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Abstract
Traditionally, transfer RNAs (tRNAs) specifically decoded messenger RNA (mRNA) and participated in protein translation. 
tRNA-derived fragments (tRFs), also known as tRNA-derived small RNAs (tsRNAs), are generated by the specific cleavage 
of pre- and mature tRNAs and are a class of newly defined functional small non-coding RNAs (sncRNAs). Following the 
different cleavage positions of precursor or mature tRNA, tRFs are classified into seven types, 5′-tRNA half, 3′-tRNA half, 
tRF-1, 5′U-tRF, 3′-tRF, 5′-tRF, and i-tRF. It has been demonstrated that tRFs have a diverse range of biological functions 
in cellular processes, which include inhibiting protein translation, modulating stress response, regulating gene expression, 
and involvement in cell cycles and epigenetic inheritance. Emerging evidences have indicated that tRFs in extracellular 
vesicles (EVs) seem to act as regulatory molecules in various cellular processes and play essential roles in cell-to-cell com-
munication. Furthermore, the dysregulation of EV-associated tRFs has been associated with the occurrence and progression 
of a variety of cancers and they can serve as novel potential biomarkers for cancer diagnosis. In this review, the biogenesis 
and classification of tRFs are summarized, and the biological functions of EV-associated tRFs and their roles as potential  
biomarkers in human diseases are discussed.
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Introduction

Over the past decade, advances in new technologies such 
as next-generation deep sequencing have led to the discov-
ery of tens of thousands of non-coding RNAs (ncRNAs), 
which exist extensively in organisms and have multiple 
known functions. ncRNAs that are transcribed from DNA 

and do not translate into proteins include long ncRNAs 
(lncRNAs, > 200 nucleotides (nts)) and small ncRNAs 
(sncRNAs, < 200 nts) [1]. Small ncRNAs consist of various 
RNA species, including small nucleolar RNAs (snoRNAs), 
small nuclear RNAs (snRNAs), microRNAs (miRNAs), 
endogenous small interfering RNAs (endo-siRNAs), Piwi-
interacting RNAs (piRNAs), snoRNA-derived small RNAs 
(sdRNAs), ribosomal RNA (rRNA)-derived fragments 
(rRFs), and tRNA-derived fragments (tRFs) [2–4]. tRNAs 
are one of the most abundant cellular ncRNAs discovered so 
far and account for 4–10% of all cellular RNA [5]. There are 
about 500 tRNA genes or tRNA gene-like sequences in the 
human genome. The recent discovery of tRNA-lookalikes 
has doubled this number [6]. Traditionally, tRNAs specifi-
cally recognize messenger RNA (mRNA) codons, transport 
amino acids to ribosomes, convert genetic information into 
corresponding polypeptide chains, and participate in protein 
translation.

Recently, fragments originating from tRNA, known as 
tRNA-derived fragments (tRFs), have gradually gained 
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wider attention [4]. Similar to miRNAs, expression of 
some tRFs is commonly observed in cells and tissues from 
a diverse breadth of organisms, ranging from E. coli to 
humans [1]. tRFs are first identified in prostate carcinoma 
cell lines by Lee et al. [4], and later are also called tRNA-
derived RNAs (tDRs) or tRNA-derived small RNA (tsRNA) 
[7, 8]. They are derived from tRNA precursors (pre-tRNAs) 
or mature tRNAs and can generally be classified into  
seven categories: 5′-tRNA half, 3′-tRNA half, tRF-1, 5′U-
tRF, 3′-tRF, 5′-tRF, and i-tRF, following their differing 
lengths and cleavage positions [7, 9]. Although the cleavage  
of tRNA was found as early as 1958 [10], understanding 
the functions of these tRNA processing intermediates has 
been neglected until recently [11]. A growing body of stud-
ies have demonstrated that tRFs are not always by-products  
of random tRNA cleavage, but play crucial roles in numer-
ous cellular biological processes, such as regulation of gene 
and protein expression, stress granule (SG) assembly, RNA  
processing, modulation of the DNA damage response, inher-
itance of acquired characteristics, cancer progression, and 
neurodegeneration [12].

Extracellular vesicles (EVs) are small, lipid membrane 
particles secreted by almost all kinds of normal and diseased 
cells into the extracellular environment in different ways. 
Based on the size and biogenesis, EVs are divided into three 
main categories: exosomes, microvesicles, and apoptotic 
bodies [13, 14]. The most extensively researched exosomes 
originate from cytoplasmic multivesicular bodies (MVBs) 
and are released following fusion with plasma membranes. 
They typically range in diameter from 30 to 150 nm and are 
actively secreted by a variety of living cell types, includ-
ing immune, neural, muscle, epithelial, and stem cells. 
Microvesicles range in size from 100 nm to 1 μm and arise 
via outward budding from the plasma membrane. Apoptotic 
bodies measuring 1 to 5 μm are derived from apoptotic cells 
during programmed cell death [15, 16].

