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Urinary metabolic signatures reflect cardiovascular risk
in the young, middle-aged, and elderly populations
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Abstract
The predictive value of traditional cardiovascular risk estimators is limited, and young and elderly populations are particularly
underrepresented. We aimed to investigate the urine metabolome and its association with cardiovascular risk to identify novel
markers that might complement current estimators based on age. Urine samples were collected from 234 subjects categorized into
three age-grouped cohorts: 30–50 years (cohort I, young), 50–70 years (cohort II, middle-aged), and > 70 years (cohort III,
elderly). Each cohort was further classified into three groups: (a) control, (b) individuals with cardiovascular risk factors, and (c)
those who had a previous cardiovascular event. Novel urinary metabolites linked to cardiovascular risk were identified by nuclear
magnetic resonance in cohort I and then evaluated by target mass spectrometry quantification in all cohorts. A previously
identified metabolic fingerprint associated with atherosclerosis was also analyzed and its potential risk estimation investigated
in the three aged cohorts. Three different metabolic signatures were identified according to age: 2-hydroxybutyrate, gamma-
aminobutyric acid, hypoxanthine, guanidoacetate, oxaloacetate, and serine in young adults; citrate, cyclohexanol, glutamine,
lysine, pantothenate, pipecolate, threonine, and tyramine shared by middle-aged and elderly adults; and trimethylamine N-oxide
and glucuronate associated with cardiovascular risk in all three cohorts. The urinary metabolome contains a metabolic signature
of cardiovascular risk that differs across age groups. These signatures might serve to complement existing algorithms and
improve the accuracy of cardiovascular risk prediction for personalized prevention.

Key messages
• Cardiovascular risk in the young and elderly is underestimated.
• The urinary metabolome reflects cardiovascular risk across all age groups.
• Six metabolites constitute a metabolic signature of cardiovascular risk in young adults.
• Middle-aged and elderly adults share a cardiovascular risk metabolic signature.
• TMAO and glucuronate levels reflect cardiovascular risk across all age groups.
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Introduction

Cardiovascular disease (CVD) is the leading cause of prema-
ture death worldwide despite continual improvements in pri-
mary and secondary prevention. The predominant underlying
pathology of CVD is atherosclerosis, a chronic and systemic
immunoinflammatory disease of medium- and large-sized ar-
teries. Formation of an atheroma plaque and progressive arte-
rial obstruction takes place silently and asymptomatically,
which in many cases results in a sudden event with potentially
fatal consequences. Because cardiovascular risk is multifacto-
rial and includes genetic and environmental factors, different
algorithms have been developed to estimate cardiovascular
risk in apparently healthy persons in the short-medium term
(5–10 years), and these are based mainly on age, sex/gender,
race, cholesterol levels, blood pressure, smoking habits, and
the presence of diabetes. The majority of individuals with low
cardiovascular risk over the next 10 years, however, show
high risk in the long term, which can be calculated over their
likely remaining lifetime (lifetime risk calculation or LTR
QRISK) [1]. The impact of traditional risk factors for cardio-
vascular events changes with age [2, 3], and thus currently
available estimators in all age groups may be inappropriate
[4, 5], particularly, when considering that they are typically
developed in middle-aged subjects.

Cardiovascular risk is especially underestimated in young
adults. Consequently, few of them reach treatment thresholds
for intervention, and prevention strategies are delayed. There
is evidence for subclinical coronary atherosclerosis in this
population [6], and although the presence of atheroma plaque
per se might not serve to estimate cardiovascular risk, the
extent of coronary artery disease rather than individual plaque
lesions and their vulnerability to rupture can be considered
evidence of subclinical risk [7, 8]. Healthy lifestyle changes
made early in adulthood are known to decrease the risk of
cardiovascular events later in life [9], clearly supporting the
view that prevention strategies should start early. Thus, novel
tools to improve cardiovascular risk assessment are needed to
better stratify young individuals and more precisely define
whom to target for personalized intervention. At the other
extreme, old age is a major risk factor for CVD; however,
individuals of the same chronological age may differ consid-
erably with respect to their overall health status, thus limiting
the predictive capacity of chronological age alone in determin-
ing overall disease risk [10]. Indeed, conventional cardiovas-
cular risk estimators underestimate survival in the elderly [11],
and this can result in overmedication [12].

