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Abstract 
In malignant hypertension, far more severe kidney injury occurs than in the “benign” form of the disease. The role of high blood 
pressure and the renin–angiotensin–aldosterone system is well recognized, but the pathogenesis of the renal injury of malignant 
hypertension (MH) remains incompletely understood. Using the rat model of two-kidney, one-clip renovascular hypertension 
in which some but not all animals develop MH, we performed a transcriptomic analysis of gene expression by RNA sequenc-
ing to identify transcriptional changes in the kidney cortex specific for MH. Differential gene expression was assessed in three 
groups: MH, non-malignant hypertension (NMH), and normotensive, sham-operated controls. To distinguish MH from NMH, 
we considered two factors: weight loss and typical renovascular lesions. Mean blood pressure measured intraarterially was 
elevated in MH (220 ± 6.5 mmHg) as well as in NMH (192 ± 6.4 mmHg), compared to controls (119 ± 1.7 mmHg, p < 0.05). 
Eight hundred eighty-six genes were exclusively regulated in MH only. Principal component analysis revealed a separated 
clustering of the three groups. The data pointed to an upregulation of many inflammatory mechanisms in MH including 
pathways which previously attracted relatively little attention in the setting of hypertensive kidney injury: Transcripts from 
all three complement activation pathways were upregulated in MH compared to NMH but not in NMH compared with con-
trols; immunohistochemistry confirmed complement deposition in MH exclusively. The expression of chemokines attracting 
neutrophil granulocytes (CXCL6) and infiltration of myeloperoxidase-positive cells were increased only in MH rats. The data 
suggest that these pathways, especially complement deposition, may contribute to kidney injury under MH.

Key messages 
• The most severe hypertension-induced kidney injury 

occurs in malignant hypertension.
• In a rat model of malignant hypertension, we assessed 

transcriptional responses in the kidney exposed to high 
blood pressure. A broad stimulation of inflammatory 

mechanisms was observed, but a few specific pathways 
were activated only in the malignant form of the disease, 
notably activation of the complement cascades.

• Complement inhibitors may alleviate the thrombotic 
microangiopathy of malignant hypertension even in the 
absence of primary complement abnormalities.

Keywords Malignant hypertension · Two-kidney one-clip renovascular hypertension (2K1C) · Kidney injury · 
Inflammation · Complement activation · RNA-Seq

Introduction

Arterial hypertension is one of the major risk factors for 
the development of cardiovascular disease [1]. Addition-
ally, chronic elevation of blood pressure can induce chronic 

kidney disease (CKD) [2]. Vice versa, renal disease causes 
arterial hypertension [3]. Malignant hypertension is char-
acterized by a marked elevation of blood pressure and the 
occurrence of progressive end-organ damage (e.g., renal, 
cerebral, vascular, or ocular injury) [4, 5]. In the kidney, 
malignant hypertension leads to a form of thrombotic micro-
angiopathy, exhibiting fibrinoid necrosis and proliferative 
lesions of the small arteries [6] accompanied by kidney 
fibrosis and loss of renal function [7].
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The pathomechanistic factors for the development of 
malignant hypertension in contrast to the development of 
non-malignant arterial hypertension are only incompletely 
understood. In animal models, a marked and rapid rise of 
blood pressure appears to be a necessary condition [8]. On 
the other hand, blood pressure differences between malig-
nant hypertensive animals and appropriate non-malignant 
hypertensive controls can be quite small [9, 10]. Griffin et al. 
reported that even a small reduction of blood pressure allevi-
ated renal injury in a rat model of malignant hypertension, 
leading to the concept of a critical pressure threshold for 
malignant hypertension [5]. Several studies indicated that 
the activation of the renin–angiotensin–aldosterone system 
(RAAS) might play an important role [9, 11, 12]. A chronic 
activation of RAAS was also associated with the induction 
of inflammatory pathways [9, 13]. Furthermore, in a rat 
model of renovascular hypertension, malignant hyperten-
sion was accompanied by an impaired neovascularization 
and reduced capillary supply in heart and kidney tissue [14]. 
This might contribute to the specific vascular lesions and 
progressive organ failure seen in the kidney under malignant 
hypertension.

Here, we used a transcriptomic approach to elucidate 
specific alterations of gene expression of the kidney cortex 
in malignant versus non-malignant hypertension. We per-
formed high-throughput RNA sequencing (RNA-seq) in a 
rat model of two-kidney, one-clip renovascular hyperten-
sion (2K1C) [15]. Thirty-five days after clipping, differential 
gene expression in renal cortex was assessed in three animal 
groups: rats with malignant hypertension (MH), rats with 
non-malignant hypertension (NMH), and normotensive, 
sham-operated controls (sham). We focused on the non-
clipped kidney exposed to hypertension, because it is the 
non-clipped kidney, which exhibits the characteristic vas-
cular lesions of malignant nephrosclerosis. Several identi-
fied candidate genes were further assessed by RT-PCR and 
immunohistochemistry.