So far, EVs have been isolated from all human body flu-
ids, such as blood, urine, cerebrospinal fluid, saliva, and milk  
[17, 18]. Since their initial definition in 1983, it is currently 
known that EVs are central players in intercellular communi-
cation and signaling [19, 20]. Many evidences have also dem-
onstrated their promising functions within tumorigenic pro-
cesses, immune responses, cardiovascular diseases, nervous 
system-related diseases, and interplay between pathogens  
and hosts [21]. The cargoes of EVs contain membrane pro-
teins, cytoplasmic proteins, nuclear proteins, extracellular 
matrix proteins, specific lipids, and nucleic acids including 
DNA, mRNA, tRNAs, miRNAs, lncRNAs, circRNAs, tRFs, 
and ribosomal RNAs [22–25]. To promote the research on 
extracellular RNA (exRNA), the Extracellular RNA Com-
munication Consortium (ERCC) has established an extracel-
lular RNA atlas across 5 human biofluids, which integrates 
a diverse set of exRNA-seq and qPCR sample profiles from 

19 different studies [26, 27]. Further investigation reveals 6 
major exRNA cargo types in vesicle, ribonucleoprotein, and 
lipoprotein carriers [26].

EVs are good natural carriers of small RNAs with regula-
tory function between cells. MiRNAs are the most deeply 
studied RNA types within EVs. Work on miRNA has domi-
nated this field; nevertheless, emerging evidence has shown 
that EV-associated tRFs can contribute towards signaling 
between cells and can also serve as potential biomarkers for 
diseases. However, the related mechanisms remain unclear. 
We suggest that the reader refers to two recent reviews by 
Tosar and Cayota [28] and Torres and Martí [29], which 
have reviewed the current descriptions of extracellular tRFs. 
In more recent years, tRFs have been identified in EVs from 
the epididymis. Some specific tRFs are conveyed from 
somatic cells to maturing sperm and finally to embryos [30]. 
This review first explores the biogenesis and classification 
of tRFs and then describes the biological functions of EV-
associated tRFs and their potential applications as biomark-
ers in human diseases.

Biogenesis of tRNAs

In the nucleus, the tRNAs are transcribed from the tRNA 
gene using RNA polymerase III (Pol III). The initial tRNA 
transcripts, also known as pre-tRNAs, have 5′-leader and 
3′-tailer sequences. During tRNA maturation, the 5′-leader 
sequence and 3′-tailer sequence are cleaved by endonuclease 
P (RNase P) and endonuclease Z (RNase Z), respectively 
[31, 32]. Subsequently, the trinucleotide CCA is added to 
the 3′ end via tRNA nucleotidyltransferase to promote ami-
noacylation of the tRNA. Before being transported to the 
cytoplasm, tRNAs undergo extensive post-transcriptional 
modification, which further affects the structure, stability, 
and function of the tRNA. Mature tRNAs are70–90 nt long 
and fold into an L-shaped tertiary structure comprising a 
D-loop, an anticodon loop, a T-loop, a variable loop, an 
acceptor arm and a D arm, an anticodon arm, and a T arm 
[33].

Types of tRFs

On the basis of their mapping positions on pre-tRNA or 
mature tRNA transcripts, tRFs can be classified into 
seven categories, 5′-tRNA half, 3′-tRNA half, tRF-1, 5′U-
tRF, 3′-tRF, 5′-tRF, and i-tRF (Fig. 1). These tRF sub-
classifications can be found in organisms ranging from  
yeasts to humans [34].

tRNA halves are created by angiogenin (ANG, Rny1 in 
yeast) cleavage within anticodon loops in mature tRNAs 
[35–37]. Depending on whether the 5′- or 3′-sequence 
includes the anticodon cleavage sites, tRNA halves can 
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be classified into two subclasses, 5′‐tRNA halves and 3′‐
tRNA halves [35, 38, 39]. 5′‐tRNA halves are 30–35 nt 
long and initiate from the 5′ end of mature tRNAs to the 
anticodon loop. 3′‐tRNA halves are 40–50 nt and begin at 
the anti-codon loop to the 3′ end of mature tRNAs [40]. In 
addition, it has been reported that other RNases than ANG 
might also create tRNA half [41]. tRNA halves are usually 
produced under certain stress conditions, such as oxidative 
stress, hypoxia, starvation, heat shock, ultraviolet irradia-
tion, and virus infection [35, 38].

tRF-1, 3′-tRF, and 5′-tRF are the three principal classi-
cal categories. Each unique tRF may have an identification 
depending on the databases developed for tRFs [42, 43]. 
Generally, tRF-1 series are present at a lower abundance 
than 3′-tRF or 5′-tRF series [34].

tRF-1s, also named 3′U tRF, is derived from the cleav-
age of the 3′ ends of pre-tRNAs using RNase Z in the 
nucleus or tRNA 3′-endonuclease ELAC2 in the cytoplasm 
[4, 44]. tRF-1s are generally 16–48 nt. Previous studies 
have indicated that tRF-1s are processed and accumu-
lated in the nucleus and are subsequently exported to the  

cytoplasm [45]. This suggests that tRF-1s may play regu-
latory roles in some unknown steps.

5′U-tRFs originate from the 5′ leader of pre-tRNAs and 
most of them are 17 nt long. Certain 5′U-tRFs are obtained 
from the sequences just next to, or only 1 nt away from the 
sequence of mature tRNA, indicating that they are products 
of pre-tRNAs processing. These fragments have been identi-
fied in prostate cancer patient samples [10, 46].

3′-tRFs, also called tRF-3s, are generated from the 3′  
ends of mature tRNAs and are produced via cleavage of 
Dicer, ANG, and other ribonuclease superfamily members 
at the TψC loop. They usually end with a universal “CCA” 
trinucleotide. Depending on the length of 3′-tRFs, they can 
be further divided into two subtypes: (1) tRF-3a, cleaved site 
right before the TψC loop; (2) tRF-3b, cleaved site within 
the TψC loop [1].

