Skip to main content

Advertisement

Log in

Predisposition to Graves’ disease and Graves’ ophthalmopathy by genetic variants of IL2RA

  • Original Article
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

Previous studies have identified that Th17/Treg cells were involved in the occurrence and development of Graves’ disease (GD). This study aimed at clarifying the association between GD susceptibility and nine single nucleotide polymorphisms (SNPs) of Th17/Treg cell-related genes, including IL2RA, miR27a, miR182, and FoxO1. A two-stage association study was performed in 650 GD patients and 1300 healthy controls. PCR–RFLP assays, real-time PCR, and ELISA were performed. In the first stage, association analysis has identified that IL2RA/rs3118470 TT genotype (Pc = 0.027, OR = 1.688) and IL2RA/rs2104286 AA genotype (Pc = 0.027, OR = 1.658) has significantly increased frequencies in patients with GD than control subjects. In the second stage, the result of rs2104286 was consistent with the first-stage results (AA genotype: Pc = 0.006, OR = 1.618). The combined data showed that IL2RA/rs2104286 AA genotype had increased frequencies in patients with GD (Pc = 8.772 × 10−6, OR = 1.636). Stratification analysis also revealed that rs2104286 AA genotype was significantly associated with Graves’ ophthalmopathy (GO) susceptibility (Pc = 9.150 × 10−4, OR = 1.851). Functional studies showed that carriers of the rs2104286 AA genotype had lower IL2RA mRNA expression than AG genotype carriers (P = 0.021). Cytokine analyses revealed that the rs2104286 AA genotype individuals had lower IL-10 levels (P = 0.015) and increased IL-17 levels than AG genotype carriers (P = 1.467 × 10−4). In conclusion, our findings suggested that IL2RA/rs2104286 was associated with GD and GO susceptibility in Southwest Chinese Han population, which may be involved in the occurrence of GD and GO by affecting the mRNA expression of IL2RA gene and the cytokine production.

Key messages

  • We identified that IL2RA/rs2104286 locus contributed to the predisposition of Graves’ disease (GD) and Graves’ ophthalmopathy (GO).

  • Functional analyses suggested that IL2RA/rs2104286 may participate in the occurrence of GD and GO by affecting the mRNA expression of IL2RA and cytokine (IL-10 and IL-17) secretion.

  • We found that IL2RA (rs3118470, rs7093069), miR27a/rs895819, miR182/rs76481776, and FoxO1 (rs2297626, rs17592236, rs9549241, rs12585277) loci polymorphisms were not associated with GD susceptibility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Chen XH, Mei YZ, He B, Li HL, Wang X, Hu R, Li L, Ding ZG (2017) General and specific genetic polymorphism of cytokines-related gene in AITD. Mediators Inflamm 2017:3916395

    Google Scholar 

  2. Veneti S, Anagnostis P, Adamidou F, Artzouchaltzi AM, Boboridis K, Kita M (2019) Association between vitamin D receptor gene polymorphisms and Graves’ disease: a systematic review and meta-analysis. Endocrine 65:244–251

    Article  CAS  PubMed  Google Scholar 

  3. Li J, Teng WP, Yu Y, Hou X, Shan ZY (2019) Linkage analysis of the chromosome 5q31-33 region identifies JAKMIP2 as a risk factor for Graves’ disease in the Chinese Han population. Med Sci Monit 25:1439–1451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Liang CG, Du WH, Dong QY, Liu XM, Li WX, Wang YL, Gao GQ (2015) Expression levels and genetic polymorphisms of interleukin-2 and interleukin-10 as biomarkers of Graves’ disease. Exp Ther Med 9:925–930

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Longo CM, Higgins PJ (2019) Molecular biomarkers of Graves’ ophthalmopathy. Exp Mol Pathol 106:1–6

    Article  CAS  PubMed  Google Scholar 

  6. Fang WZ, Zhang ZX, Zhang J, Cai ZH, Zeng H, Chen M, Huang JQ (2015) Association of the CTLA4 gene CT60/rs3087243 single-nucleotide polymorphisms with Graves’ disease. Biomed Rep 3:691–696

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Chen XM, Hu ZQ, Liu ML, Li HQ, Liang CB, Li W, Bao LW, Chen MY, Wu G (2018) Correlation between CTLA-4 and CD40 gene polymorphisms and their interaction in Graves’ disease in a Chinese Han population. BMC Med Genet 19:171

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Hwangbo Y, Park YJ (2018) Genome-wide association studies of autoimmune thyroid diseases, thyroid function, and thyroid cancer. Endocrinol Metab (Seoul) 33:175–184

