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Abstract
Psychological stress predisposes our body to several disorders. Understanding the cellular and molecular mechanisms 
involved in the physiological responses to psychological stress is essential for the success of therapeutic applications. New 
studies show, by using in vivo inducible Cre/loxP-mediated approaches in combination with pharmacological blockage, that 
sympathetic nerves, activated by psychological stress, induce brown adipocytes to produce IL-6. Strikingly, this cytokine 
promotes gluconeogenesis in hepatocytes, that results in the decline of tolerance to inflammatory organ damage. The com-
prehension arising from this research will be crucial for the handling of many inflammatory diseases. Here, we review recent 
advances in our comprehension of the sympathetic nerve-adipocyte axis in the tissue microenvironment.
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Introduction

Stressful psychological circumstances are frequent in our 
daily life. The “fight or flight response” is presently well-
defined as an evolutionary conserved physiological reaction 
of the organism to the eminent encounter with a stressor 
(threat or harmful event) [1]. This process was initially 
described at the first half of the twentieth century by the 
American physiologist Walter Bradford Cannon [2]. This 
phenomenon aims to preserve or restore organism homeo-
stasis in vertebrates [3]. It is characterized by several physio-
logical manifestations, including increase of respiratory and 
heart rates, rise in temperature, release of stocked energy, 
elevation in blood supply to skeletal muscles, dilation of eye 
pupils, among other changes [2, 4]. Nonetheless, although 
the consequences of this response are usually adaptive [5], 
they can also be damaging, affecting organ integrity and 
being detrimental to health [5, 6]. Hence, a unified in-depth 
mechanistic comprehension of the “fight or flight response” 
is crucial for discriminating pathological from physiologi-
cal outcomes to which it leads, and for improving thera-
pies designed to prevent organ damage resulting from this 
phenomenon.

The most well-studied effector organ that responds to 
stress is the adrenal gland, which releases catecholamines 
and glucocorticoids into the bloodstream [7]. Nonetheless, 
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the fight or flight response also activates the sympathetic 
nervous system, which has been historically less explored 
partially due to its diffuse anatomy [8, 9]. Sympathetic 
nerves innervate most organs and are also involved in vari-
ous pathophysiological responses to psychological stress 
[10, 11]. Sympathetic neurotransmitters released by these 
innervations, such as norepinephrine, ATP, neuropeptide 
Y, and nitric oxide, may affect the behavior of specific cell 
types in diverse tissue microenvironments [12, 13]. Albeit 
sympathetic nerves activated by psychological stress have 
long been suspected of participating in the origin of many 
disorders, the cellular and molecular mechanisms involved 
still remain incompletely understood. Understanding the 
role of sympathetic nerves and the signaling mechanisms 
involved during psychological stress may be crucial for the 
success of clinical applications.

In a recent article in Cell, Qing and colleagues dem-
onstrated elegantly that sympathetic nerves play a cen-
tral role in the inflammatory organ damage that can be 
caused by psychological stress [14]. Using state-of-the-
art technologies, such as sophisticated in vivo inducible 
genetic methods, including Cre/loxP-mediated systems, 
in combination with pharmacological approaches, the 
authors selectively eliminated different components 
from the tissue microenvironment to dissect the cellu-
lar and molecular mechanisms involved in acute stress-
derived organ damage. The authors found that the level 
of interleukin-6 (IL-6) induced after psychological stress 
was higher than of all other cytokines tested. This level 
was sustained for several hours, and it was independ-
ent of circadian oscillations [14]. Interestingly, surgical 
removal of brown adipose tissue eliminated the increase 
in IL-6 after psychological stress. Additionally, Qing 
and colleagues, by using UCP1-Cre/IL-6-floxed mice 
in which IL-6 is deleted specifically from brown adipo-
cytes, revealed that IL-6 levels after psychological stress 
decreased significantly in those mice [14]. These data 
indicated that the major source of IL-6 after psychologi-
cal stress was brown adipocytes.

Remarkably, the authors discovered that pharmacolog-
ical sympathetic denervation reduced IL-6 levels induced 
by psychological stress. Also, specific genetic ablation 
of β3 adrenergic receptors in brown adipocytes attenu-
ated the levels of stress-induced IL-6, demonstrating 
that sympathetic nerves control brown adipocytes IL-6 
release by β3 adrenergic signaling during acute stress. 
Moreover, Qing and colleagues showed that sympathetic 
nerve activation of adipocyte IL-6 secretion leads to 
hyperglycemia through gluconeogenesis in response to 
psychological stress [14]. Notably, pharmacologic block-
age or genetic deletion of IL-6 receptors in hepatocytes 
suppressed hepatic gluconeogenesis after psychological 
stress. Overall, these results indicate that sympathetic 

nerves induce hyperglycemia in response to acute stress 
via adipocyte-derived interleukin-6 acting on hepatocytes 
[14].