Results

Malignant hypertension

As described previously, the rat model of 2K1C was used to 
induce renovascular hypertension. Over a period of 35 days, 
only a part of rats spontaneously developed malignant hyper-
tension (MH) after clipping of the left renal artery with a sil-
ver clip of 0.2 mm internal diameter [15]. MH animals were 
classified by significantly reduced postinterventional weight 
gain and the occurrence of fibrinoid necrosis and onion skin 
type lesions as characteristic vascular lesions in the con-
tralateral kidney (supplementary Fig. 1) as described ear-
lier [14]. Non-malignant hypertensive (NMH) individuals in 

contrast were hypertensive without developing characteristic 
renal vascular lesions and showed normal weight gain (sup-
plementary table 1). In MH animals increased serum levels 
of creatinine, urea and aldosterone were found compared to 
NMH and sham (supplementary table 1). Serum creatinine 
in MH increased to levels comparable to those observed 
in models of glomerulonephritis or subtotal nephrectomy 
[16, 17], as did albuminuria (supplementary table 2). Mean 
arterial blood pressure (MAP) values were higher in MH 
compared to NMH, while MAP of both NMH and MH was 
significantly increased compared to sham animals (supple-
mentary table 1). Systolic blood pressure values obtained by 
sequential tail cuff measurements from week 1 until week 5 
after 2K1C revealed a trend towards higher pressure levels in 
MH beginning 1.5 weeks post intervention (supplementary 
Fig. 2). Relative left ventricular weight was increased in MH 
and NMH animals compared to sham but did not signifi-
cantly differ between MH and NMH (supplementary table 1) 
although there were vascular lesions and microinfarctions in 
the myocardium of MH (supplementary Fig. 3).

Renal gene expression patterns in malignant 
hypertension

Global gene expression in the non-clipped right kidney was 
assessed in sham, MH, and NMH animals using mRNA-
seq analysis [18]. To evaluate specific effects of malignant 
hypertension, differentially expressed genes in renal tissue 
were analyzed comparing MH and NMH animals. One thou-
sand one hundred thirty-five genes showed a significantly 
differential expression (fold change ≤ 2, fold change ≥ 2, 
adjusted p-value < 0.01). Among them, 886 genes exclu-
sively showed an expressional regulation in MH animals 
only (Fig. 1). Graphical representation of log2 fold change 
versus mean expression in MH and NMH animals indicated 

Fig. 1  Venn diagram showing the number of differentially expressed 
genes from RNA-seq analysis
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that the majority of regulated genes were upregulated 
(Fig. 2). Further evaluation of RNA-seq data comparing MH 
and NMH animals showed 765 genes significantly upregu-
lated and 370 genes significantly downregulated in MH.

Principal component analysis (PCA) revealed a separated 
clustering of the three study groups (Fig. 3). This observa-
tion is also supported by selected heat maps, depicting the 
differential expression of target genes related to “glomerular 

disease” (Fig. 4A), “vasculitis” (Fig. 4B), and “thrombosis” 
(Fig. 4C) (supplementary Fig. 4 shows the same data ordered 
by predetermined experimental group). These three topic 
areas were chosen because they reflect major sequelae of 
malignant hypertension in the kidney—elevated blood pres-
sure induced glomerular and vascular changes and throm-
botic microangiopathy.

Inflammatory pathways

Ingenuity pathway analysis (IPA, Qiagen) was used for fur-
ther in silico network and pathway analysis of differentially 
expressed genes. Disease-specific comparison of MH and 
NMH animals revealed “inflammatory response” as the most 
significantly altered signaling network based on the asso-
ciated number of differentially regulated genes (Table 1). 
Accordingly, IPA software identified the most relevant 
upstream regulators to belong to the group of proinflamma-
tory molecular markers (Table 2).

Based on these findings, a further assessment of inflam-
matory cells in the kidney was performed. Using immu-
nohistochemistry, more cytotoxic T-cells were found in 
the kidneys of MH animals compared to controls (Table 3, 
supplementary Fig. 5), while numbers of T-helper cells 
were only increased in NMH animals compared to controls 
(Table 3, supplementary Fig. 5). The local quantity of renal 
M1 macrophages was significantly higher in MH animals 
compared to NMH and sham animals (Table 3, supplemen-
tary Fig. 5). However, the number of M2 macrophages was 
increased only in the kidneys of MH animals compared to 
sham-controls (Table 3, supplementary Fig. 5). A signifi-
cantly higher infiltration by MPO-positive cells was found 
in MH compared to NMH and sham (Table 3, Fig. 5). Mac-
rophages as well as neutrophil granulocytes may be MPO-
positive; stainings of serial sections for MPO and CD68 
showed that at least part of the MPO-positive cells were 
CD68 negative (supplementary Fig. 6), suggesting infiltra-
tion of neutrophil granulocytes in MH. Fox-P3-positive 
regulatory T cells were increased in MH and NMH versus 
sham-operated controls, but there was no difference between 
MH and NMH, respectively (supplementary Fig. 7).