Omics technologies are powerful tools in biomarker dis-
covery and validation, via the identification of significant var-
iations in the abundance of proteins or metabolites without the

preselection of molecular targets. The metabolome reflects the
ultimate response of an organism to a (physio)pathological
condition and provides an integrated profile, or signature, of
biological status and metabolic health. Accordingly, defining
the chemical phenotypes of health or disease using metabolo-
mics is gaining attraction in cardiovascular risk stratification
[13–15]. In a longitudinal study of elderly (mean age at base-
line, 71 years) with or without CVD, the simultaneous addi-
tion of biomarkers of cardiovascular and renal abnormalities
was found to substantially improve the risk stratification for
death from cardiovascular causes beyond that of a model
based only on established risk factors [16]. Similarly, it was
recently shown that a metabolomic signature characterized
largely by intermediates of fatty acid oxidation improved the
prediction of cardiovascular events in the elderly [17]. Using
metabolomics approaches, we previously identified specific
metabolic fingerprints in urine reflecting the development of
atherosclerosis and acute coronary syndrome/patient recovery
[18] and the cardiovascular risk of subjects undergoing coro-
nary artery bypass surgery [19]. By proteomics, we recently
identified a urinary cardiovascular risk signature in young
adults based on six proteins [20].

In the present study, we sought to investigate the metabolic
alterations associated with cardiovascular risk in three inde-
pendent cohorts stratified by age. Specifically, we aimed to
identify metabolic cardiovascular risk markers in young adults
(30–50 years old) and then to evaluate the identifiedmetabolic
patterns of risk in two older populations—middle-aged (50–
70 years) and elderly (> 70 years) cohorts.

Methods

Patient selection and urine collection

This is a cross-sectional study of 234 subjects clinically cate-
gorized into the following three cohorts stratified by age: co-
hort I, 30–50 years; cohort II, 50–70 years; and cohort III, > 70
years (Table 1). Each cohort was subclassified into three
groups reflecting the presence of cardiovascular risk and con-
sidering age-dependent population characteristics: “control”
(C) group, “risk factor” (RF) group, and “cardiovascular
event” (CVE) group. As the prevalence of traditional cardio-
vascular risks factors is low in cohort I, the C group included
apparently healthy subjects without medication, whereas the
RF group included individuals with estimated glomerular fil-
tration rate (eGFR) < 100 mL/min/1.73m2 or albuminuria and
at least one of the following conditions: arterial hypertension
(or on antihypertensive medication), hyperglycemia (blood
glucose > 110 mg/dL), and/or metabolic syndrome. In cohort
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II, the C group included individuals without traditional car-
diovascular risk factors and with blood pressure in the high-
normal range according to the 2013 ESH/ESC European
guidelines (≥130/85 mm Hg), whereas the RF group included
individuals with blood pressure in the high-normal range and
eGFR of 20–60mL/min/1.73 m2 or albuminuria. In cohort III,
the C group included subjects with eGFR > 60 mL/min/1.73
m2, and the RF group included individuals with eGFR of 20–
60 mL/min/1.73 m2. In all three cohorts, the CVE group in-
cluded individuals who had had a stroke or acute myocardial
infarction in the previous 3 years (Table 1). All subjects in-
cluded in the study underwent a detailed medical history in-
terview, physical examination, and biochemical profile.
Lifetime risk or LTR QRISK (thereafter referred to as LTR
in the manuscript) was estimated using the lifetime cardiovas-
cular risk calculator (https://qrisk.org/lifetime/).