Qing and colleagues demonstrated that lipopolysaccharide-
induced inflammation can cause mortality in stressed animals. 
Strikingly, this mortality was dependent of sympathetic nerves 
signaling through β3-adrenergic receptors in adipocytes, of 
IL-6 release by those adipocytes, and of glucose production 
by hepatocytes in response to IL-6 [14]. Importantly, the mor-
tality in stressed animals was caused by renal and cardiac 
damage. Altogether, this study reveals a key role of sympa-
thetic nerves in decreasing tolerance to inflammatory organ 
damage via adipocyte-derived IL-6 (Fig. 1).

This study reveals details of cellular and molecular mech-
anisms involved in the organism response to acute stress. 
It also identifies a systemic communication between the 
peripheral nervous system, brown adipocytes, and hepato-
cytes. These findings also offer novel therapeutic targets for 
treatments of disorders characterized by inflammatory organ 
damage. Here, we discuss the discoveries from this work and 
evaluate recent advances in our understanding of the influ-
ence of sympathetic nerve-adipocyte-hepatocyte axis in the 
tissue microenvironment.

Perspectives/future directions

Specificity of transgenic cre/loxP models

Qing and colleagues analyzed cell-specific null mutant mice 
models (Ucp1-CreER/β3-adrenergic receptor-floxed, Ucp1-
CreER/IL-6-floxed, and Alb-Cre/IL-6 receptor a-floxed 
mice), and the principal discoveries from this study are 
based on the experimental results collected from these mice 
[14]. A limitation of such approaches is that they rely on the 
induction of the Cre recombinase [15–17]. Thus, caveats, 
that need to be given attention when using these models, 
include inadequate recombination leading to insufficient 
gene deletion, off-target Cre expression, and compensatory 
upregulation of other genes [18, 19]. Therefore, examination 
of gene expression levels in the targeted cells will clarify 
the level of achieved gene deletion, and whether there are 
compensatory changes in the expression of other genes in 
these specific cells.

Traditionally, it is well established that Ucp1 is expressed 
by adipocytes [20]. Nevertheless, not all adipocytes have 
this protein [21], and Cre-mediated expression based on this 
gene can be detected in other cells as well, for instance in 
renal collecting ducts [22]. Additionally, Ucp1 expression 
was previously detected outside of the adipose tissue as well 
[23]. Thus, in Ucp1-CreER/β3-adrenergic receptor-floxed 
and Ucp1-CreER/IL-6-floxed mice, β3-adrenergic recep-
tor and IL-6 may be also eliminated from other cell types 
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outside of the brown adipose tissue. Although these con-
cerns do not change the outcome of this study, it is possible 
that some of the effects observed in those models are not 
exclusively due to brown adipocytes.

Brown adipocytes are present in diverse anatomical loca-
tions in mice and humans, including dorsal back of the inter-
scapular and subscapular regions, cervical region between 
scapula and head, supraclavicular region, associated to  
kidneys, and attached to the thoracic aorta [24–27]. Addition-
ally, they can be found also within the epididymal and inguinal 
white adipose tissue [28, 29] as beige/brite adipocyte. Qing 
and colleagues surgically removed intrascapular fat pads, sug-
gesting the importance of brown adipocytes from this site [14].  
Nevertheless, in all transgenic models analyzed, genetic deletions  
of β3-adrenergic receptor and IL-6 were done in brown adi-
pocytes from all locations where they are present. Therefore, 
it remains to be explored whether the observed phenotype 
in these transgenic models is due to brown adipocytes from  

a specific anatomical location, or whether all brown adipo-
cytes contribute to this phenomenon.