Renal expression levels of the chemokines CC-chemokine 
ligand 2 (CCL2), CC-chemokine ligand 7 (CCL7), and 
C-X-C motif chemokine ligand 6 (CXCL6) were signifi-
cantly increased in the kidney of MH compared to NMH and 
sham animals (Table 3). CC-Chemokine ligand 3 (CCL3) 
expression was only increased in MH rats compared to 
controls. CC-chemokine ligand 5 (CCL5) and C-X-C motif 
chemokine ligand 3 (CXCL3) showed no induction under 
malignant hypertension (Table 3). The renal expression of 
C–C chemokine receptor type 2 (CCR2), the receptor of 
CCL2 and CCL7, showed an increased expression in MH 
compared to sham but not to NMH (Table 3).

Fig. 2  MA plot. Scatterplot of log2 expression fold changes versus 
mean gene expression. Fold changes from highly variable genes are 
compressed using the apeglm approach from DESeq2 to aid with 
interpretation. Genes with significant expression differences (adjusted 
p-value < 0.01) are shown in red

Fig. 3  Principal component analysis (PCA) of gene expression in the 
individual samples. The labeling of the axes indicates the percent-
age of total variance explained by each component. Due to the higher 
variance explained by the PC1, differences along the x-axis are larger 
compared to differences along the y-axis. PC, principal component
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In the group of cytokines, interleukin-10 (Il-10), leuke-
mia inhibitory factor (LIF), and tumor necrosis factor-alpha 
(TNF-α) showed a significant expressional induction in MH 
compared to NMH and controls (Table 3). Interleukin-6 (Il-
6) and interleukin-17a (Il-17a) expressions were increased 
only in MH compared to sham. CD80, a costimulatory mol-
ecule, showed an induction of renal expression in the kid-
ney of MH compared to NMH, while for its ligand CTLA4, 
only a trend towards higher expression levels in MH animals 
was observed (Table 3). Vascular cell adhesion protein 1 
(VCAM-1) and intercellular adhesion molecule 1 (ICAM-1) 
showed higher renal expression levels in MH compared to 
sham (Table 3).

Pearson’s correlation coefficient was used to quantify 
the association between selected molecular markers of 

inflammation and inflammatory cells (Table 4). CCL2 posi-
tively correlated with M1 and M2 macrophages. CCL7 only 
showed a positive correlation with M1 macrophages not with 
M2 macrophages. CXCL6 revealed a positive correlation 
with MPO-positive cells (Table 4).

A broad consistence was detected between RT-PCR and 
RNA-seq when comparing the expression changes of these 
candidate genes, except for CCL5 (Table 5).

Complement system

RNA-seq analysis revealed a significant expressional induc-
tion of the classical complement system signaling pathway 
in MH compared to NMH animals (Fig. 6). Certain compo-
nents of the lectin and alternate complement cascades were 
also activated. Using RT-PCR, the expressional induction of 
C4b, C5aR1, and C6 was verified in the kidneys of MH in 

Fig. 4  Heat map analyses. Heat maps of normalized (rlog, DESeq2) 
expression values, centered and scaled by row. Clustering uses the 
Euclidean distance with complete linkage. A Heat map with genes 

related to “glomerular disease”; B heat map with genes related to 
“vasculitis”; C heat map with genes related to “thrombosis”

Table 1  Top 5 diseases and disorders

p-value range Number of 
molecules

Inflammatory response 6,03E-13—2,02E-51 412
Endocrine system disorders 7,15E-16—9,92E-47 215
Gastrointestinal disease 2,28E-13—9,92E-47 909
Metabolic disease 7,15E-16—9,92E-47 236
Organismal injury and 

abnormalities
8,19E-13—9,92E-47 973

Table 2  Top 5 upstream 
regulators

p-value

TNF 2,96E-57
TGFB1 8,88E-43
IFNG 1,25E-40
IL1B 2,07E-40
CSF2 5,48E-35
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comparison to NMH and sham. C3 and C3aR1 expression 
was found elevated in MH only compared to sham (Table 6). 
The expression of C3 was correlated with other comple-
ment components as well as with markers of infiltration and 
kidney injury but not with the level of blood pressure (sup-
plementary table 3).

Using immunohistochemistry, we detected that MH 
is accompanied by a significantly higher number of C1q 
and C3c positive glomeruli compared to NMH and sham 
(Fig. 7). Staining for C1q, C3c, and C3d was also present 
in damaged preglomerular arterioles in MH (Fig. 8). Immu-
nofluorescence demonstrated that C3d was preferentially 
localized in areas where endothelial staining was lost, both 
in glomeruli and arterioles (Fig. 8).

Discussion

Malignant hypertension is a life-threatening disease. Its 
pathogenic background is still unclear, especially the fac-
tors which determine the development towards malignant 

or non-malignant hypertension. Apart from that, the transi-
tion from non-malignant to malignant hypertension might 
serve as a model to identify pathways leading to more exten-
sive target organ damage in situations other than malignant 
hypertension.