A spot urine sample was collected from each participant in
a sterile container. Samples were centrifuged at 16,200×g for
10 min, and supernatants were collected and stored at – 80 °C
until analysis. The study was approved by the Ethics
Committee of Ibermutuamur, Hospital 12 de Octubre, and
Hospital del Valle, as appropriate, and was conducted accord-
ing to the principles of the Declaration of Helsinki. All pa-
tients signed written informed consent before inclusion.

Metabolite analysis by NMR

In a first discovery phase, we aimed to identify novel metab-
olites linked to cardiovascular risk in urine samples from co-
hort I (n = 34), using 1H nuclear magnetic resonance (NMR)
as described [18, 21] (Table 1). Briefly, an aliquot of 300 μL
of urine samples was diluted (1:1) in 200 mmol/L sodium
phosphate buffer in D2O containing 0.01 mmol/L sodium
trimethylsilyl propionate for chemical shift referencing.
NMR analysis was performed at 278 K on a Bruker
700 MHz AVANCE III instrument equipped with a 5-mm
triple resonance, z axis gradient cryoprobe. Spectra were proc-
essed using TOPSPIN (v3.2, Bruker BioSpin) and analyzed
with AMIX software (v3.6.8, Bruker BioSpin). Each spec-
trum was partitioned into small spectral regions of 0.04 ppm
(buckets). Normalization was performed based on the total
intensity of the spectrum. The distribution of every bucket
over the ensemble of spectra was evaluated by AMIX soft-
ware for the significance analysis of variables (buckets) using
a confidence level of 90%. Those discriminating buckets (p
value < 0.05) resulting from the statistical comparison of the
CVD groups were further considered for identification. The
human metabolome database (HMDB version 4.0) and
Chenomx NMR Suite 8.30 profiler (Chenomx) were used
for theoretical identification [22]. Two-dimensional NMR
analysis, including homonuclear correlation spectroscopy
1H–1H (COSY), total correlated spectroscopy (TOCSY), and
heteronuclear single-quantum correlation spectroscopy

(1H–13C HSQC), was used for unequivocal identification in
our particular samples.

Mass spectrometry target analysis

Confirmation of the variations in metabolites according to
cardiovascular risk was accomplished by mass spectrometry
(MS) target analysis in selected reaction monitoring (SRM)
mode using all urine samples of cohort I (n = 83) (Table 1).
Those metabolites showing abundance changes linked to car-
diovascular risk were also analyzed in cohorts II and III. A
6460 Triple Quadrupole LC-MS/MS (1200 Series, Agilent
Technologies) controlled by Mass Hunter Software (v4.0
Agilent Technologies) was used as described [18, 19, 21].
Briefly, a 100 μL sample of urine was used for analysis, and
proteins were removed by organic precipitation. Metabolite
separation took place at 0.4 mL/min in an acetonitrile gradient
for 5 min in positive or negative mode. Optimal conditions of
analysis were established by analyzing commercial metabolite
standards (Online Resource 1). Peak areas were used for in-
tergroup comparison.

Testing a CVD metabolic fingerprint for
cardiovascular risk estimation

The following metabolites, previously identified by our group
associated with atherosclerosis development and cardiovascu-
lar risk, were also analyzed in the three cohorts (n = 234):
citrate, cyclohexanol, glucuronate, glutamine, guanidoacetate,
lysine, oxaloacetate, malate, pantothenate, pipecolate, serine,
threonine , t r imethylamine N-oxide (TMAO), 1-
methylhydantoin, and tyramine [18, 19, 21]. Analysis was
carried out by SRM as described above.

