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Abstract
Occasional zoonotic viral attacks on immunologically naive populations result in massive death tolls that are capable of threat-
ening human survival. Currently, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the infectious agent that
causes coronavirus disease (COVID-19), has spread from its epicenter in Wuhan China to all parts of the globe. Real-time
mapping of new infections across the globe has revealed that variable transmission patterns and pathogenicity are associated with
differences in SARS-CoV-2 lineages, clades, and strains. Thus, we reviewed how changes in the SARS-CoV-2 genome and its
structural architecture affect viral replication, immune evasion, and transmission within different human populations. We also
looked at which immune dominant regions of SARS-CoV-2 and other coronaviruses are recognized byMajor Histocompatibility
Complex (MHC)/Human Leukocyte Antigens (HLA) genes and how this could impact on subsequent disease pathogenesis.
Efforts were also placed on understanding immunological changes that occur when exposed individuals either remain asymp-
tomatic or fail to control the virus and later develop systemic complications. Published autopsy studies that reveal alterations in
the lung immunemicroenvironment, morphological, and pathological changes are also explored within the context of the review.
Understanding the true correlates of protection and determining how constant virus evolution impacts on host-pathogen inter-
actions could help identify which populations are at high risk and later inform future vaccine and therapeutic interventions.
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Introduction

In this twenty-first century, the resurgence of novel, lethal,
and highly contagious zoonotic viruses to which there is no
pre-existing immunity pose a great threat to the survival of
mankind as described in Table 1[1–3]. The evolutionary

“arms race” between the host and the pathogen surges on
and reaches its crescendo when the infectious agent mutates
so quickly to successfully evade the host’s immune system
[4]. This leads to a disease outbreak which could later develop
into a pandemic as massive deaths soon ensue. This is follow-
ed by the global incapacitation of social, health, economic,
and government systems [5–7]. If measures are not put in
place to curtail spread of infection, these new emerging bio-
logical threats could serve as a catalyst for the total extinction
of the human species [8]. Case in point in 1918, a new strain of
H1N1 influenza viruses termed the “Spanish flu” led to the
deadliest pandemic in human history [9]. This virus infected
roughly one-third of the world’s population and caused an
estimated 50 million deaths worldwide [10].

More recently, novel strains of the usually benign
coronaviruses, that routinely cause harmless common colds
and have low virulence [11], mutated from their natural res-
ervoir hosts and transitioned towards causing excess infectiv-
ity and mortality in humans. Notably, in 2002, Severe Acute
Respiratory Syndrome Coronavirus 1 (SARS-CoV-1)
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originated from the Guangdong province in Southern China
and was rapidly spread to greater than 8,000 people in over 25
different countries [12]. As a result, over 750 deaths have been
observed internationally and a case fatality rate of over 15%
reported in certain populations [13–15]. In 2012, another co-
ronavirus termed Middle East Respiratory Syndrome
Coronavirus (MERS-CoV) mutated and jumped the species
barrier from camels to humans. This led to infections in 2,496
individuals with 868 (35%) documented fatalities [16].
However, MERS infection events remain localized within
the Middle East due to the fact that disease spread relies on
a single camel to human vertical transmission event [17].

In December 2019, a third newly emerged coronavirus later
named as Severe Acute Respiratory Syndrome Coronavirus 2
(SARS-CoV-2) was detected in Wuhan, the capital city of the
Hubei province in China [18]. Following this, SARS-CoV-2
rapidly spread globally with over 17.8 million cases being
reported globally on August 1, 2020, accompanied by over
684,096 deaths [19]. In the early stages of the SARS-CoV-2
epidemic in Wuhan, way before any public health interven-
tions had been implemented, the pandemic potential of the
virus was evaluated based on its basic reproduction number
(R0). The R0 of SARS-CoV-2 was estimated as 3 to 4 imply-
ing that each infected case transmitted the virus to roughly 3 to
4 new individuals with doubling occurring every 5 days [20].
Similarly, Sanche et al. estimated the R0 to be likely as high as
5.7 [21], while Li et al. documented an R0 of 2.38 (95%