In this context, we systematically compared gene expres-
sion patterns in our rat model of induced renovascular 
hypertension leading to the spontaneous development of 
malignant hypertension in some but not all animals, using 
RNA-seq. The objective was to detect candidate genes and 
pathways exclusively regulated under malignant hyper-
tension, compared with non-malignant hypertensive rats. 
We focused on gene expression in the contralateral (not 
the clipped) kidney because this kidney displays the char-
acteristic vascular lesions of malignant hypertension. We 
observed the most prominent upregulation of gene expres-
sion in functional pathways related to processes of inflam-
mation and cell infiltration. This result did not come as a 
surprise, as an inflammatory response in kidneys exposed 
to high blood pressure has been well recognized for decades 
in this animal model [13, 19] as well as in other models [20, 

Table 3  Inflammatory cells, 
chemokines, and cytokines

* p-value < 0.05 versus sham, § p-value < 0.05 versus NMH

Sham NMH MH

Inflammatory cells
MPO-positive cells [cells/view] 0.53 ± 0.15 0.69 ± 0.15 2.43 ± 0.51*§

M1 macrophages [CD68-positive cells/view] 5.7 ± 0.53 8.87 ± 0.82* 14,66 ± 1.44*§

M2 macrophages [Cd163-positive cells/view] 0.09 ± 0.04 0.58 ± 0.24 1.19 ± 0.3*
T-helper cells [Cd4-positive cells/view] 11.56 ± 3.37 88.15 ± 22.7* 57.11 ± 13.45
Cytotoxic T-cells [Cd8a-positive cells/view] 3.12 ± 0.38 4.2 ± 0.45 5.46 ± 0.47*

Chemokines
CCL2 [fold induction] 1.00 ± 0.23 5.85 ± 1.46 11.48 ± 1.33*§

CCL3 [fold induction] 1.00 ± 0.14 2.15 ± 0.5 2.70 ± 0.31*
CCL5 [fold induction] 1.00 ± 0.32 1.66 ± 0.23 2.24 ± 0.43
CCL7 [fold induction] 1.00 ± 0.23 4.50 ± 0.65* 7.78 ± 0.95*§

CXCL3 [fold induction] 1.00 ± 0,32 4,85 ± 1,1 12,99 ± 5,7
CXCL6 [fold induction] 1.00 ± 0.32 14.38 ± 5.33 56.74 ± 13.43*§

CXCL8 [fold induction] 1.00 ± 0.18 1.58 ± 0.36 2.52 ± 0.57
CCR2 [fold induction] 1.00 ± 0.14 6.54 ± 2.62 11.7 ± 1.9*

Cytokines
IL-6 [fold induction] 1.00 ± 0.24 12.67 ± 2.66* 19.24 ± 2.3*
IL-10 [fold induction] 1.00 ± 0.17 2.62 ± 0.47 5.90 ± 0.71*§

IL-17a [fold induction] 1.00 ± 0.12 5.40 ± 1.94 26.85 ± 10.5*
LIF [fold induction] 1.00 ± 0.16 8.51 ± 1.79* 19.16 ± 2.26*§

TNF-α [fold induction] 1.00 ± 0.21 2.54 ± 0.42* 4.00 ± 0.35*§

Costimulatory molecules
CD80 [fold induction] 1.00 ± 0.18 4.83 ± 1.25 10.9 ± 2.27*§

CTLA4 [fold induction] 1.00 ± 0.22 4.47 ± 1.29 13.34 ± 2.79
Adhesion molecules

ICAM-1 [fold induction] 1.00 ± 0.17 5.57 ± 1.63 9.73 ± 0.56*
VCAM-1 [fold induction] 1.00 ± 0.24 2.84 ± 0.62 4.08 ± 0.31*
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21]. Nevertheless, our data point to a number of distinct 
pathways, which are upregulated in malignant hypertension.

Perhaps the most intriguing finding was the increased 
local expression of pathway components associated with 
complement activation. The similarity of renal vascular 
lesions observed in malignant hypertension to the ones seen 
in complement-mediated hemolytic-uremic syndrome has 
often been noted [22], and distinguishing between both dis-
eases can be challenging in the clinical setting. Timmermans  
et al. [23] have reported that complement abnormalities 
may underlie at least a subset of patients with malignant 
hypertension, but this finding has not been corroborated 
by other authors [24]. In this regard, our model may be of 
interest because we found both complement activation and 
vascular lesions suggestive of thrombotic microangiopathy 

despite the absence of other triggers for complement acti-
vation except hypertension. Because the functional role of 
renal expression of complement factors relative to serum-
derived factors (which we did not measure) is unknown, and 
as the complement cascade is characterized by numerous 

Fig. 5  Infiltration of MPO-
positive cells into kidney tissue. 
A Exemplary photomicrographs 
of renal sections stained for 
myeloperoxidase (MPO). Bar 
represents 100 μm. B Evaluation 
of MPO-positive cell counts. 
Sham, sham-operated animals 
(n = 9); NMH, non-malignant 
hypertension (n = 13); MH, 
malignant hypertension (n = 11). 
Data are means ± standard error 
of the mean, statistical test one-
way ANOVA, Bonferroni post 
hoc test. * p < 0.05 vs. sham, § 
p < 0.05 vs. NMH