    Article  CAS  Google Scholar 

  9. Lane LC, Allinson KR, Campbell K, Bhatnagar I, Ingoe L, Razvi S, Cheetham T, Cordell HJ, Pearce SH, Mitchell AL (2019) Analysis of BAFF gene polymorphisms in UK Graves’ disease patients. Clin Endocrinol (Oxf) 90:170–174

    Article  CAS  Google Scholar 

  10. Mehraji Z, Farazmand A, Esteghamati A, Noshad S, Sadr M, Amirzargar S, Yekaninejad MS, Amirzargar A (2017) Association of human leukocyte antigens class I and II with Graves’ disease in Iranian population. Iran J Immunol 14:223–230

    PubMed  Google Scholar 

  11. Chu X, Yang M, Song ZJ, Dong Y, Li C, Shen M, Zhu YQ, Song HD, Chen SJ, Chen Z et al (2018) Fine mapping MHC associations in Graves’ disease and its clinical subtypes in Han Chinese. J Med Genet 55:685–692

    Article  CAS  PubMed  Google Scholar 

  12. Ting WH, Chien MN, Lo FS, Wang CH, Huang CY, Lin CL, Lin WS, Chang TY, Yang HW, Chen WF et al (2016) Association of cytotoxic T-lymphocyte-associated protein 4 (CTLA4) gene polymorphisms with autoimmune thyroid disease in children and adults: case-control study. PLoS One 11:e0154394

  13. Li M, Beauchemin H, Popovic N, Peterson A, d’Hennezel E, Piccirillo CA, Sun C, Polychronakos C (2017) The common, autoimmunity-predisposing 620Arg > Trp variant of PTPN22 modulates macrophage function and morphology. J Autoimmun 79:74–83

    Article  PubMed  CAS  Google Scholar 

  14. Khong JJ, Burdon KP, Lu Y, Laurie K, Leonardos L, Baird PN, Sahebjada S, Walsh JP, Gajdatsy A, Ebeling PR et al (2016) Pooled genome wide association detects association upstream of FCRL3 with Graves’ disease. BMC Genomics 17:939

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Li HN, Li XR, Du YY, Yang ZF, Lv ZT (2020) The association between Foxp3 polymorphisms and risk of Graves’ disease: a systematic review and meta-analysis of observational studies. Front Endocrinol (Lausanne) 11:392

    Article  Google Scholar 

  16. Fujii A, Inoue N, Watanabe M, Kawakami C, Hidaka Y, Hayashizaki Y, Iwatani Y (2017) TSHR gene polymorphisms in the enhancer regions are most strongly associated with the development of Graves’ disease, especially intractable disease, and of Hashimoto’s disease. Thyroid 27:111–119

    Article  CAS  PubMed  Google Scholar 

  17. Planck T, Shahida B, Malm J, Manjer J (2018) Vitamin D in Graves disease: levels, correlation with laboratory and clinical parameters, and genetics. Eur Thyroid J 7:27–33

    Article  CAS  PubMed  Google Scholar 

  18. Li J, Sun X, Yao D, Xia J (2018) Elevated serum IL-17 expression at cessation associated with Graves’ disease relapse. Int J Endocrinol 2018:5689030

    Article  PubMed  PubMed Central  Google Scholar 

  19. Qin J, Zhou J, Fan C, Zhao N, Liu Y, Wang S, Cui X, Huang M, Guan H, Li Y et al (2017) Increased circulating Th17 but decreased CD4(+)Foxp3(+) Treg and CD19(+)CD1d(hi)CD5(+) Breg subsets in new-onset Graves’ disease. Biomed Res Int 2017:8431838

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Wang XX, Chen T (2018) Meta-analysis of the association of IL2RA polymorphisms rs2104286 and rs12722489 with multiple sclerosis risk. Immunol Invest 47:431–442

    Article  CAS  PubMed  Google Scholar 

  21. Harada Y, Harada Y, Elly C, Ying G, Paik JH, DePinho RA, Liu YC (2010) Transcription factors Foxo3a and Foxo1 couple the E3 ligase Cbl-b to the induction of Foxp3 expression in induced regulatory T cells. J Exp Med 207:1381–1391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Laine A, Martin B, Luka M, Mir L, Auffray C, Lucas B, Bismuth G, Charvet C (2015) Foxo1 is a T cell-intrinsic inhibitor of the RORgammat-Th17 Program. J Immunol 195:1791–1803