Heterogeneity within the sympathetic 
nerve‑adipocyte axis

Mature adipocytes are the typical residents of the adipose 
tissue [30–32] and are classified into three distinct types: 
white, brown, and beige/brite (https://​doi.​org/​10.​1016/j.​
cmet.​2016.​10.​005). White adipocytes are related to stor-
ing triacylglycerides (TGs). The brown adipocytes oxidize 
lipids to produce heat in part through a UCP1 associated 
uncoupling of electron transport from ATP production. 
Beige adipocytes (“brown-like”) can also support UCP1-
independent thermogenesis (https://​doi.​org/​10.​1042/​BCJ20​
200298). Beige cells resemble white adipocytes with a shal-
low basal expression of UCP1, but, like classical brown fat, 
they respond to cyclic AMP stimulation with high UCP1 

Fig. 1   Sympathetic nerve-adipocyte-hepatocyte axis dictates physi-
ologic response to acute psychological stress. Using state-of-the-art 
technologies, Qing and colleagues demonstrated that, after acute 
psychological stress, sympathetic nerves induce brown adipocytes 

to increase circulatory IL-6 levels. IL-6 signals to hepatocytes to 
increase glucose production via gluconeogenesis leading to hypergly-
cemia. This results in a decline in the organism tolerance to inflam-
matory organ damage [14]
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expression and respiration rates (https://​doi.​org/​10.​1016/j.​
cell.​2012.​05.​016). Nevertheless, this tissue comprises a 
variety of other components with important physiologi-
cal roles, such as pre-adipocytes, mesenchymal stem cells, 
nerves, macrophages, neutrophils, lymphocytes, fibroblasts, 
pericytes, endothelial cells, and others [33–36]. The propor-
tions of the different adipose tissue constituents may vary 
depending on the pathophysiological condition and the 
anatomical location [37]. Interestingly, most of these cells 
produce IL-6 [38]. Qing and colleagues demonstrated that 
adipocytes are the main source of IL-6 after psychological 
stress [14]. Future studies will reveal whether other sources 
of IL-6 also may be activated by sympathetic nerves and 
play important roles during the “fight or flight response”.

Adipocytes have been shown to be heterogeneous, based 
on molecular markers, embryonic origins, and anatomical 
locations [39–41]. Qing and colleagues consider brown 
adipocytes as a homogeneous population in their study 
[14]. Nonetheless, a recent study revealed the existence of 
two brown adipocyte subpopulations based on adiponectin 
expression [42]. This study showed that the two subtypes 
differ in their functions and metabolic signatures, character-
izing them as low and high thermogenic brown adipocytes. 
Elegantly, by single-brown adipocyte RNA sequencing, it 
was revealed that there is molecular heterogeneity based 
on the transcriptomic patterns of the two brown adipocyte 
subtypes [42]. Curiously, only one of the subpopulations 
declined in number with aging. Thus, whether only a frac-
tion of brown adipocytes responds, by producing IL-6, to 
sympathetic nerves in response to acute stress still needs 
to be elucidated. It would be important to examine whether 
different brown adipocytes’ subsets behave distinctly during 
sympathetic nerve activation.

Although all rodent brown adipose tissue depots receive 
sympathetic innervations [43], the tissue microenvironments 
of these depots differ [44, 45]. For instance, only the peri-
cardial and minor mediastinal brown adipose tissue depots 
are innervated by parasympathetic nerve fibers [44, 45]. The 
sympathetic innervations may also vary in their morpholo-
gies and functions in different species [46–51]. Thus, the 
role of sympathetic neurons in the brown adipose tissue of 
distinct anatomical locations in particular species should be 
investigated in future studies.

Other roles of IL‑6 signaling

IL-6 is a prototypical cytokine involved in the enhance-
ment of multiple inflammatory pathways [52]. It can be 
induced by diverse stimuli, such as invasion of pathogens 
or other types of inflammation-linked damage [53]. IL-6 has 
been shown to be involved in both the innate and adaptive 
immune responses [38, 54]. It also activates the leukocytic 

chemotaxis towards the injured site [55, 56]. Importantly, 
decontrolled IL-6 release results in constant inflammation 
leading to tissue damage [57, 58]. IL-6 signaling involves 
canonical and non-canonical molecular mechanisms via 
a membrane bound or a soluble receptor, respectively. In 
canonical signaling, IL-6 binds to a membrane-anchored 
IL-6 receptor (IL-6R). This binding promotes an associa-
tion with gp130, which activates signal transduction [59]. 
Non-canonical IL-6 signaling is mediated by the binding 
to a soluble form of IL-6R (sIL-6R) and forming the com-
plex with gp130 [58]. The differences between downstream 
signaling mechanisms of IL-6 in canonical versus non-
canonical pathways depend on the affected cells, leading 
to the activation of JAK/STAT3 and/or SHP2/Gab/MAPK 
pathways [59]. Canonical IL-6 signaling is essential in the 
chemoresistance of ovarian cancer [60], autoimmune dis-
eases [61], colitis [62], and hepatic inflammation [63], while 
non-canonical IL-6 signaling influences rheumatoid arthri-
tis, Castleman disease [64], osteoclastogenesis [65], and type 
2 diabetes [66]. Increased IL-6 levels have been related to a 
series of stressors such as cold, infection, restraint, fatigue, 
sleep deprivation, and psychosocial stressors [67–71]. Thus, 
IL-6 increase may affect different tissues differently dur-
ing psychological stress [72]. Future studies should explore 
whether canonical, non-canonical IL-6 signaling, or both are 
involved during psychological stress pathogenesis.