Table 4  Correlation of selected molecular markers of inflammation 
and inflammatory cells

r = Pearson’s correlation coefficient r
Statistical significance was defined as p-value < 0.05

r p-value

CCL2 (mRNA expression) vs. M1 macrophages 
(cells/view)

0.82  < 0.001

CCL2 (mRNA expression) vs. M2 macrophages 
(cells/view)

0.80 0.01

CCL7 (mRNA expression) vs. M1 macrophages 
(cells/view)

0.83  < 0.001

CCL7 (mRNA expression) vs. M2 macrophages 
(cells/view)

0.43 0.25

CXCL6 (mRNA expression) vs. MPO-positive 
cells (cells/view)

0.83  < 0.001

Table 5  Overview of ratios for the relative expression changes in 
both analytic procedures (PCR and RNA-seq)

Ratio

Gene PCR (Mal vs. NMH) RNA-seq 
(Mal vs. 
NMH)

C3 2.12 3.62
C3aR1 1.56 3.72
C4b 3.52 6.86
C5aR1 2.95 3.09
C6 3.61 4.37
CCL2 1.96 3.45
CCL3 1.26 1.49
CCL5 1.35 0.65
CCL7 1.73 2.78
CXCL3 2.68 9.86
IL-6 1.52 3.5
IL-10 2.25 7.31
IL-17a 4.97 5.38
LIF 2.25 2.96
CD80 2.26 2.61
CTLA4 2.98 3.36
ICAM-1 1.75 2.20
VCAM-1 4.08 1.77
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post-translational interactions of its components, we deter-
mined the renal deposition of factors C1 and C3 by immuno-
histochemistry. Both components were present in glomeruli 
and preglomerular vessels of malignant hypertensive rats.

Our findings contrast with some animals studies including 
the report of Cole et al. [25] who did not find an effect of 
complement C3 deficiency on angiotensin II-induced hyper-
tension and hypertrophy in mice. On the other hand, Ruan 
et al. [26]  described a crucial role of C5a for the vascular 
inflammation in mouse DOCA-salt hypertension, and Negi-
shi et al. [27] reported that C3 contributes to salt-sensitive 
hypertension in spontaneously hypertensive rats. Finally, 

the group of Wenzel et al. [28, 29] described a functional 
role of the complement receptor C5aR1 for the develop-
ment of kidney injury in a mouse model of angiotensin II-
induced hypertension. Thus, the role of complement factors 
for hypertensive target organ damage remains controversial. 
Our results do not permit to distinguish between local com-
plement activation and trapping of complement factors, but 
the localization of these factors, and their association with 
serious kidney injury, is compatible with a contribution of 
complement activity to the most severe forms of vascular 
and glomerular damage in malignant hypertension.

A number of chemokines known to attract mononuclear 
cells were induced by renovascular hypertension and even 
more increased in the malignant form of the disease, nota-
bly CCL2 and CCL7. This observation as well as the cor-
responding increase of M1 macrophage infiltration was to 
be expected from previous reports from the same model 
[13]. Others have previously shown that blockade or defi-
ciency of CCL2 ameliorates mononuclear cell infiltration 
and target organ damage in renovascular or other forms of 
hypertension [30, 31]. These data are certainly compatible 
with a role for macrophage infiltration in the development 
of malignant hypertension, but the parallel increase of M2 

Fig. 6  Schematic drawing of the complement cascade derived from ingenuity pathway analysis. All upregulated genes are depicted in red color. 
A MH vs. sham, B NMH vs. sham

Table 6  mRNA expression of selected complement factors

* p-value < 0.05 versus sham, § p-value < 0.05 versus NMH

Sham NMH MH

C3 [fold induction] 1.00 ± 0.24 5.58 ± 1.71 11.84 ± 2.75*
C3aR1 [fold induction] 1.00 ± 0.22 2.87 ± 0.58 4.48 ± 0.90*
C4b [fold induction] 1.00 ± 0.14 8.85 ± 3.63 31.17 ± 7.10*§

C5aR1 [fold induction] 1.00 ± 0.21 3.46 ± 0.85 10.21 ± 2.25*§

C6 [fold induction] 1.00 ± 0.34 4.63 ± 1.46 16,72 ± 5.10*§
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macrophage infiltration should not be overlooked. Recent 
data from single-cell sequencing studies have described a far 
more complex typology of resident macrophage populations 
than our relatively crude CD68 (ED1) and CD163 stainings 
can resolve [32].