Statistical analysis

For the NMR analysis, the discriminating buckets were ob-
tained by AMIX software using significance analysis of var-
iables (90% confidence level) and Welch’s ANOVA.
Statistical analysis of SRM data was performed using the
Mann-Whitney nonparametric test, applying ROUT method
to detect outliers (setting Q to 5%), by GraphPad Prism
(v6.01, GraphPad Prism Software). Univariate and multivari-
ate receiver operating characteristic (ROC) curves were gen-
erated by Monte Carlo cross-validation (MCCV) using bal-
anced subsampling on the Metaboanalyst web server. In each
MCCV, two-thirds (2/3) of the samples are used to evaluate
the feature importance, and the top important features are then
used to build classification models that are then validated on
the remaining 1/3 of the samples. This procedure was repeated
multiple times to calculate the performance and confidence
interval of each model. Random forests was selected as the
feature ranking built-in method for features selection. Though

1606 J Mol Med (2020) 98:1603–1613
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the area under the curve values (AUC) may be overestimated
as they are not derived from independent sample, we calculat-
ed them for additional comparison between the proposed
models. Correlation between metabolites abundance and esti-
mated LTR values was investigated using Spearman’s test.

Results

We analyzed the metabolic profile of urine samples with the
aim of identifying novel indicators of cardiovascular risk. A
second aim was to determine whether the alterations found in
young adults are also evident in the middle-aged and elderly.

Baseline characteristics of the different study population co-
horts are shown in Table 1.

Metabolic alterations linked to cardiovascular risk in
young, middle-aged, and elderly populations

Of all the metabolites identified by NMR analysis, only
TMAO and glucuronate showed significant changes in abun-
dance according to cardiovascular risk in all three aged-based
cohorts. The same trend of alteration was observed between
the RF group and the C group for both metabolites, with
TMAO significantly higher and glucoronate significantly
lower in the RF group. By contrast, the trend for TMAO and

Fig. 2 Cardiovascular risk metabolic signature in young adults. Panel a
shows the variation in metabolite abundance between control (C),
cardiovascular risk factor (RF), or cardiovascular event (CVE) groups
in young adults (30–50 years) represented as mean ± SEM. *p value <

0.05; **p value < 0.01; ****p value < 0.0001 (Online Resource 3). Panel
b shows receiver operating characteristic curves including area under the
curve (AUC) values

Fig. 1 Urinary TMAO and glucuronate reflect cardiovascular risk in
young adults, middle-aged, and elderly adults. Variation in metabolite
abundance variation in the three age-based cohorts investigated (30–50
years, 50–70 years, and > 70 years) is shown. Differences in abundance

between control (C), cardiovascular risk factor (RF), and cardiovascular
event (CVE) groups are represented asmean ± SEM. *p value < 0.05; **p
value < 0.01; ***p value < 0.001; ****p value < 0.0001 (Online
Resource 2)

1607J Mol Med (2020) 98:1603–1613



glucuronate in the CVE group was more heterogeneous across
the cohorts (Fig. 1).

A urinary metabolic pattern is associated with
cardiovascular risk specifically in young adults

In the first discovery phase by NMR in the young population,
we identified several novel metabolites potentially associated
with cardiovascular risk (discovery cohort, Table 1). Three
metabolites were further confirmed by SRM, showing signif-
icant changes in levels between the RF and C groups in a
confirmation cohort of young adults (Table 1): 2-
hydroxybutyrate and hypoxanthine (higher) and gamma-
aminobutyric acid (GABA) (lower) (Fig. 2a). We also ana-
lyzed urine metabolites that we previously identified in
CVD [18, 19] using SRM in the confirmation cohort, finding
that guanidoacetate abundance was significantly lower in the
RF group than in the C group, whereas the opposite was seen
for oxaloacetate and serine (Fig. 2a). We calculated ROC
curves for the six individual metabolites, finding that the com-
bination of all six yielded the best performance with an AUC
value of 0.888 (Fig. 2b). We then assessed whether these
metabolic alterations were also evident in middle-aged and
elderly subjects. None of the six metabolites showed the same
trend of variation in the other two populations investigated
(cohorts II and III).

We next examined for potential correlations between the
levels of the identified metabolites in urine and the LTR score
evaluated in young adults, finding significant correlations for
all with the exception of serine (Spearman correlation values:
2-hydroxybutyrate, r = 0.3755 p < 0.0001; hypoxanthine, r =

0.3701 p < 0.0002; oxaloacetate, r = 0.3305 p < 0.0009;
guanidoacetate, r = − 0.4198 p < 0.0001; GABA, r = −
0.3997 p < 0.0001) (Fig. 3).