5′-tRFs, also refer to tRF-5s, originate from the 5′ ends of 
mature tRNAs and are cleaved at D-loop or the arm region 
between the D-loop and the anticodon loop in a Dicer-
dependent manner. However, they can also be produced 
by the actions of other nucleases, such as ANG [35]. The 

Fig. 1  Classification of tRNA-derived fragments (tRFs). tRFs can 
be divided into 7 subtypes, 5′-tRNA half, 3′-tRNA half, tRF-1, 
5′U-tRF, 3′-tRF, 5′-tRF, and i-tRF. tRNA half can be categorized  
into 2 types, 5′-tRNA half and 3′-tRNA half. They are cleaved by 
angiogenin (ANG) at the anticodon loop. tRF-1 is derived from  

precursor tRNAs digested by RNase Z or ELAC2. 5′U-tRF comes 
from 5′ leader of pre-tRNAs. 3′-tRF and 5′-tRF originate from mature  
tRNAs using ANG, Dicer, or other RNases. i‐tRF is from the internal 
region of mature tRNAs by ANG and Rny1
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5′-tRFs are grossly abundant in the nucleus, while 3′-tRFs 
and tRF-1 s are primarily present in the cytoplasm [34, 47]. 
Plenty of 5′-tRFs have been identified using deep sequencing 
of cervical cancer HeLa cells, cleaved by Dicer with a length 
of 19 nt. These small tRNA fragments combine poorly with 
Argonaute (Ago) 1 and Ago 2 [48]. In addition, there are 
5′-phosphate and 3′-hydroxyl ends in 3′-tRFs and 5′-tRFs, 
which are similar to miRNAs.

i‐tRFs, also referred to as internal tRFs, mainly originate 
from the internal regions of mature tRNAs [49]. i‐tRFs have 
only just been discovered and their classification is based 
upon their starting location at the 5′-end of tRNA. D-tRFs 
and A-tRFs are produced by cutting at the D stem and anti-
codon loop, respectively, and V-tRFs are derived from cleav-
age at the variable loop [50]. Moreover, i‐tRFs are highly 
abundant and may vary depending on gender, population, 
race, amino acid characteristics, anticodons, tissues, dis-
eases, and disease subtypes [49].

In addition to above mentioned tRFs, other types of tRNA 
fragments have also been observed [51, 52]. Sex hormone-
dependent tRNA-derived RNAs (SHOT-RNAs) are a cat-
egory of tRNA half and have been discovered in sex hor-
mone-dependent cancers. In particular, they are enriched 
explicitly in cell lines from estrogen receptor (ER) positive 
breast cancer and androgen receptor (AR) positive prostate 
cancers. The SHOT-RNAs are derived from ANG-mediated 
cleavage at the anticodon loop of aminoacylated tRNAs, 
promoted by sex hormone signaling pathways [53]. Thus, 
5′-SHOT-RNAs have a phosphate at the 5′-terminal and a 
2′,3′-cyclicphosphate at the 3′-terminal, whereas 3′-SHOT-
RNAs contain a 5′-hydroxyl at the 5′-terminal and an amino 
acid at the 3′-terminal. tRF-2s consist of an anticodon loop 
and a stem structure, and the 5′ and 3′ parts of the primary 
or mature tRNA are excluded. They have been detected in 
breast cancer cells and originate from  tRNAGlu,  tRNAAsp, 
 tRNAGly, and  tRNATyr [54]. Schaffer et al. identified a novel 
5′ leader exon generated from impaired pre-tRNA cleavage, 
with loss of cleavage and polyadenylation factor I subunit 1 
(CLP1) kinase activity and destabilized tRNA endonuclease 
complex (TSEN), which correlated with a progressive loss 
of neurons [51]. Furthermore, Haussecker et al. identified 
two categories of tRFs (type I and type II tRFs) based on 
their cleavage enzymes. Type I tRFs are Dicer-dependent. 
However, type II tRFs require RNase Z to cleave pre-tRNAs 
in the nucleus [47].

Nomenclature and databases of tRFs

It is vital to establish a standardized nomenclature for tRFs 
to facilitate academic communication and research. How-
ever, there is lack of consistency of naming system for tRFs 
so far. To promote research and academic exchange, sci-
entists have created various databases of tRFs, including 

tRFdb (http:// genome. bioch. virgi nia. edu/ trfdb/), MINTbase 
(http:// cm. jeffe rson. edu/ MINTb ase/), tRFexplorer (https:// 
trfex plorer. cloud/), and others (Table 1) [7, 42, 43, 55–62]. 
Currently, the nomenclature of tRFs varies among different 
databases and researches. In tRFdb, tRFs were specified a 
unique ID starting with “3” (e.g., tRF-3019a, tRF-3017a), 
mapping at the 3′ end of mature tRNA [42, 63]. The first 
identified tRF-1 was named tRF-1001 according to the order 
of discovery [4]. A tRF is given a unique MINTbase ID 
(e.g., tRF-19-3L7L73JD) by the License Plate nomenclature, 
which are based only on tRF sequence and transcend spe-
cies [43]. Additionally, differentially expressed tRFs were 
identified and named in small RNA libraries constructed 
in different studies (e.g., tRF-03357, tDR-5334) [64, 65]. 
In some studies, tRFs were also named by the length of the 
tRFs (e.g., tRF-25, tRF-18) or labeled by the authors (e.g., 
tRF-315, tRF-544) [46, 66].

Several problems lead to the difficulties in setting up a 
standardized naming scheme for tRFs. Challenges of obtain-
ing the precise origin of tRFs were due to tRNA incomplete 
annotation, isotypes, and extensive chemical modifications. 
Moreover, only a few tRFs have been experimentally vali-
dated [67].