IL6 is expressed as distinct isoforms that may be respon-
sible for different functions associated with IL6 signaling. 
For example, four IL-6 variants were detected in the human 
lung tissue: native IL-6, IL-6 missing exon 2 (IL-6Δ2), IL-6 
missing exon 4 (IL-6Δ4), and IL-6 missing both exons 2 
and 4 (IL-6Δ2,4). Nevertheless, proteins were coded exclu-
sively by native IL-6 and IL-6Δ4. The IL-6Δ4 isoform can 
form a stable complex with IL-6Rα like native IL-6, but not 
with IL-6Rβ. Thus, IL-6Δ4 might have a regulatory influ-
ence on IL-6 signaling [73]. A spliced isoform of IL-6 was 
also detected in renal cell carcinoma which acts as IL-6 
inhibitor [74]. Recently, there were also reported two IL-6 
isoforms in turtles subjected to stress homologous to the 
mammalian IL-6 [67]. The two IL-6 transcripts were named 
psIL6 and psIL6ns. Future studies should explore whether 
different IL-6 isoforms act differently in stress-related con-
texts. Qing and colleagues demonstrate that after acute stress 
sympathetic nerves induce the increase in the levels of IL-6 
which leads to other pathophysiologic effects [14]. It will 
be interesting to determine whether sympathetic nerves are 
also responsible for IL-6 increase in other pathological con-
ditions, in which the role of this cytokine is well character-
ized, such as Alzheimer’s disease [75–77], Asthma [78, 79], 
atherosclerosis [80, 81], inflammatory bowel disease [82, 
83], nephropathy [84], liver diseases [85], and others [38] 
(Fig. 2).
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Intriguingly, high levels of circulating IL-6 were associ-
ated with worse outcomes in COVID-19 patients, bringing 
attractive possibilities in terms of treatments [86]. An exces-
sive inflammatory reaction is observed in patients infected 
by the SARS-CoV-2 virus [87–90]. COVID-19 infection can 
be characterized as a “cytokine storm” because the infec-
tion is followed by an intense inflammatory response with 
the release of a copious pro-inflammatory cytokines. The 
cytokine storm can be characterized by destructive systemic 
inflammation, hyperferritinemia, hemodynamic instability, 
and multiple organ failure that can lead to death. Multiple 
pro-inflammatory cytokines, including IFN-γ, TNF-α, IL-1, 
IL-6, and IL-18, participate in this uncontrolled immune 
response [87, 91]. IL-6 plays a fundamental role in the harm-
ful systemic hyperactivated immune status, characterized 
as “cytokine storm”. IL-6-induced immune dysregulation 
is an important feature of SARS-CoV-2 infection, and the 
increase of this and other cytokines, including TNF-α, is 
associated with augmented viral load found in the severe 
form of the disease [91–93].

Three drugs that block IL-6 signaling, tocilizumab, 
sarilumab, and siltuximab, have been proposed to be used 

against COVID-19 [94, 95]. Yet, the cellular and molecu-
lar players involved in COVID-19 pathophysiology still 
remain poorly understood. It will be interesting to exam-
ine whether SARS-Cov-2 virus activates the sympathetic 
nerves–brown adipocytes axis to produce IL-6. During 
the pandemic, patients also suffer with social isolation 
what leads to acute psychological stress, with the possible 
involvement of sympathetic nerves in the production of 
IL-6. COVID-19 disease brought fear, lockdown, and pre-
cautionary measures that led to psychosocial stress which 
may result in depression [96–98]. Acute stress is related to 
isolated episodic events while chronic stress is associated 
with an accumulation of several episodic psychological 
stress events [99]. The prolongation of pandemic restric-
tions could lead to chronic stress. Although Qing et al. 
discussed IL-6 regulation of acute stress, IL-6 has been 
shown to be involved in both acute and chronic stress [71]. 
High levels of IL-6 are detected in patients with depres-
sion [100]. Furthermore, increased IL-6 concentration and 
systemic inflammation have been reported in psychosocial 
stress, similar to the observed after COVID-19 infection 
[100]. In spite of major epidemiological studies, stress 