credible interval (CI): 2.03−2.77) [22]. Following the spread
of SARS-CoV-2 to different parts of China, the effective re-
production number (Re) was calculated after the implementa-
tion of public health interventions such as city lockdowns,
social distancing, and quarantine to mitigate the spread of
the virus. All these efforts were undertaken to reduce the R0
to less than 1 in order to eliminate the possibility of a pandem-
ic [23]. The Re was later estimated as 0.98 (95% CI: 0.83–
1.16) during the period of 24 January–8 February thus
highlighting the role of different public health strategies in
reducing the global spread of SARS-CoV-2 [22].

Virus evolution due to changes in genomic
structure and epidemiology

Although SARS-CoV-2 has a lower-case fatality rate (current-
ly estimated at 2–4% as of April 2020 and peaking as high as
10% in highly populated areas such as New York [24]), far
greater deaths have been reported within a short time span in
comparison with SARS-CoV-1 and MERS-CoV [25]. This
could partly be attributed to the fact that SARS-CoV-2, which
has been shown to have close to over 80% and 50% sequence
homology with SARS-CoV-1 and MERS-CoV respectively
[26–28], acquired critical mutations within its genome. This
observed difference in genetic composition could possibly
favor enhanced infectivity in target cells and accelerate

Table 1 List of zoonotic contagious viruses that cause lethal infections in humans (Source: cdc.gov and ncbi.nlm.nih.gov).

Virus Genome (size)
sense

Disease Host Source of transmission Symptoms

Avian influenza A ssRNA (13.5
kb)-negative

Bird flu Chicken, ducks,
geese

Respiratory droplets/dust Fever, cough, and
sore throat

Swine origin influenza virus
(S-OIV)

ssRNA (13.5
kb)-negative

Swine flu Pigs Respiratory droplets/dust Fever, cough, and
lethargy

West Nile virus (WNV) ssRNA (10.9
kb)-positive

West Nile fever
(WNF)

Birds Mosquito bite Fever,
encephalitis,
and meningitis

Ebola virus ssRNA (18.9
kb)-negative

Ebola virus disease
(EBD)

Bats, non-human
primates

Body fluids, tissues, infected
fruit bats, and non-human
primates

Fever, fatigue,
and diarrhea

Severe Acute Respiratory
Syndrome Coronavirus
(SARS-CoV)

ssRNA (29.7
kb)-positive

Severe Acute
Respiratory
Syndrome (SARS)_

Bats, civet cats Respiratory droplets High fever,
pneumonia,
and diarrhea

Middle East respiratory
Syndrome Coronavirus
(MERS-CoV)

ssRNA (30.1
kb)-positive

Middle East
respiratory
Syndrome (MERS)

Dromedary
camels

Respiratory droplets High fever,
pneumonia,
and diarrhea

Severe Acute Respiratory
Syndrome Coronavirus 2
(SARS-CoV2)

ssRNA (29.9
kb)-positive

Coronavirus disease
2019 (COVID-19)

Not determined Respiratory droplets High fever,
pneumonia

ssRNA, single-stranded ribonucleic acid; kb, kilobase
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disease pathogenesis. Recently, up to 93 mutations have been
observed in the entire genome of SARS-CoV-2 with a vari-
able number (6 to 11) of open reading frames (ORF) reported
from different geographical regions [29]. Notably, two-thirds
of the viral RNA is housed within the first ORF (ORF1a/b)
where translation of the two viral polyproteins pp1a and
pp1ab together with 16 non-structural proteins (NSP) occurs
(21). It has been reported that within SARS-CoV-2 non-
structural protein 2 (NSP2), positive selection pressure facili-
tated a mutation at amino acid position 321 from an apolar
amino acid in in the Bat SARS-like coronavirus to glutamine.
This amino acid substitution confers the ability to form stable
hydrogen bonds within this endosome-associated protein that
could speculatively result in enhanced viral pathogenesis [30].