We did not observe a marked difference of T-cell infil-
tration between malignant and non-malignant hypertension, 
somewhat to our surprise. However, this absence of a differ-
ence should not be misunderstood to militate against the role 
of lymphocytes for the development of high blood pressure 
in angiotensin II-dependent forms of hypertension, an issue, 
which has attracted great interest in recent years [33–35]. We 
focused on the different organ damage between two courses 
of hypertension (malignant versus non-malignant) with simi-
lar blood pressure trajectories, not on the mechanisms lead-
ing to high blood pressure per se. Of note, our observations 
point to a possible role of one pathway involving T-cells 
that has so far received relatively little attention in the set-
ting of hypertensive target organ damage: co-stimulation; 
the expression of both CTLA-4 and its binding partner 
CD80 was increased in malignant hypertension. Vinh et al. 
reported that inhibition or genetic ablation of co-stimulation 

prevented the development of experimental hypertension in 
mice [36]. We are not aware of further studies addressing the 
role of co-stimulation for target organ injury in established 
hypertension. One might speculate that the enhanced expres-
sion of CTLA-4 and CD80 in malignant hypertension could 
point to an ongoing specific immune response.

Further, we noted a markedly increased expression of 
the chemokine CXCL6, which is known to attract neutro-
phil granulocytes, accompanied by increased expression of 
E-selectin [37]. Therefore, we attempted to assess granulo-
cyte infiltration by staining for MPO; MPO-positive cells were 
observed exclusively in kidneys from animals with malignant 
hypertension. However, some macrophages are also MPO-
positive; and we could ultimately not resolve which part of 
MPO-positive cells were granulocytes versus macrophages. 
Most previous reports on the role of granulocytes in hyper-
tension focus on circulating neutrophils [38], and neutrophil 
granulocytes can damage endothelial cells in vitro [39, 40].

Our study has several limitations. First, the study groups 
MH and NMH might also be regarded as two extremes of a 
continuous spectrum rather than two distinct clinical courses. 
Data obtained from PCA as well as the fact that the same 

Fig. 7  Components of the complement system (C1q and C3c) 
detected in kidney tissue. A Exemplary photomicrographs of renal 
sections stained for C1q or C3c. Bar represents 100 μm. B evaluation 
of glomeruli stained positive for C1q or C3c. Sham, sham-operated 

animals (n = 6); NMH, non-malignant hypertension (n = 6); MH, 
malignant hypertension (n = 5). Data are means ± standard error of 
the mean. * p < 0.05 vs. sham, § p < 0.05 vs. NMH
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intervention by 2K1C induces significantly different courses 
of pathology supports the classification of MH and NMH 
animals as two distinct categories. Furthermore, compari-
sons between two extremes of a spectrum might still point to 
pathways associated with more severe hypertensive damage. 
Second, renal alterations in MH animals were only assessed 
at one time point. This does not allow to discriminate if the 
observed alterations are cause or effect of malignant hyper-
tension. Our data are fully compatible with the notion of a 
threshold pressure which might trigger the observed tran-
scriptional changes [5]. Blood pressure was measured by tail 
cuff during the course and intraarterially at the termination of 
the experiment, but not by radiotelemetry which might have 
provided more information. Data obtained by RNA-seq were 
confirmed by RT-PCR and immunohistochemistry, but no 

functional tests were performed. These tests will be necessary 
to clarify in further studies the pathogenic link and mechanis-
tic background of renal damage and malignant hypertension. 
Further, end-organ damage under malignant hypertension 
was only examined in the kidney not in other organs also 
affected by malignant hypertension, e.g., the brain and heart. 
Finally, we performed bulk RNA-seq with RNA extracted 
from renal cortical tissue. Single-cell RNA sequencing which 
was not available to us might have provided more information 
on the cell infiltrate as well as on the question which path-
ways are activated in which specific cell type. Conversely, 
our focus on kidney cortical tissue will miss differential gene 
expression in kidney medulla. Nevertheless, our data point 
to potential therapeutic targets for malignant hypertension, 
especially with regard to the complement system.

Fig. 8  Exemplary photomicro-
graphs of renal sections stained 
for C1q or C3c. Arrows point 
to stained vascular structures. 
Fluorescent stainings to local-
ize complement deposition: 
Complement C3d (red) was co-
stained with α-smooth muscle 
actin (white, detecting vascular 
smooth muscle cells) and 
endothelium of blood vessels 
(green, aminopeptidase P, see 
reference 45). Bar represents 
50 μm

1735Journal of Molecular Medicine (2021) 99:1727–1740



1 3

Material and methods

Induction of renovascular hypertension

All procedures performed on animals were done in compli-
ance with the DIRECTIVE 2010/63/EU of the European Par-
liament and were approved by the local government authori-
ties (Regierung of Mittelfranken, AZ54-2532.1–51/12). 
Animal experiments were reported with adherence to the 
ARRIVE guidelines [41].

Rats were housed in a room maintained at 22 ± 2 °C, 
exposed to a 12 h dark/light cycle. The animals were allowed 
unlimited access to chow (#1320, Altromin, Lage, Germany) 
and tap water. Two-kidney, one-clip renovascular hyperten-
sion (2K1C) was induced in male Sprague–Dawley rats 
(Charles River, Sulzfeld, Germany) weighing 150–170 g 
by placing a silver clip of 0.2 mm internal diameter around 
the left renal artery through a flank incision under isoflu-
rane anesthesia as previously described [15]. Control ani-
mals underwent sham operation without placement of the 
clip. Analgesia with subcutaneous buprenorphine injections 
was provided post-operatively in all animals and as needed 
later on.