Middle-aged and elderly subjects share a common
metabolic feature linked to cardiovascular risk

We identified a specific metabolic signature in cohorts II and
III without evident variation in young adults. Levels of citrate,
cyclohexanol, glutamine, lysine, pantothenate, pipecolate,
threonine, and tyramine were lower in the RF group than in
the C group in both cohorts (Fig. 4a). The sensitivity and
specificity of metabolites were evaluated in cohorts II and III
separately (Fig. 4b, c). ROC curve analysis showed that in
cohort II, the best performance was obtained when the eight
metabolites were combined, with AUC values from 0.72 to
0.876 (Fig. 4b), and the added value of sequentially including
metabolites in the model was clear. In cohort III, the perfor-
mance of the model did not change as dramatically, varying
from 0.948 to 0.968 when 2 or 8 metabolites were combined,
respectively (Fig. 4c), and with and individual AUC value for
citrate of 0.942. Additionally, two metabolites showed an al-
tered profile in the cardiovascular risk factor group uniquely in
the elderly: malate (lower) and 1-methylhydantoin (higher).

Discussion

In the present study, we report differences in the urinary me-
tabolome associated with cardiovascular risk. We additionally
identified specific metabolic signatures in age-based cohorts.

Fig. 3 Correlation between metabolite abundance and lifetime risk. Lifetime risk was estimated using LTR QRISK®, and Spearman correlation was
performed. *p value < 0.05; **p value < 0.01; ****p value < 0.0001

1608 J Mol Med (2020) 98:1603–1613



Cardiovascular risk in the young population:
oxidative stress underlies main alterations in urinary
metabolites

Oxidative stress is known to be involved in the pathogenesis
of CVD [23–25], and prior metabolomics studies in human
urine point to an important contribution for oxidative stress in
acute coronary syndrome [26] and hypertension in persons <
50 years [27]. In the same line, our previous proteomic study
highlighted oxidative stress as a major functional category that
is altered by cardiovascular risk factors already present in
young adults [20]. Our present metabolomic study, performed
in the same cohort, also provides clear evidence for the exis-
tence of metabolic deregulation under conditions of oxidative
stress and points to specific targets that can be easily moni-
tored (Fig. 5). Hypoxanthine induces endothelial dysfunction

through ROS production and oxidative stress-induced apopto-
sis [28]. We found higher urinary levels of hypoxanthine as-
sociated with cardiovascular risk factors. Hypoxanthine is
converted to xanthine, which in turn is converted to uric acid,
and an increase in these three purine metabolites has been
reported in response to cardiac ischemia [29]. The conversion
of guanine to xanthine in the uric acid cycle is performed by
the aminohydrolase guanine deaminase (GUAD) [30].
Interestingly, GUAD was one of the main urinary proteins
found altered (higher) in the presence of cardiovascular risk
factors in our previous proteomics study [20], altogether
supporting a potential role for hypoxanthine and GUAD as
biomarkers of CVD early in life and also the contribution of
uric acid—the final produce of purine metabolism—as a key
determinant in cardiovascular risk, previously described [31].
We also found higher levels of 2-hydroxybutyrate with

Fig. 4 Cardiovascular risk metabolic signature shared by middle-aged
and elderly populations. Panel a shows variation in metabolite
abundance between control (C), cardiovascular risk factor (RF), or
cardiovascular event (CVE) groups in middle-aged (50–70 years) and
elderly (> 70 years) cohorts, represented as mean ± SEM (a). *p value

< 0.05; **p value < 0.01; ***p value < 0.001; ****p value < 0.0001
(Online Resource 4). Panels b and c show receiver operating
characteristic (ROC) curves including area under the curve (AUC)
values for cohorts II and III, respectively