The other third of the viral genome comprises ORFs that
encode structural and accessory proteins together with the E,
M, S, andN genes that translate envelope (E), matrix (M), spike
surface glycoproteins (S), and nucleocapsid (N) structural pro-
teins [31]. Sequence alignments also revealed several mutations
within the spike surface glycoprotein in the receptor-binding
domain (RDB), which could affect the ability of the virus to
attach to the human receptor angiotensin converting enzyme 2
(ACE2). These changes enable SARS-CoV-2 to have a higher
binding affinity to human, cat, and ferret ACE2 receptors in
comparison with SARS-CoV-1 [18]. Lastly, at the junction of
the S1 and S2 subunits of the S protein, SARS-CoV-2 has
unique insertions of a polybasic cleavage site (RRAR). This
could facilitate effective cleavage by proteases and could mod-
ulate virus infectivity. However, the functional roles of RRAR
are yet to be fully understood [32].

Intriguingly, the insertion of similar cleavage sites into the
junction of S1 and S2 subunits of SARS-CoV-1 has been
shown to augment cell to cell fusion [33]. Furthermore, the
addition of proline residues to the RRAR cleavage of SARS-
CoV-2 sites favors the addition of O-linked glycans which
could shield critical epitopes of the SARS-CoV-2 spike pro-
tein from immune system recognition [34]. Random muta-
tions allow RNA viruses to cross species barriers and adapt
to conducive host-pathogen interactions that will maximize
viral replication and transmission while minimizing harm to
the host [35, 36]. Current SARS-CoV-2 mutations have led to
lineage changes from the original strain that was first detected
in Wuhan, China. These SARS-CoV-2 lineages were classi-
fied as L (new) and S (ancestral) based on changes in amino
acid 84 located in ORF8 whose role in the viral life cycle
remains unknown. It was observed that though these lineages
coexist concurrently, the L lineage has gradually become
highly prevalent in comparison with the S lineage [37].
However, studies are yet to be performed to test whether lin-
eage differences are accompanied with changes in fitness and
viral pathogenesis.

Real-time tracking of SARS-CoV-2 reveals that current
circulating strains have now spread to all populations across

the globe including the Icelandic people [38]. To track the
day-to-day evolution of the virus, scientists are encouraged
to submit viral sequences to publicly available databases like
GISAID (https://www.gisaid.org/CoV2020/) where virus
divergence from the original strain from Wuhan is analyzed
in real time using the nextstrain platform (https://nextstrain.
org/ncov/global) [39]. Based on phylogenetic analysis, three
central variants (A, B, and C) were classified based on
differences in amino acids. As of 4 March 2020, variant A
and C were predominantly found outside East Asia, while
variant B was predominantly localized within East Asia,
perhaps indicating that this variant is immunologically or
environmentally adapted to this region.

Sub-clusters, or clades, of A have a unique mutation at
nucleotide position T2905C but which encodes a synonymous
amino acid with the ancestral genome linked to 4 Chinese
individuals from Guangdong who carried the ancestral ge-
nome. B variants differ from A by two-point mutations (the
mutation at nucleotide position T8782C resulting in a synon-
ymous mutation, and a mutation at nucleotide position
C28144T resulting in the non-synonymous mutation from a
leucine to a serine) [40]. Our nextstrain analysis carried out on
2 May 2020 revealed that the greatest diversity of publicly
reported SARS-CoV-2 clades was reported in the Asian con-
tinent. Radial phylogenetic trees distanced by time indicate
that the predominant clade in Asia and the USA was A2a,
while Africa was largely populated with the A2 clade.
Europe offered a different visual perspective as the A3 clade
was found to be the most common (Fig. 1).

The implications of viral evolution as evidenced by differ-
ences in clades acquired as the virus propagates across new
host niches on viral pathogenesis are yet to be fully under-
stood. However, a recent report argues that despite social dis-
tancing, the differences in deaths observed in the West Coast
versus the East Coast of the USA could be driven by clade-
associated mutations of the SARS-CoV-2 spike glycoprotein
(31). The B1 clade which predominates the west coast has an
aspartic acid (D) at codon 614 of the S protein while the A2a
clade on the east coast possesses a glycine (G) at the same
position. Phylogenetic analysis shows that the substitution
mutation D614G occurred from shifts from the ancestral D
residue [41]. It remains hypothesized that this mutation affects
a critical region of the heavily glycosylated spike which could
account for differences in virulence, viral fusion, and accom-
panied mortality [42].