    Article  CAS  PubMed  Google Scholar 

  23. Guttilla IK, White BA (2009) Coordinate regulation of FOXO1 by miR-27a, miR-96, and miR-182 in breast cancer cells. J Biol Chem 284:23204–23216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Wang S, Ai H, Liu L, Zhang X, Gao F, Zheng L, Yi J, Sun L, Yu C, Zhao H et al (2019) Micro-RNA-27a/b negatively regulates hepatic gluconeogenesis by targeting FOXO1. Am J Physiol Endocrinol Metab 317:E911-e924

    Article  CAS  PubMed  Google Scholar 

  25. Miao Y, Kang Z, Xu F, Qi S, Sheng Y, Han Y, Hu R, Guo X, Yang Q (2013) Association analysis of the IL2RA gene with alopecia areata in a Chinese population. Dermatology 227:299–304

    Article  CAS  PubMed  Google Scholar 

  26. Xia ZL, Qin QM, Zhao QY (2018) A genetic link between CXCR5 and IL2RA gene polymorphisms and susceptibility to multiple sclerosis. Neurol Res 40:1040–1047

    Article  CAS  PubMed  Google Scholar 

  27. Yun X, Bai Y, Li Z, Wang D, Zhu Y, Jing C (2019) rs895819 in microRNA-27a increase stomach neoplasms risk in China: a meta-analysis. Gene 707:103–108

    Article  CAS  PubMed  Google Scholar 

  28. Yu H, Liu Y, Bai L, Kijlstra A, Yang P (2014) Predisposition to Behcet’s disease and VKH syndrome by genetic variants of miR-182. J Mol Med (Berl) 92:961–967

    Article  CAS  Google Scholar 

  29. Yu H, Liu Y, Zhang L, Wu L, Zheng M, Cheng L, Luo L, Kijlstra A, Yang P (2014) FoxO1 gene confers genetic predisposition to acute anterior uveitis with ankylosing spondylitis. Invest Ophthalmol Vis Sci 55:7970–7974

    Article  CAS  PubMed  Google Scholar 

  30. Ma J, Pei Y, Xue P, Wang Y, Bao X, Li Y (2019) Association of the polymorphisms in FOXO1 gene and diabetic nephropathy risk. Artif Cells Nanomed Biotechnol 47:1471–1475

    Article  CAS  PubMed  Google Scholar 

  31. Ross DS, Burch HB, Cooper DS, Greenlee MC, Laurberg P, Maia AL, Rivkees SA, Samuels M, Sosa JA, Stan MN et al (2016) 2016 American thyroid association guidelines for diagnosis and management of hyperthyroidism and other causes of thyrotoxicosis. Thyroid 26:1343–1421

    Article  PubMed  Google Scholar 

  32. Sun W, Zhang X, Wu J, Zhao W, Zhao S, Li M (2019) Correlation of TSHR and CTLA-4 single nucleotide polymorphisms with Graves disease. Int J Genomics 2019:6982623

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Kahaly GJ, Diana T, Kanitz M, Frommer L, Olivo PD (2020) Prospective trial of functional thyrotropin receptor antibodies in Graves disease. J Clin Endocrinol Metab 105:e1006–e1014

    Article  Google Scholar 

  34. Cerosaletti K, Schneider A, Schwedhelm K, Frank I, Tatum M, Wei S, Whalen E, Greenbaum C, Kita M, Buckner J et al (2013) Multiple autoimmune-associated variants confer decreased IL-2R signaling in CD4+ CD25(hi) T cells of type 1 diabetic and multiple sclerosis patients. PLoS One 8:e83811

  35. Ji X, Wan J, Chen R, Wang H, Huang L, Wang S, Su Z, Xu H (2020) Low frequency of IL-10-producing B cells and high density of ILC2s contribute to the pathological process in Graves’ disease, which may be related to elevated-TRAb levels. Autoimmunity 53:78–85

    Article  CAS  PubMed  Google Scholar 

  36. Tang W, Cui D, Jiang L, Zhao L, Qian W, Long SA, Xu K (2015) Association of common polymorphisms in the IL2RA gene with type 1 diabetes: evidence of 32,646 individuals from 10 independent studies. J Cell Mol Med 19:2481–2488

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Song ZY, Liu W, Xue LQ, Pan CM, Wang HN, Gu ZH, Yang SY, Cao HM, Zuo CL, Zhang XN et al (2013) Dense mapping of IL2RA shows no association with Graves’ disease in Chinese Han population. Clin Endocrinol (Oxf) 79:267–274

    Article  CAS  Google Scholar 

  38. Buhelt S, Sondergaard HB, Oturai A, Ullum H, von Essen MR, Sellebjerg F (2019) Relationship between multiple sclerosis-associated IL2RA risk allele variants and circulating T cell phenotypes in healthy genotype-selected controls. Cells 8:634