Different abundance of EV‑associated tRFs 
in human tissues and fluids

Some studies have revealed that the abundance of tRFs var-
ies greatly among a variety of different tissues (Table 2) [27, 
68–73]. The same parental tRNA can generate different tRFs 
depending on different tissues [49]. It has been found that 
tRNA-Gly-GCC-5–1 can produce a tRNA half in colon tis-
sues, but generates a 5′-tRF in liver tissues and seminal fluid 
and a 3′-tRF in neural progenitor samples, respectively [7].

EV‑associated tRFs

To avoid degradation catalyzed by RNase in the extracel-
lular environment, exRNAs are packaged or associated with 
a variety of exRNA carriers, including EVs, ribonucleopro-
teins (RNPs), and lipoprotein (LPP). A diverse group of 
small RNAs have been identified in EVs, including mRNAs, 
miRNAs, rRNAs, lncRNAs, tRNA fragments, circRNAs, 
piRNAs, and Y RNA. Recently, research into tRFs in EVs 
has grown, due to their regulatory functions in molecular 
processes and their prospects as biomarkers of disease.

EV‑associated tRFs in blood

So far, EVs have been found in the bloodstream, includ-
ing in plasma and serum. Circulating EVs can be taken 
up by the recipient cells and deliver signaling molecules, 

682 Journal of Molecular Medicine (2022) 100:679–695

http://genome.bioch.virginia.edu/trfdb/
http://cm.jefferson.edu/MINTbase/
https://trfexplorer.cloud/
https://trfexplorer.cloud/


1 3

Table 1  tRNA-derived fragment databases

Database name Characteristics URL link Established time

tRFdb The first database of tRFs; contains 3 types of tRFs from 8 
species; provides the tRNA genome coordinates and names

http:// genome. bioch. virgi nia. edu/ trfdb/ 2015

PtRFdb A database for plant tRFs; supplies core information of 3 
types of tRFs 10 plant species

http:// www. nipgr. res. in/ PtRFdb/ 2018

tRex The first database of tRFs in plant Arabidopsis thaliana; 
makes Arabidopsis tRF research very convenient

http:// combio. pl/ trex 2018

MINTbase 2.0 Contains 26,531 nuclear and mitochondrial tRFs from mul-
tiple human tissues; users can acquire information about 
maximum abundance of tRFs and their parental tRNA 
modifications

http:// cm. jeffe rson. edu/ MINTb ase/ 2018

tRF2Cancer Facilitates users to study the expression of tRFs in multiple 
cancers

http:// rna. sysu. edu. cn/ tRFfi nder/ 2016

tRFexplorer Allows users to investigate expression profile and correla-
tion analyses of tRFs in NCI-60 cell line and TCGA tumor 
samples

https:// trfex plorer. cloud/ 2019

OncotRF Exhibits dysregulated tRFs in cancers and their functional 
annotations and clinical relevance

http:// bioin forma tics. zju. edu. cn/ Oncot RF 2020

MINTmap Very quick for users to identify tRFs and calculate the raw 
and normalized abundances of tRFs

https:// github. com/ TJU- CMC- Org/ MINTm ap/ 2017

tDRmapper Offers a standardized naming and quantifying scheme for 
tRFs; facilitates users to discover novel biology of tRFs

https:// github. com/ sarar selit sky/ tDRma pper 2015

tsRBase Includes 121,942 tRFs by small RNA-seq data from 20 
species; integrates tRF’s expression with functional charac-
teristics

http:// www. tsrba se. org 2020

Table 2  Distribution of EV-associated tRFs in human tissue

Name of disease tRF/tRNA name Methods for EVs 
isolation

Sample type EV type Reference

Preeclampsia tRNA-Ala-AGC Ultracentrifugation Human placentae Syncytiotrophoblast-
derived extracellular 
vesicles (STB-EV)

[68]

Normal pregnancy 5′-tRNA-half-GlyGCC Ultracentrifugation Human placentae Syncytiotrophoblast-
derived extracellular 
vesicles (STB-EV)

[69]

Healthy donors 5′-tRNA-half-Gly, 
5′-tRNA-half-Val

Ultracentrifugation Human semen Seminal exosome (SE) [70]

Several tRFs Multiple exRNA 
isolation methods

Human serum EVs [27]

Several tRFs Multiple exRNA 
isolation methods

Human plasma EVs [27]

Cholangiocarcinoma Several tRFs Multiple exRNA 
isolation methods

Human bile and urine EVs [27]

Several tRFs Multiple exRNA 
isolation methods

Cell culture conditioned 
medium

EVs [27]

Cecal ligation and  
incision

tRNA-Gly-GCC Ultracentrifugation Mesenteric lymph from 
exemplar rat models

Mesenteric lymph 
extracellular vesicle 
(ML-EV)

[71]

Elective plastic surgery, 
hip replacement

tRNA-Gly-GCC Ultracentrifugation Human adipose tissue sam-
ples, bone marrow

Mesenchymal stem cell 
exosomes

[72]

Glioblastoma Several tRFs Ultracentrifugation Human low-passage GBM 
cells

EVs [73]
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thereby mediating intercellular communication. In a pre-
vious study, RNA sequencing analysis of human plasma-
derived exosomes indicated that tRNA accounted for only 
1.24% of all mappable reads, contrasting with the most 
abundant of miRNAs (76.20%) [74]. Similarly, Yuan et al. 
detected that tRNAs occupied a small proportion (~ 2.1%) 
of mappable reads in RNA sequencing on plasma extracel-
lular vesicles from a large sample [75].