Fig. 2   Schematic illustration 
summarizing the possible role 
of sympathetic nerves on mul-
tiple inflammatory diseases via 
IL-6. After acute psychologi-
cal stress, sympathetic nerves 
induce the increase in the levels 
of IL-6 which leads to other 
pathophysiologic effects [14]. 
IL-6 plays important roles in the 
pathogenesis of multiple disor-
ders. Future studies will reveal 
whether sympathetic nerves 
are also responsible for IL-6 
production in these pathological 
conditions
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has not yet been singled out as an essential risk factor in 
COVID-19 disease. Nevertheless, reports have shown that 
psychological stress and depression in COVID-19 patients 
may worsen disease prognosis [101, 102]. Interestingly, 
infants and children, which have more abundant brown 
adipose tissue [103–106], are the ones least affected by 
COVID-19 [107, 108]. This may be due to a variety of 
reasons, including lower expression of angiotensin-con-
verting enzyme 2 (ACE2) receptors in children [109, 110], 
higher COVID-19 comorbidities in adults [111], increased 
chronic pro-inflammatory status with age [112–115], and 
others. Thus, it will be important to investigate in depth 
the mechanisms involved in the production of IL-6 in 
COVID-19 patients at different ages, exploring the pos-
sible cross-talk between sympathetic nerves and brown 
adipocytes (Fig. 3).

IL-6 signaling induces distinct acute and chronic patho-
physiological effects. Initially, IL-6 is produced in the site 
of inflammation by the skeletal muscle, adipose tissue, 
adrenal gland, endothelial cells, and others [71], leading 
to the production of C-reactive protein, serum amyloid 
A, fibrinogen, and other acute-phase proteins [116, 117]. 
On the other hand, during the chronic response, IL-6 is 
produced by a variety of leukocytes mediating the switch 
from innate to adaptive immunity which restores the body 
homeostasis after inflammation [117, 118]. In obesity, 
although the main focus of studies has been the targeting 
of the white adipose tissue, increase in brown adipose 
tissue has emerged as a promising strategy against this 

pathology as well [119]. Indeed, ablation of UCP1, the 
brown-fat-specific uncoupling protein, has been shown 
sufficient to induce obesity, suggesting that brown adi-
pose tissue may protect against this disease [120]. Nev-
ertheless, an increase in IL-6 has been detected in the cir-
culation and adipose tissue of obese patients [121–123], 
indicating that possibly this increase in IL-6 may be 
coming from a different source than during acute psy-
chological stress. Interestingly, findings point to different 
and even sometimes contradictory outcomes when using 
IL-6 knockout mice. While some showed that these mice 
develop spontaneous obesity [124], other studies found 
different results [125, 126]. Such contradictory findings 
could be explained only in the frame of a more in-depth 
investigation on the role of IL-6 coming from different 
sources (cells/tissues).

Interactions within the tumor microenvironment

In addition to key roles of peripheral innervations within 
different organs, nerves infiltrate also inside tumors in sev-
eral tissues, affecting cancer development in different ways 
[127–134]. Specifically, sympathetic nerves have been 
shown necessary for cancer progression [131]. Importantly, 
clinical studies reveal beneficial effects of treatments that 
affect the sympathetic nervous system in human cancer 
patients [135]. Still, the detailed molecular mechanisms 
by which sympathetic nerves influence cancer progression 

Fig. 3   Possible role of sym-
pathetic nerves and brown 
adipocytes in COVID-19 patho-
genesis. High levels of circulat-
ing IL-6 are associated with 
worse outcomes in COVID-19 
patients. It will be interesting to 
examine whether SARS-Cov-2 
virus activates the sympathetic 
nerve-brown adipocyte axis 
to produce IL-6. During the 
pandemic, patients also suffer 
with social isolation what leads 
to acute psychological stress, 
with the possible involvement 
of sympathetic nerves in the 
production of IL-6
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remain incompletely understood within the complexity of 
the tumor microenvironment [133, 136].