Virus structure and replication

When visualized under an electron microscope, the 3-
dimensional (3D) appearance of SARS-CoV-2 appears pleo-
morphic (round or oval) and has a helical nucleocapsid togeth-
er with spiky protrusions emanating from its surface that give
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it a crown-like appearance [43]. The viral structure comprises
an envelope comprising three structural proteins (S, M, and E)
that encases a single-stranded positive sense 30 kilobase (kb)
genome [44] coupled with the structural protein N [45, 46]

(Fig. 2). The S protein is heterotrimeric and projects out of the
outer layers of the virus [47, 48], while the N protein binds to
RNA to form the nucleocapsid and directs the viral replication
cycle. The M protein is the most structurally abundant and is

Fig. 1 Phylogenetic analysis of full-length SARS-CoV-2 sequences sub-
mitted to Global Initiative on Sharing all Influenza Data (GISAID),
(https://www.gisaid.org/CoV2020/). Radial phylogenetic trees were
generated using Nextstrain (https://nextstrain.org/ncov) after the SARS-
CoV-2 global dataset was filtered according to Africa, Asia, Europe, and

the USA regions. The branch lengths are distanced by time and individual
points colored byClades (A1a, A2, A2a, A3, A6, B, B1, B2, and B4) with
Wuhan-Hu-1/2019 used as a reference. Analysis was carried out on 2
May 2020
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crucial to providing shape and stability to the virus. The E
protein is usually least expressed but is critical to maturation
of the virus [49, 50]. As a result of its intricate structure,
SARS-CoV-2 has been found to be a relatively stable virus
with the ability to survive outside the host for prolonged pe-
riods of time. It has been documented to survive up to 3 h in
aerosols [51].

Intriguingly, the virus persisted for 24 h on cardboard
and 2 to 3 days on plastic and stainless steel without any
signs of observed decay [52]. Hence, when COVID-19
patients were admitted to a biocontainment unit and in
hospital settings, it was documented that besides aerosol
transmission, SARS-CoV-2 could be shed and indirectly
spread through contamination of objects within the envi-
ronment like personal items, toiletries, and room surfaces
[53, 54]. Upon inhalation of SARS-CoV-2, the S1 subunit
of the S protein through its RDB domain attaches to the
ACE2 receptor expressed on epithelial cells (goblet/secre-
tory cells and ciliated cells) at high density [55] and type
II pneumocytes in the lower respiratory tract of humans
[56]. ACE2 is also widely distributed in different cells of
diverse tissues and organs ranging from the gastrointesti-
nal tract, cardiovascular, urogenital, and central nervous
systems [57, 58]. This accounts for the wide tissue dis-
semination of SARS-CoV-2, observed in COVID-19 pa-
tients, which arises from the availability of several target

cells that further propagate infection following inability to
resolve lung infection [59].

The attachment of the virus to host target cells could be
prevented by pre-existing neutralizing antibodies or cross
reacting antibodies from earlier related infections such as
SARS-CoV-1 that specifically attach to the SARS-CoV-2
highly variable RDB domain of the S1 subunit [45, 46]. Post
attachment, the cellular serine protease termed as the cell
surface–associated transmembrane protease serine 2
(TMPRSS2) cleaves the S protein into S1 and S2 [60]. This
separation activates the fusion of the viral envelope with the
host cell resulting in the release of the viral nucleocapsid into
the cytoplasm [61]. Upon deposition of the viral genome into
the host cell, direct translation of ORF1a/b genes begins
resulting in the generation of polyproteins pp1a and pp1ab
that are further processed to form non-structural proteins [62].