1609J Mol Med (2020) 98:1603–1613



increased cardiovascular risk, in agreement with the reported
elevated levels in patients with microvascular ischemic heart
disease [32]. 2-Hydroxybutyrate is an early biomarker of in-
sulin resistance and impaired glucose regulation, and higher
levels might be related to increased lipid oxidation and oxida-
tive stress [33].We previously found higher serum levels of 2-
hydroxybutyrate in patients with an acute coronary syndrome
[34]. Additionally, urinary secretion of 2-hydroxybutyrate re-
flects shifts in the rate of glutathione synthesis. In this context,
we previously found diminished levels of glutathione in the
atherosclerotic aorta [19], and here, we associate higher levels
of this metabolite with an increase in the demand for glutathi-
one in oxidative stress conditions. Of note, serine has previ-
ously been shown to decrease oxidative stress while
supporting glutathione synthesis [35, 36], in line with our
observations here (higher in the RF group) and supporting a
compensatory mechanism in conditions of reduced glutathi-
one levels. By contrast, subjects with cardiovascular risk
showed lower levels of guanidoacetate, a trend previously
observed in patients with hypertension and further aggravated
by albuminuria or diabetes [21, 37]. Arginine is a main pre-
cursor of nitric oxide (NO) and guanidoacetate and has anti-
oxidant properties [38]. Levels of NO are reduced in an oxi-
dative environment, pointing also to reduced levels of argi-
nine, which would be in accord with the observed lower levels
of guanidoacetate. We also found that GABA, a metabolite
synthesized and released by endothelial cells, was lower in
subjects with cardiovascular risk, which might be explained
in terms of its protective function by inhibiting ROS genera-
tion and monocyte adhesion [39]. A hypothesis has been
established on an inhibitory role for GABA in atherosclerosis
[40], acting as a potential urinary marker of cardiovascular

risk when it is diminished, which is in line with our previous
observations in GDF15 (growth differentiation factor 15) and
ECP (eosinophil cationic protein) [20].

All of the altered metabolites with the exception of serine
significantly correlated with LTR: 2-hydroxybutyrate, hypo-
xanthine, and oxaloacetate positively and guanidoacetate and
GABA negatively, supporting their potential added value in
assessing cardiovascular risk when estimated along the
lifetime.

The cardiovascular risk metabolic signature differs
with age

Changes in the dynamics of biological processes during aging
and their influence over cardiovascular risk are to be expected,
and traditional cardiovascular risk factors tend to have less
impact in older individuals or even show the opposite behav-
ior, such as the inverse relationship between body mass index
and coronary artery calcification [41]. Indeed, the pathophys-
iology of CVD in the elderly may be different from that of
younger people [42]. Along this line, there is evidence
supporting the central role of mitochondrial oxidative stress,
mitochondrial damage, and biogenesis, in addition to crosstalk
between mitochondria and cellular signaling in cardiac and
vascular aging [43].

The metabolites found altered in cohorts II and III represent
a cardiovascular risk urinary signature that appears later in
life. Interestingly, the trend in the RF group was more pro-
nounced in people > 70 years than in those aged 50–70 years
for most metabolites, pointing to an aggravated response with
age. This is further supported by the lack of variation in people
aged 30–50 years.

Fig. 5 Cardiovascular risk is reflected in urine by metabolic regulation
under oxidative stress conditions in young adults. Purine metabolites
precursors of uric acid (hypoxanthine and GUAD), intermediates in
glutathione synthesis (2-hydroxybutyrate and serine), and molecules
involved in counteracting oxidative stress, endothelial dysfunction, or
cardiomyocytes apoptosis (guanidoacetate, GABA, GDF15, and ECP)