Syncytiotrophoblast-derived extracellular vesicles 
(STB-EVs), which are released by the placenta into the 
maternal blood during the pregnancy, are considered to 
play an essential role in the adaptive changes during ges-
tation. Wei et al. reported that the small RNAs in STB-
EVs from placentae included miRNAs (60–65%), rRNAs 
(20.2–21.7%), and tRFs (12.8–17%) [68]. In this study, 
5′-tRFs from three different tRNAs were also present at 
different levels between preeclamptic and normotensive 
trophoblast tissues from the placenta [68]. Lately, another 
study demonstrated that tRNA species were the most pre-
dominant (> 95%) type of short RNAs from STB-EV, in 
contrast to < 50% in whole placenta tissue [69]. Among 
these tRNA species within STB-EV, most are 5′‐tRNA 
halves [69]. However, Amorim et al. indicated that rRNA 
was reported to be the most abundant RNAs (73%) in 
plasma-derived EVs [76].

Generally, EV-associated tRFs seem unlikely to be the 
main form of tRFs in the human circulating bloodstream. 
Conversely, RNP, another carrier of exRNAs in the blood, 
has been confirmed to be highly abundant in 5′‐tRNA halves 
[77].

EV‑associated tRFs in other body fluids

To date, EVs have been detected in almost all body fluids. 
It was identified that seminal exosomes (SE) could trans-
mit small RNAs that serve as regulatory molecules to the 
recipient mucosa [70]. In a more recent study, five biofluids 
were compared using 10 exRNA isolation methods, includ-
ing ultracentrifugation to pre-enrich the EVs. The results 
showed that 5′‐tRNA halves and 5′-tRFs were highly abun-
dant in bile and urine [27]. This was consistent with the 
findings in the blood samples. However, 3′-tRFs and i-tRFs 
were more highly enriched in cells [27]. Small RNAs in 
mesenteric lymph (ML) may play a crucial part in critical 
illness. It was reported that the tRNA proportion (> 90%) 
in ML was more significant than those in plasma (about 
45%) from sham rats and was predominantly tRNA halves 
32 nt in length [71]. Among these tRNA halves, 5′‐tRNA 
halves from tRNA-Gly-GCC were the most abundant. Fur-
ther investigation revealed that tRNA halves only occupied 
1% of the ML-EV reads, whereas 76% of the total reads were 
miRNAs [71].

EV‑associated tRFs in cell lines

A study on dendritic cells (DCs) demonstrated that tRFs 
were selectively present in EVs. Nolte-’t Hoen et al. per-
formed small RNA analysis in both EVs and cells simul-
taneously [78]. Strikingly, tRFs mapped to either the 5′ or 
3′ end of tRNA were both observed in the cells, whereas 
only 5′ fragments were highly enriched in EVs. Further-
more, most of the abundant tRFs in EVs covered regions 
of 40–50 nt, compared to the 30–35-nt fragments in cel-
lular RNA. This indicated the existence of two different 
fragments of the same tRNA. It also confirmed that one 
specific tRF was observed only in EVs [78].

Another study was performed on exosomes isolated 
from human bone marrow- and adipose-mesenchymal  
stem cells (BMSCs and ASCs) [72]. It was observed that  
tRFs constituted the majority composition of the total 
tRNA in cells and exosomes. Importantly, 33-nt 5′‐tRNA  
halves from tRNA-Glu-CTC and tRNA-Gly-GCC were 
predominantly present in exosomes from ASC and BMSC. 
However, exosomes released by BMSC preferentially 
packaged the full-length tRNA-Glu-CTC and 33-nt tRNA 
halves of another abundant tRNA. Taken together, the dif-
ferent distributions of the tRFs between exosomes of bone 
marrow and adipose may be linked to the origins and stem 
of the mesenchymal stem cells (MSCs) [72]. Bioinformat-
ics analysis revealed that several potential targets were 
related to the self-renewal of stem cells and MSC differ-
entiation [72].

Research on glioblastoma (GBM) by Wei et al. exhib-
ited that some specific 5′‐tRNA halves originated from 
tRNA-Gly-GCC and tRNA-Glu-CTC and showed promi-
nence in exRNA [73]. Notably, a remarkable abundance 
of ANG and 5′‐tRNA half was noted in the exosomes 
released by GBM-derived stem-like cells that could rep-
resent therapeutic resistance, which might imply tRNA 
cleavage in the exosomes [73].

Another study by Sork and coworkers analyzed the 
diversity of RNA species within cells and EVs from five 
different cell types. The results revealed a remarkable rich-
ness of tRNA-Gly-GCC, tRNA-Glu-CTC, and tRNA-His-
GTG, in agreement with previous research [72, 79].

Overall, many studies have indicated that tRFs are more 
highly enriched in EVs than those in parental cells and that 
they may regulate essential biological functions, particu-
larly concerning mediating intercellular communication. 
In contrast, miRNAs in EVs represent a relatively small 
proportion, which is a different situation in cells. Interest-
ingly, higher enrichment in non-EV or RNP fraction was 
observed, which is consistent with the finding in blood 
[73, 80].
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Biological functions of EV‑associated tRFs

Much evidence has recently indicated that EV-associated 
tRFs play essential roles in many biological processes, par-
ticularly in regulating epigenetic inheritance, gene expres-
sion, protein synthesis, and immune activations [30, 81, 82].