    Article  CAS  PubMed Central  Google Scholar 

  39. Chistiakov DA, Chistiakova EI, Voronova NV, Turakulov RI, Savost’anov KV, (2011) A variant of the Il2ra / Cd25 gene predisposing to Graves’ disease is associated with increased levels of soluble interleukin-2 receptor. Scand J Immunol 74:496–501

    Article  CAS  PubMed  Google Scholar 

  40. Brand OJ, Lowe CE, Heward JM, Franklyn JA, Cooper JD, Todd JA, Gough SC (2007) Association of the interleukin-2 receptor alpha (IL-2Ralpha)/CD25 gene region with Graves’ disease using a multilocus test and tag SNPs. Clin Endocrinol (Oxf) 66:508–512

    CAS  Google Scholar 

  41. Sawicka B, Borysewicz-Sańczyk H, Wawrusiewicz-Kurylonek N, Aversa T, Corica D, Gościk J, Krętowski A, Waśniewska M, Bossowski M (2020) Analysis of Polymorphisms rs7093069-IL-2RA, rs7138803-FAIM2, and rs1748033-PADI4 in the group of adolescents with Autoimmune Thyroid Diseases. Front Endocrinol (Lausanne) 11:544658

  42. He J, Zhang X, Wei Y, Sun X, Chen Y, Deng J, Jin Y, Gan Y, Hu X, Jia R et al (2016) Low-dose interleukin-2 treatment selectively modulates CD4(+) T cell subsets in patients with systemic lupus erythematosus. Nat Med 22:991–993

    Article  CAS  PubMed  Google Scholar 

  43. Viuff M, Skakkebaek A, Nielsen MM, Chang S, Gravholt CH (2019) Epigenetics and genomics in turner syndrome. Am J Med Genet C Semin Med Genet 181:68–75

    Article  PubMed  Google Scholar 

  44. Yang J, Li T, Gao C, Lv X, Liu K, Song H, Xing Y, Xi T (2014) FOXO1 3’UTR functions as a ceRNA in repressing the metastases of breast cancer cells via regulating miRNA activity. FEBS Lett 588:3218–3224

    Article  CAS  PubMed  Google Scholar 

  45. Strafella C, Errichiello V, Caputo V, Aloe G, Ricci F, Cusumano A, Novelli G, Giardina E, Cascella R (2019) The interplay between miRNA-related variants and age-related macular degeneration: evidence of association of miR146A and miR27A. Int J Mol Sci 20:1578

    Article  CAS  PubMed Central  Google Scholar 

  46. Takuse Y, Watanabe M, Inoue N, Ozaki R, Ohtsu H, Saeki M, Katsumata Y, Hidaka Y, Iwatani Y (2017) Association of IL-10-regulating microRNAs in peripheral blood mononuclear cells with the pathogenesis of autoimmune thyroid disease. Immunol Invest 46:590–602

    Article  CAS  PubMed  Google Scholar 

  47. Du YN, Tang XF, Xu L, Chen WD, Gao PJ, Han WQ (2018) SGK1-FoxO1 signaling pathway mediates Th17/Treg imbalance and target organ inflammation in angiotensin II-induced hypertension. Front Physiol 9:1581

    Article  PubMed  PubMed Central  Google Scholar 

  48. Gong L, Li R, Ren W, Wang Z, Wang Z, Yang M, Zhang S (2017) The FOXO1 gene-obesity Interaction increases the risk of type 2 diabetes mellitus in a Chinese Han population. J Korean Med Sci 32:264–271

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by National Key R&D Program of China (grant number 2018YFC1004300), National Natural Science Foundation Project of China (grant number 81670844), the Key Project of Guizhou Provincial Science and Technology Department (grant number QKH-JC-2019–1464), the Excellent Talent Support Program of Guizhou Provincial Education Department (grant number QJH-KY-2017–077), the Science and Technology Foundation of Guizhou Province (grant number QKH-PTRC-2017–5733-003, QKH-PTRC-2018-5772-042), and the Program for Excellent Young Talents of Zunyi Medical University (grant number 18-ZY-001), the science and technology program project of Zunyi (ZSKH-HZ-2020–35) and the project of Scientific Research Foundation for Postgraduates of Guizhou Province (grant number QJH-YJSCXJH-2019–094).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongsong Yu.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 79.5 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, J., Wang, X., Tan, G. et al. Predisposition to Graves’ disease and Graves’ ophthalmopathy by genetic variants of IL2RA. J Mol Med 99, 1487–1495 (2021). https://doi.org/10.1007/s00109-021-02111-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-021-02111-0

Keywords

Navigation