are shown as the main molecular players reflecting cardiovascular risk
in urine. Bold letter represents identified urinary metabolites and proteins
showing altered levels associated with cardiovascular risk. Arrows
represent higher (↑) or lower (↓) variation. ECP eosinophil cationic
protein, GABA gamma-aminobutyric acid, GDF15 growth
differentiation factor 15, GUAD guanine deaminase, NO nitric oxide
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All of the metabolites examined here showing alteration
in their levels, with the exception of threonine, also
displayed altered levels in our previous studies in CVD
with the same trend as reported in the present study. For
instance, the levels of cyclohexanol, glutamine, lysine,
pipecolate, and tyramine were lower in the urine and aortic
tissue of rabbits fed a cholesterol-rich diet to induce ath-
erosclerosis [18]; citrate was lower in the urine from pa-
tients with chronic kidney disease (CKD) with associated
CVD [44]; and pantothenate showed the same trend in
hypertensives versus non-hypertensive subjects, further
aggravated by albuminuria [21]. Supporting our findings,
levels of urinary lysine and tyramine levels show lower
levels in patients with the metabolic syndrome patients
(aged between 24–72 years) and correlate negatively with
cardiometabolic features and inflammatory biomarkers
[45, 46]. Also, decreased levels of glutamine in urine have
been identified as a hyperlipidemia biomarker (aged 25–65
years) [47].

TMAO, a robust urinary biomarker of cardiovascular
risk at any age

TMAO and glucuronate levels were significantly altered in
those individuals with cardiovascular risk independently of
the age range investigated. These observations further un-
derpin the utility of TMAO as a potential biomarker of
CVD, supporting previous evidence of its association with
a higher incidence of mortality in patients with CKD, pe-
ripheral arterial disease, diabetes mellitus, or heart failure
[48, 49]. It has also been reported that higher circulating
levels of TMAO may independently predict the risk of
subsequent cardiovascular events and mortality [48], and
consequently, TMAO is a good candidate for incorporation
into existing risk stratification tools [49]. Indeed, analysis
of urine TMAO levels in > 1000 patients with myocardial
infarction revealed a 2.2-fold increase compared with con-
trol subjects [50]. Our data show that higher levels of uri-
nary TMAO are associated with cardiovascular risk before
a cardiovascular event occurs. In young adults, TMAO
levels in the CVE group were not significantly different
to those in the C group, and this was also the case for
GABA, hypoxanthine, oxaloacetate, and serine, thus
uniquely reflecting cardiovascular risk itself. However,
middle-aged and elderly individuals who experienced a
cardiovascular event had higher levels of TMAO than the
respective C groups. This observation might indicate that
elderly individuals have a limited capacity to recover from
organ damage after an acute cardiovascular event [51].
Guanidoacetate or 2-hydroxybutyrate might also reflect
established organ damage in young adults, as altered levels
were also observed in the CVE group.

Limitations

The present study fulfilled the requirements of an omics study
in terms of group size and technical workflow [52]; however,
one limitation was the relatively low number of patients from
a clinical perspective, and further studies are warranted in
larger cohorts before considering the use of these new urinary
biomarkers in clinical practice. Differences in medication
resulting from lifestyle and CVD prevention strategies adjust-
ed individuallymight have influenced the observed data. Even
so, the identified metabolic signatures may still have value in
addition to current estimators once the individual is being
controlled by available therapy. That being said, the strength
of the correlations found in this study and the fact that the
metabolic variations reported here confirm previous observa-
tions from our group and others linked to cardiovascular risk
raise the possibility that the required larger cohorts would
simply confirm our data. Future prospective trials with clinical
cardiovascular endpoints would be needed to address whether
the metabolites shown here can complement traditional risk
factors.

Conclusions

We identified three different metabolic signatures in urine
associated with cardiovascular risk according to age: specific
to young adults (30–50 years), shared by middle-aged (50–70
years), and elderly (> 70 years) adults and common to all three
age-based cohorts. These data confirm previous findings on
specific biomarkers and provide novel molecular indicators to
be evaluated for lifetime risk of cardiovascular disease. The
metabolic signatures identified differ between those individ-
uals with cardiovascular risk and control subjects. A trend
towards control values after overcoming a cardiovascular
event could be observed mainly in young adults, indicating
potentially better cardiovascular recover with pharmacologi-
cal treatment in this population.
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