Experimental groups

Five weeks after clipping of the left renal artery, the experi-
ment was terminated, animals were weighted, and renal tis-
sue was studied for the presence of onion skin lesions and 
fibrinoid necrosis in all contralateral kidneys exposed to high 
blood pressure. Thirteen control animals underwent sham 
operation (sham). Fourteen animals were defined as malig-
nant hypertensive (MH) and 13 as non-malignant hyperten-
sive (NMH). The criteria used for the definition of malignant 
hypertension in this study (weight loss and characteristic 
vascular lesions) are described in detail elsewhere [14].

Blood pressure measurements and determination 
of serum markers

Procedures of blood pressure measurements were described 
previously [14, 42]. In short, systolic blood pressure val-
ues were obtained by tail cuff measurements in trained rats 
1, 1.5, 2, 3, 4, and 5 weeks after 2K1C using a peripheral 
blood pressure monitoring system (TSE Technical Scientific 
Equipment GmbH, Bad Homburg, Germany). At the end 
of the experiment, femoral artery catheters were implanted 
under isoflurane anesthesia for invasive blood pressure 
measurements. Measurements were performed in conscious 
animals via transducers connected to a polygraph (Hellige, 
Freiburg, Germany). Blood samples with a total volume of 
2 ml were collected immediately before euthanasia. Serum 

creatinine, urea, and aldosterone were analyzed using the 
automatic analyzer Integra 800 (Roche Diagnostics, Man-
nheim, Germany).

Tissue preparation and histological analysis

After organ weighing, kidneys were decapsulated. Both 
poles of each kidney were immediately snap frozen on liq-
uid nitrogen for RNA extraction. One slice of the kidney was 
snap frozen for protein isolation, while another slice of the 
remaining kidney was put in Methyl Carnoy’s fixative (60% 
methanol, 30% chloroform, and 10% glacial acetic acid) for 
fixation. Paraffin-embedded tissue was sectioned and stained 
with periodic acid Schiff’s (PAS) reagent for detection of 
onion skin lesions and fibrinoid necrosis.

RNA isolation

RNA was isolated from tissue samples after homogeniza-
tion with a disperser (T10 basic Ultra-Turrax; IKA, Staufen, 
Germany) using the RNeasy Fibrous Tissue Midi Kit (Qia-
gen, Hilden, Germany). In this procedure, Proteinase K was 
used as well as DNase to remove genomic DNA. The entire 
process was carried out according to the manufacturer’s 
instructions.

Whole transcriptome analysis (RNA‑seq)

As reported previously, quality of isolated RNA samples was 
determined using the Agilent 2100 Bioanalyzer equipped 
with an Agilent RNA 6000 Nano kit and related software 
(Agilent, Santa Clara, CA) [43]. RNA integrity number 
(RIN) values of ≥ 5 were deemed suitable for analysis [44]. 
The RIN values of the samples were in a range from 6.5 to 
10.5.

RNA-seq was performed in MH (n = 6), NMH (n = 5), and 
sham animals (n = 5). Sequencing libraries were generated 
from 0.5 ug high-quality RNA using the TruSeq Stranded 
mRNA Kit (Illumina, San Diego, USA) according to the 
manufacturer’s instructions. Libraries were sequenced on a 
HiSeq 2500 platform (Illumina, San Diego, USA) as 101 bp 
single-end reads to a depth of at least 25 million reads. 
Reads were converted to FASTQ format while masking 
adapter sequences (bcl2fastq v2.17.1.4, Illumina, San Diego, 
USA). Sequences mapping to rRNA, tRNA, mtRNA, and 
transposons were removed by alignment against a custom 
reference list (bwa v0.7.14, samtools v1.8). Remaining reads 
were mapped to the Rattus norvegicus reference genome 
Rnor 6.0, Ensembl gene annotation 93, using a splice-aware 
aligner (STAR v2.5.4a) and quantified as reads per gene 
while excluding exons shared between more than one gene 
(subread v1.5.3). Based on this quantification, differentially 
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expressed genes were determined using the negative bino-
mial model as implemented in DESeq2 (DESeq2 v1.20.0, 
R v3.5.0). Analysis was performed in the following groups: 
MH vs. NMH, NMH vs. sham, MH vs. [NMH + s ham], and 
[MH + NMH] vs. sham. Results from significance tests were 
corrected for multiple testing (Benjamini-Hochberg).

Raw data for RNA-seq are publicly available in the Gene 
expression Omnibus (GEO, NCBI) repository under the 
accession number (pending).

Network and pathway analysis

In silico network and pathway analysis was performed using 
Ingenuity Pathway Analysis software, Version 52,912,811 
(Qiagen, Hilden, Germany). Differentially expressed genes with 
log2 fold change (LFC) > ± 2 and a corrected p value < 0.01 
were analyzed. By the comparison with the current Ingenuity 
knowledge base significantly altered networks, upstream regu-
lators and central candidate genes were extracted.