Modulating epigenetic inheritance

Some reports have shown that EV-associated tRFs are 
related to epigenetic inheritance in mammals. Paternal diet 
can influence the metabolism of subsequent generations. 
Research in mice exhibited that consuming a low protein 
diet altered the levels of multiple small RNAs in sperm 
[81]. 5′ fragments of tRNA-Gly-CCC, TCC, and GCC were 
upregulated [81]. Of note was that EVs derived from the 
epididymis, also known as epididymosomes, delivered 
5′-tRFs to sperms and oocytes in succession. Furthermore, 
the authors found that tRF-Gly-GCC which was upregulated 
in sperm from mice fed with a low protein diet could sup-
press the endogenous retroelement MERVL-regulated genes 
in preimplantation embryos [81]. Consequently, these find-
ings might be responsible for the metabolic alterations in 
offspring.

tRFs in sperm can act as an epigenetic factor that may 
affect the metabolic phenotypes of future generations 
(Fig. 2). Chen and colleagues identified 5′‐tRNA halves in 
a paternal mouse model treated with a high-fat diet (HFD), 
which exhibited altered expression levels and RNA modi-
fications [83]. Furthermore, they injected tRFs (30–40 nt) 
from the sperm of HFD mice into normal zygotes. The F1 
offspring displayed changes in embryonic gene expression 
and RNA modifications and subsequently presented with 
metabolic disorders [83]. These findings demonstrated that 

diet-induced metabolic abnormalities could be transmitted 
from father to offspring, unlinked to the DNA methylation 
of CpG-enriched regions.

Interestingly, tRF types differ in abundance between 
paternal diet (low protein and high fat) in Sharma et al. [81] 
and in Chen et al. [83], which deserve further investigation.

Modulating gene expression

So far, it has been reported that EV-associated tRFs might 
also be relevant to regulating gene expression. Sharma and 
coauthors noted that epididymosomes (small EVs) could 
deliver 5′-tRFs to caput sperm in mice [30]. tRF-Gly-GCC 
can repress the expression of genes related to an endog-
enous retroelement (MERVL) during the development of 
preimplantation embryos [30]. Furthermore, this specific 
tRF regulates the stability and activity of ncRNAs and the 
histone levels, consequently affecting global chromatin pro-
duction [84].

EV-associated tRFs could have a significant impact on 
host–pathogen interactions [85]. Garcia-Silva et al. found 
that EVs secreted by Trypanosoma cruzi could induce gene 
expression changes in host HeLa cells [85]. Furthermore, 
specific transcripts were significantly changed upon trans-
fection with two EV-associated tRFs  (tRFThr and  tRFLeu) in 
HeLa cells. Likewise, some of these transcripts were also 
affected by incubation with EVs. However, the specific 
mechanism of action remains to be further elucidated [85].

Regulating protein synthesis

5′‐tRNA halves might inhibit both transcription and transla-
tion. Cooke and coauthors identified different enrichment 
of tRNA species between STB-EV in normal pregnancy 
and medium-large vesicles (MLEV). 5′-tRNA halves, not 

Fig. 2  The regulation of epige-
netic inheritance by 5′-tRNA 
halves. Epididymosomes (a 
type of EVs) delivered tRFs to 
mature sperm. 5′-tRNA halves 
were discovered in a paternal 
mouse model with high-fat diet 
(HFD). Injection of these tRFs 
generated diet-induced meta-
bolic disorders in F1 offspring. 
ND, normal diet
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3′-tRNA halves were the most abundant within STB-EV 
and confirmed by qPCR. Also, they used fibroblasts in cell 
cultures to investigate the effects of 5′tiRNA-GlyGCC (5′-
tRNA half), which was enriched in placental STB-EV [69]. 
A fluorescence-labeled methionine analog quantified the 
global protein synthesis. Human fibroblasts showed a reduc-
tion in fluorescence by adding exogenous 5′tiRNA-GlyGCC 
in an in vitro model, implying that 5′-tRNA halves play an 
essential part in fetus-maternal signaling in normal pregnan-
cies [69].

Regulating immune activation

Recently, a study on T cell activation was performed by 
Chiou’s research group [82]. The authors used a two-stage 
ultracentrifugation procedure to isolate EVs secreted by T 
cells. It was revealed that 5′-tRFs 18–21 nt in length were 
predominantly enriched in EVs, whereas 3′CCA-tRF meas-
uring 17–18 and 22 nt were depleted. Further investigations 
found that enrichment and depletion attenuated the acti-
vation of resting T cells [82]. Compared to cellular RNA, 
5′-tRFs Leu-TAA and Leu-TAG exhibited a higher abun-
dance in EVs in the stimulated conditions, whereas 3′i-tRF 
Leu-TAA showed higher enrichment levels under resting 
conditions. These differences might contribute to the T cell 
response regarding activating stimulating signals. In addi-
tion, the findings demonstrated that T cell activation could 
downregulate the activation-induced EV-enriched tRFs in 
cells via MVB formation and secretion [82]. Interestingly, 
transfecting antisense oligonucleotides that inhibit these 
tRFs could promote T cell activation, suggesting that remov-
ing the activation-induced tRFs by EV-biogenesis pathways 
might be a key mechanism in suppressing the inhibitory 
effect of tRFs in T cell activation (Fig. 3).

Clinical potential of tRFs in human diseases

Studies have revealed that tRFs were closely related and 
could be ideal potential biomarkers for cancer, viral infec-
tion, and metabolic and neurological diseases (Table 3) [54, 
64, 65, 86–109]. Moreover, the research on EV-associated 
tRFs is developing rapidly, promising biomarkers for vari-
ous diseases [28].