These non-structural proteins form interconnected double
membrane replication transcription complexes (RTC) in
which subgenomic RNAs are encoded to generate accessory
and structural proteins [63, 64]. These replication compart-
ments help concentrate viral and host transcription factors
and offer a “safe haven” for protection of the virus from the
hosts’ exonucleases and other host innate immune responses
[65]. The newly generated genomic RNA, nucleocapsid pro-
teins, and envelope glycoproteins then navigate and traverse
the endoplasmic reticulum and Golgi network where they

Fig. 2 Key structural proteins of
severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2)
that include the spike surface
glycoprotein (S), membrane
protein (M), RNA attached to
nucleocapsid protein (N) and en-
velope protein (E).
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assemble and form viral particles which later fuse with the
plasma membrane and hijack the lipid bi-layer to form prog-
eny viral particles [66].

To maximize viral replication, coronaviruses utilize a path-
ogenic factor, non-structural protein 1 (nsp1), which promotes
the endonucleolytic cleavage of the hosts RNA and blocks the
translation any remaining host RNA. This takeover of the host
genomic machinery ensures maximum generation of viral
progeny at the expense of the host’s needs [66, 67]. In addi-
tion, nsp1 inhibits the host expression of type 1 interferons
thus offering a milieu that favors virus replication [68]. This
is attributed to the fact that these cytokines favors optimal
stimulation of T cell responses by enhancing antigen presen-
tation through increased expression of major histocompatibil-
ity complex 1 (MHC 1) on various cells [69]. Similarly, the
highly conserved nsp16 facilitates enhanced virus replication
by facilitating virus evasion from recognition from the hosts
pattern recognition receptor (PRR) melanoma differentiation-
associated protein 5 (MDA5) and as a result downregulates
the type 1 interferon response [70]. Comprehensive proteomic
analysis of SARS-CoV-2 revealed that SARS-CoV-2 proteins
such as Orf6 and nsp13 also target the host interferon signal-
ing pathways. Orf3a and NSP9 of SARS-CoV-2 also antago-
nize host E3 ubiquitin ligases that lead to the dysregulation of
host antiviral signaling [71–73].

Host genetics: influence of HLA alleles
on susceptibility and resistance
to SARS-CoV-1, MERS-CoV, and SARS-CoV-2
infections

During viral infections, effective antiviral immunity is fos-
tered through cooperative interactions between the host’s spe-
cific innate and adaptive immune responses. Antigen-
presenting cells recognize and process viral antigens into
smaller peptides that are later attached onto major histocom-
patibility complex (MHC) class I/II molecules or Human
Leukocyte Antigen (HLA) alleles [74]. Specific peptide and
HLA combinations are then recognized by T cells (CD4 T
cells and CD8+/ cytotoxic T cells (CTLs)) of the adaptive
immune system. This leads to the respective CD4+ T cell
orchestration of overall immune cell function through cyto-
kine secretion and CTL killing/ clearance of virus-infected
cells.

The interaction of T cell receptors (TCRs) with a unique
specific set of HLAs determines the efficacy to induce SARS-
CoV-2 specific immune responses that may confer protection
or predispose the host to infection [75, 76]. SARS-CoV-1
structural proteins such as S,M, and N are more immunogenic
in comparison with NSPs. SARS-CoV-1 N protein’s 219 to
235 residues comprise HLA-A*0201 restricted epitopes [77,
78]. Position 331 to 365 residues also consist of HLA-A*2402

restricted CTL epitopes that are capable of inducing memory
T cell responses [79–81]. Notably, HLA-Cw1502 and
DR0301 confer resistance to SARS-CoV-1 infection [82].
Alternatively, MHC class I HLA-B*-4601, HLA-B*-0703,
HLA-Cw* 0801 and MHC class II HLA-DRB1*1202 have
previously been associated with increased susceptibility to
SARS-CoV-1 [83–85], while MHC class II HLA-
DRB1*11:01 and DQB1*02:02 have been found to exacer-
bate susceptibility to MERS-CoV [86].

