyil S, Barelle C, Porter AJ, Kovaleva M (2021) Non-alcoholic steatohepatitis (NASH) - a review of a crowded clinical landscape, driven by a complex disease. Drug Des Devel Ther 15:3997–4009. https://doi.org/10.2147/dddt.S315724

Download references

Funding

This work was supported by grants from the National Science Foundation of China (81970364, 81770053, 82170595, 81970070, 81870171, 82170436), and the Hubei Province Innovation Platform Construction Project (20204201117303072238).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the writing of this manuscript and approved the final version.

Corresponding authors

Correspondence to Zhi-Gang She or Hongliang Li.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

All the authors give their consent for participation.

Consent for publication

All the authors give their consent for publication.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Wang, L., Zhang, XJ. et al. Recent updates on targeting the molecular mediators of NAFLD. J Mol Med 101, 101–124 (2023). https://doi.org/10.1007/s00109-022-02282-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-022-02282-4

Keywords

Navigation