EV‑associated tRFs as potential biomarkers

Most of the research on tRFs as biomarkers has mainly 
utilized unfractionated bloodstream with a mixed exRNA 
carrier. However, a growing number of studies have now 
focused on tRFs within EVs derived from various body flu-
ids [22, 66, 79, 110–114] (Table 4).

EV‑associated tRFs as biomarkers in cancer

Exosomal tRFs in liver cancer

Recently, Zhu et al. demonstrated the presence of tRFs in 
exosomes from a cultured medium of liver cancer cells 
[22]. Among these tRFs in exosomes, 5′-tRF was the most 
abundant (90%). Subsequently, 3′-tRF and i-tRF accounted 
for 9 and 1%, respectively [22]. In addition, the level of 
tRFs in plasma exosomes from patients with liver cancer 
was significantly higher than that from healthy controls. 
Following the findings in cell culture, 5′-tRF was also the 
predominant category of tRFs in the plasma exosomes 
[22]. In particular, four tRFs, tRNA-Val-TAC-3(tRF-40-
EFOK8YR951K36D26, 3′-tRF), tRNA-Gly-TCC-5(tRF-
34-QNR8VP94FQFY1Q, 5′-tRNA half), tRNA-Val-
AAC-5(tRF-32-79MP9P9NH57SJ, 5′-tRNA half), and 

Fig. 3  The regulation of 
immune activation by 5′-tRFs. 
T cells release 5′-tRFs into 
extracellular vesicles (EVs) via 
the multivesicular body (MVB). 
Immune activation signal pro-
motion of MVB formation and 
the secretion of specific tRF-
enriched EVs. These 5′-tRFs 
repress both the activation of T 
cells and cytokine production 
within T cells
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tRNA-Glu-CTC-5(tRF-31-87R8WP9N1EWJ0, 5′-tRF), from 
plasma exosomes were remarkably expressed in liver cancer 
patients, suggesting their potential value in cancer diagnosis 
[22].

Exosomal tRFs in gastric carcinoma

Gastric carcinoma (GC) is one of the most prevalent cancers 
caused by gene-environment interaction. Lin et al. identified 
higher plasma exosomal expression levels of tRF-25(tRF-
25-DWY2MJ8F81, i-tRF), tRF-38(tRF-38-QB1MK8YUB-
S68BFD2, 3′-tRF), and tRF-18(tRF-18-8S68BFD2, 3′-tRF) 
in GC patients than healthy controls [66]. Besides this, the 
plasma exosomal of these three tRFs exhibited better diag-
nostic accuracy for GC detection by receiver operating char-
acteristic (ROC) analyses [66].

EV‑associated tRFs in breast cancer

Several studies have shown that tRFs may function as poten-
tial biomarkers in breast cancer (BC). Koi and associates 
confirmed that the expression levels of miR-23a-3p, isomiR 
of miR-21-5p, and tRF-Lys-TTT (tRF-32-PS5P4PW3FJHP1, 
5′-tRNA half) were significantly elevated in BC compared to 
controls [110]. The model based on these three small RNAs 
demonstrated high diagnostic accuracy, the area under ROC 
(AUC) value reached 0.92, and could successfully distin-
guished stage 0 BC from cancer-free individuals [110]. 
Furthermore, small RNAs in EVs (mainly exosomes) were 
isolated from serum and cell culture media and were evalu-
ated. Two miRNAs of the above three small RNAs were pre-
sent in EVs from serum, with a significantly high expression 
level in BC. However, there was no significant difference in 
expression of tRF-Lys-TTT [110].

Similarly, several studies indicated that expression dif-
ference of EV-associated tRFs could be detected in BC 
cell lines. IsomiR of miR-21-5p and miR-23a-3p were 
more abundant in the EVs from BC cell media, while the 
expression levels of tRF-Lys-TTT were lower in the EVs 
than those of normal human breast epithelial telomerase 
immortalized cells [110]. Tosar and coauthors found that 
5′-tRNA halves were significantly enriched in the extracel-
lular spaces derived from the BC cell line MCF-7 compared 
with intracellular fractions [79]. In contrast, miRNAs pre-
sented at very low abundances in extracellular fractions 
[79]. Similarly, “miRNA-like” tRNA fragments (miR-720 
and miR-1274b) were greatly expressed in the MCF-7 EVs 
uniquely and could not been found in cellular profiles [112]. 
These showed overexpression of tRNAs in MCF7 cells and 
an effective export process of tRFs. Consequently, these 
selected tRFs were amplified in EVs. Moreover, the study 
suggested a potential way to use high levels of tRFs com-
bined with known tumor miRNAs to identify circulating Ta
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tumor-derived EVs from EVs derived from other cellular 
fractions [112]. Furthermore, another study demonstrated 
that 5ʹ tiRNA-Gly (5′-tRNA half) could be secreted into 
MCF-7 EVs in a concentration-dependent fashion and 
closely replicated levels of EVs and the recipient cells [115].