Immunohistochemistry

Tissue was processed as described previously [14]. In sum-
mary, three micron sections of renal tissue were cut with 
a Leitz SM 2000 R microtome (Leica Instruments, Nuss-
loch, Germany). Endogenous peroxidase activity was 
blocked with 3% H2O2 in methanol for 20 min at room 
temperature. Antigen retrieval was performed using Target 
Retrieval Solution (TRS) (DAKO, Hamburg, Germany). 
For the primary antibody, an overnight incubation at 4 °C 
was chosen. Secondary antibodies were incubated for 2 h 
at room temperature. Antibodies against CD68 (ED1; AbD 
Serotec, Kidlington; UK 1:250), myeloperoxidase (MPO) 
(Abcam, Cambridge, UK; 1:50), CD3 (Abcam, Cambridge, 
UK; 1:50), CD4 (Cell signaling, Danvers, Massachusetts, 
USA; 1:50), CD8a (Abcam, Cambridge, UK; 1:50), CD163 
(Abcam, Cambridge, UK; 1:50), C1q (Dako, Glostrup, 
Denmark; 1:75,000), and C3c (Dako, Glostrup, Denmark; 
1:75,000) were used. Infiltration by inflammatory cells was 
assessed after staining with CD68 (M1 macrophages), MPO 
(neutrophil granulocytes, some macrophages), CD3 (T-lym-
phocytes), FoxP3 (regulatory T-cells), CD4 (T-helper cells), 
CD8a (cytotoxic T-cells), and CD163 (M2 macrophages) by 
counting the number of positive cells in 20 medium-power 
views (magnification × 200 on a Leitz microscope). Fur-
thermore, in each kidney, 100–200 glomeruli were counted, 
and the number of C1q and C3c positive glomeruli was 
expressed as a percentage of the total number of glomeruli 
counted. All antibodies were used on paraffin-embedded tis-
sue sections. For immunofluorescence stainings antibodies 
to α-smooth muscle actin (DAKO, Hamburg, Germany), 
aminopeptidase P (Invitrogen, Karlruhe, Germany) [45] 
and C3d (Abcam, Cambridge, UK) were applied, followed 

by secondary fluorescent antibodies: goat anti-mouse IgG1 
conjugated with Alexa Fluor 488 (Dianova, Hamburg, Ger-
many) and goat anti-mouse IgG2a conjugated with Alexa 
Fluor 633 (Life technologies GmbH, Darmstadt, Germany); 
sections were covered with autofluorescence quenching kit 
TrueView (Vector Laboratories, Burlingame, CA, USA) 
and analyzed using a confocal laser scanning microscope 
(LSM710) and ZEN software (both Zeiss, Oberkochen, Ger-
many) All histological evaluations were done by a single 
investigator blinded to the group assignment.

Real‑time polymerase chain reaction (PCR) analyses

Renal and myocardial tissue was homogenized in RLT 
buffer reagent (Qiagen, Hilden, Germany) with an ultratur-
rax for 30 s, total RNA was extracted from homogenates 
by RNeasy Minicolumns (Qiagen) according to the manu-
facturer’s protocol, and real-time RT-PCR was performed. 
First-strand cDNA was synthesized with TaqMan reverse 
transcription reagents (Applied Biosystems, Darmstadt, 
Germany) using random hexamers as primers. Reactions 
without Multiscribe reverse transcriptase were used as 
negative controls for genomic DNA contamination. PCR 
was performed with an ABI PRISM 7000 Sequence Detec-
tor System and TaqMan or SYBR Green Universal PCR 
Master Mix (Applied Biosystems), as described previously 
[42]. All samples were run in triplicates. Specific mRNA 
levels in hypertensive animals relative to sham-operated 
controls were calculated and normalized to a housekeeping 
gene (18S) with the Δ-Δ-CT method as specified by the 
manufacturer (http:// www3. appli edbio syste ms. com/ cms/ 
groups/ mcb_ suppo rt/ docum ents/ gener aldoc uments/ cms_ 
040980. pdf). Primer pairs used for experiments are shown 
in supplementary table 4.

Statistics

Data are expressed as means ± standard error of the mean 
(SEM). Normality was tested using the Shapiro–Wilk test. 
Subsequently, to assess differences between sham, NMH, 
and MH animals, one-way analysis of variance (one-way 
ANOVA), followed by Bonferroni post hoc test or, where 
appropriate, Kruskal–Wallis, followed by Dunn’s test, was 
performed using IBM SPSS 21 (SPSS Inc. Chicago, IL, 
USA). Results were considered significant at p < 0.05. Pear-
son correlations were used to assess associations between 
selected molecular markers of inflammation and inflamma-
tory cells. Strength of Pearson’s correlations was graded 
according to the following pattern: r = 0.0–0.19 “very weak,” 
r = 0.2–0.39 “weak,” r = 0.4–0.59 “moderate,” r = 0.6–0.79 
“strong,” and r = 0.8–1.0 “very strong.” Statistical signifi-
cance was set at p-values < 0.05 [46].
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