When adipose tissue is invaded by cancer cells, adi-
pocytes act as a supply of lipids for neoplastic cells [137, 
138]. Additionally, adipocytes directly interact with malig-
nant cells affecting their behavior, including their prolif-
eration and invasion capacities [139–143]. Adipocytes may 
also affect other components within the tumor microenvi-
ronment, such as newly formed blood vessels [144–157]. 
White and beige adipocytes, within the tumor microenviron-
ment, also produce IL-6, and some of their effects on can-
cer cells have been attributed to IL-6 signaling [158, 159]. 
Additionally, brown adipocytes can transform and secrete 
IL‐6 upon other different stimulations [160, 161]. Cancer-
associated cachexia is associated with switch from WAT to 
BAT [162] (https://​doi.​org/​10.​1038/​s41598-​018-​36626-3). 
Increased circulating IL-6 levels have been associated with 
WAT browning, as consequence of the upregulation of the 
uncoupling protein-1 (UCP1) [162, 163] (https://​doi.​org/​10.​
20900/​immun​ometa​b2020​0032). Experiments blocking IL-6 
production by cancer cells show a reduction in browning 
[162], which limits cachexia [164]. Additionally, treatment 
with anti-IL-6 blocks WAT atrophy [162]. The role of the 
sympathetic nervous system in IL-6 induction of cancer-
associated cachexia remains to be explored.

Thus, it will be compelling to examine whether sympa-
thetic nerves also act within tumors via IL-6 derived from 
intra-tumoral adipocytes (Fig. 4). New treatments targeting 
this possible mechanism could potentially be used in the 
anti-cancer fight, improving patient survival.

Translating mouse research into humans

Qing and colleagues reveal a novel role of sympathetic 
nerves increasing circulatory IL-6 via brown adipocytes 
after psychological stress [14]. Mouse models aim to recre-
ate features of human biology as closely as possible. Nev-
ertheless, to translate animal research into human patients, 
these discoveries should be in the future validated in human 
tissues. Although it is known that in humans IL-6 levels 
increase after stress [14, 165, 166], the mechanisms involved 
in this phenomenon remain to be confirmed. It has been 
implied that β3-adrenergic response in the adipose tissue 
varies between species [167]. Comparing rodent and human 
brown adipose tissues, differences have been detected in 
composition, gene expression profiles, and anatomical loca-
tion, being more widely dispersed in humans [168, 169]. 
IL-6 also presents species-specific characteristics, such as 
binding specificity [170, 171]. Also, the human and rodent 
IL-6 receptors differ, and tocilizumab does not activate the 
rodent receptors [172–176]. It is not yet clear whether these 
findings could be translated into clinic, thus future studies 
should examine whether the mechanistic discoveries by Qing 
et al. (2020) are also valid in humans. Enhancing the acces-
sibility to human biopsies will be essential to achieve this 
aim. Importantly, although some BAT deposits have been 
reported [161, 177–180], the WAT is the predominant fat 
type in humans. IL-6 production by WAT has been suggested 
to participate in the pathophysiology of type 2 diabetes and 
obesity in humans [66, 181, 182]. Moreover, the white adi-
pose tissue is also innervated by the sympathetic nervous 

Fig. 4   Potential new mechanism 
of sympathetic nerve role within 
the tumor microenvironment. 
Different nerve fibers, includ-
ing sympathetic innervations, 
infiltrate the tumors, and affect 
their development. The detailed 
molecular mechanisms by 
which sympathetic nerves influ-
ence cancer progression remain 
incompletely understood. Future 
studies should examine whether 
sympathetic nerves also act 
within tumors via IL-6 derived 
from intra-tumoral adipocytes
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system [180, 183, 184] and has been shown to secrete IL-6 
[66]. This brings the question of whether the production of 
IL-6 in humans is activated in the WAT through sympathetic 
innervations stimulation as well. Thus, albeit IL-6 is secreted 
in humans from WAT, BAT and beige adipocytes, future 
work will explore whether and how the sympathetic nervous 
system is involved in these processes. Interestingly, several 
ongoing clinical trials are exploring the role of IL-6 biol-
ogy in multiple human disorders including inflammation, 
rheumatoid arthritis, COVID-19, pneumonia, cardiovascular 
diseases, cancer, adipose tissue remodeling, stress, exercise, 
immune cell regulation, and obesity (Table 1).

Conclusion

Qing and colleagues provide a new and important insight into 
the cellular and molecular mechanisms involved in the response 
to acute psychological stress: Sympathetic nerves induce adi-
pocytes to release IL-6 which activate hepatocytes for gluco-
neogenesis [14]. This new concept places sympathetic nerves, 
brown adipocytes, and hepatocytes as central players that might 
be pharmacologically targeted to alter the physiologic effects 
of acute psychological stress and improve the organism reac-
tions. Future studies will reveal whether these cross-talks are 
important also in other physiopathologic conditions.
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