EV‑associated tRFs as biomarkers in other diseases

Exosomal tRFs in osteoporosis

Osteoporosis is a disorder characterized by decreased bone 
mineral density and microarchitectural deterioration, which 
results in an increased risk of fracture. In a study on plasma 
exosomes, Zhang et al. identified 11 upregulated tRFs and 18 
downregulated tRFs in osteoporosis compared with healthy 
controls, using small RNA sequence of plasma exosomes 
[111]. In addition, six categories of tRFs were included 
in the osteoporosis and healthy control groups, namely, 
5′-tRNA half, 3′-tRNA half, tRF-1, 3′-tRF, 5′-tRF, and 
i-tRF [111]. Furthermore, the expression levels of tRF‐25‐
R9ODMJ6B26 (3′-tRF), tRF‐38‐QB1MK8YUBS68BFD2 
(3′-tRF), and tRF‐18‐BS68BFD2 (3′-tRF) were significantly 
higher in osteoporosis samples compared to controls [111]. 
In this study, a tRF panel including the above three tRFs 
was developed, with higher sensitivity and specificity for 
diagnosing osteoporosis than a single tRF [111].

Exosomal tRFs in chronic kidney disease

Urine may be used as a promising biomarker due to its non-
invasive collection. Khurana et al. found 30 differentially 
expressed urinary exosomal ncRNAs in chronic kidney dis-
ease (CKD) patients using a novel computational algorithm 
of RNA-seq [113]. Among these exRNAs,  tRFVal and  tRFLeu, 
originating from 5′-ends of tRNAs, were significantly less 
abundant in CKD patients than controls [113]. The increased 
expression levels of tRFs in exosomes from healthy controls 
may reflect an effective process to remove cellular waste 
from cells, which might impair kidney cells in during CKD 
[113].

EV‑associated tRFs in infection

Several studies have indicated that some EV-associated tRFs 
were also related to infections [85, 116]. Garcia-Silva and 
coauthors demonstrated that Trypanosoma cruzi epimastig-
otes excreted vesicles which carry tRFs and Ago, distinctive 
to trypanosomatids (TcPIWI-tryp), to extracellular medium 
under nutrient starvation [114]. A portion of these molecules 
in EVs were transferred between parasites and to infection 
susceptible mammalian cells [114]. Ghosal et al. analyzed 
complements of exRNAs from E. coli and found that the 
major constituents were tRFs, not full-length tRNAs [117]. 

Table 4  EV-associated tRFs as potential biomarkers

Type of disease Name of disease tRF/tRNA name Methods for EVs isolation Sample source Reference

Cancer Liver cancer tRNA-Val-TAC-3, tRNA-
Gly-TCC-5, tRNA-Val-
AAC-5, and tRNA-Glu-
CTC-5

Total exosome isolation 
reagent (from cell culture 
media), total exosome iso-
lation kit (from plasma)

Exosomes from cell culture 
medium and human 
plasma

[22]

Gastric carcinoma tRF-25, tRF-38, tRF-18 / Exosomes from human 
plasma

[66]

Breast cancer tRF-Lys-TTT Total exosome isolation kit 
(Invitrogen)

EVs from cell culture 
medium and the human 
serum

[110]

Breast cancer tRFs (30–31 nt) Ultracentrifugation EVs from cell culture 
medium

[115]

Breast cancer miR-720, miR-1274b Sequential centrifugation/
ultracentrifugation

EVs from serum-free cell 
culture medium

[112]

Other diseases Osteoporosis tRF‐25‐R9ODMJ6B26, 
tRF‐38‐QB1MK8Y-
UBS68BFD2, tRF‐
18‐8S68BFD2

ExoQuick™ plasma prep 
and exosome precipita-
tion kit

Exosomes from human 
plasma

[111]

Chronic kidney disease tRFVal and  tRFLeu Ultracentrifugation Exosomes from human 
urine

[113]

Infection tRNA-Leu, Thr, Glu, Gly, 
and Arg

Ultracentrifugation EVs from sE48 parasite 
culture medium

[114]

Male fertility tRNA-Gln-TTG / Exosomes from human 
semen

[119, 120]
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Likewise, EV-associated tRFs were identified in mouse 
serum infected with Schistosoma mansoni [118].

EV‑associated tRFs in male fertility

Recently, it was demonstrated that EV-associated tRFs in 
sperm played notable roles in preimplantation embryo devel-
opment, by modulating cell cycle–associated genes and ret-
rotransposons [119]. Additionally, Chen et al. indicated that 
human sperm tRF derived from tRNA-Gln-TTG could affect 
activation of the embryonic genome via regulation of ncR-
NAs. Their findings showed that this specific tRF group with 
30, 31, 32, 33, and 36 nt could act as a promising diagnostic 
biomarker and therapeutic target for male infertility [120].

Conclusions

It has been demonstrated that tRFs play vital roles in the 
development and progress of multiple diseases, particu-
larly cancers. Considerable evidence suggests that tRFs 
can regulate gene expression, gene translation, epigenetic 
inheritance, and the cell cycle. Meanwhile, an accumulating 
body of evidence has confirmed the abundant existence of 
tRFs in EVs. EV-associated tRFs might lead a key part in 
intercellular communication and serve as novel biomarkers 
for diagnosing cancer and other diseases. However, several 
limitations need to be considered. Firstly, the generation 
mechanism of tRFs and encapsulation in EVs remains to be 
fully elucidated. Secondly, more studies should be under-
taken to confirm the diagnostic roles of EV-associated tRFs 
in different types of tumors and other diseases. Thirdly, the 
correlation of EV-associated tRFs with cancer therapy and 
cancer prognosis requires further investigation. Fourthly, 
methodological details for EV isolation vary between dif-
ferent studies, explaining the discrepancy in results and 
poor reproducibility. However, with the progression of 
technologies, we believe that EV-associated tRFs will play 
increasingly important roles in the diagnosis and treatment 
of human diseases.
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