Recently, Nguyen et al. conducted an elaborate in silico
analysis of the binding affinities between SARS-CoV-2 pep-
tides and various MHC class I molecules that spanned 145
HLA-A, -B, and -C genotypes. They predicted that HLA-
B*46:01 bound to a fewer number of viral peptide antigens
and as a result postulated that individuals who lack this allele
have an increased risk of vulnerability to SARS-CoV2 infec-
tion. On the other hand, HLA-B*15:03 bound to a large num-
ber of SARS-CoV-2 peptides that were highly conserved
within various human coronaviruses and as such were hypoth-
esized to induce cross-protective T cell–based immunity [87].
Interestingly, Grifoni and Kiyotani et al. also reported exten-
sive B cell and T cell epitope sequence similarity between
SARS-CoV-2 and SARS-CoV-1 [26, 88]. This further em-
phasizes the possibility of the existence of cross-reactive pro-
tective immune responses that could be inferred frommemory
responses generated from earlier exposures to other related
coronaviruses.

Immune evasion and subsequent disease
pathogenesis

The innate immune response is the first line of defense against
invadingmicroorganisms. The host’s innate immune response
uses a wide variety of PRRs ranging from toll-like receptors,
RIG-I like receptors such as MDA5, C-type lectin receptors
(CLRs), and nucleotide binding and oligomerization domain
(NOD)-like receptors to recognize a variety of highly con-
served residues on SARS-CoV-2 [89]. Unsurprisingly,
SARS-CoV-2 targets cells such as nasal epithelial cells found
in the respiratory tract that highly express viral entry factors
such as ACE2 and TMPRSS2 and are enriched with a diver-
sity of innate immune genes [90]. Nasal epithelial cells highly
express viral entry factors such as ACE2 and TMPRSS2, but
are also enriched with a diversity of innate immune genes
[90].

During virus attachment, SARS-CoV-2-specific or cross-
neutralizing antibodies from SARS-CoV-1 [45, 91, 92] could
inactivate the virus [93], prevent viral attachment to target
cells [94], and perform opsonization for clearance by the com-
plement pathway and Fc receptor–mediated phagocytosis of
alveolar macrophages [95, 96]. Upon successful infection of
lung epithelial cells and subsequent viral recognition, the
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release of type I interferons is immediately evoked from the
epithelial cells. Dendritic cells and macrophages within the
lung microenvironment secrete type I interferons upon recog-
nition of the virus through their PRRs. Collectively, this sus-
tains a potent antiviral response by inhibiting virus replication,
ensuring efficient antigen presentation of peptides to CD4+

and CD8+ T cells and efficiently promote specific adaptive
T cell responses and cytotoxicity of CD8+ T and natural killer
(NK) cells [97–100].

Recent transcriptomic data showed that robust CD8+ T cell
responses accompanied with clonal expansion were observed
in individuals who only develop mild disease symptoms and
those who cleared SARS-CoV-2 from the lungs [101]. In mild
and moderate cases, the clearing of COVID-19 infection has
been reported to occur within 10 days following the onset of
symptoms which include shortness of breath, fever, dry
cough, and dyspnea [102–104]. Following this brief inflam-
matory phase, the alveolar macrophages clear all debris aris-
ing from apoptotic virus-infected cells, limit the buildup of
surfactant, and resolve inflammation within the lung microen-
vironment by secreting cytokines like IL-10, transforming
growth factor beta (TGF-β) and increased expression of
checkpoint inhibitors such as CD200 that strive to return this
niche to its conventional anti-inflammatory state [105].
Together, this ensures optimal tissue remodeling, maintenance
of the lung barrier, and clearance of airways where efficient
gaseous exchange is fostered within the air sacs following the
brief inflammation phase [106–108], (Fig. 3).

Alternatively, the virus is capable of overpowering all bar-
ricades set up by the host immune system and later establish-
ing successful infection within the lung microenvironment
[109]. This is followed by dissemination of infection into oth-
er tissues and organs where the virus leaves a devastating trail
of gross systemic pathology in its wake [110, 111]. To achieve
this, SARS-CoV-2 escapes detection from any neutralization
antibodies present or cross-neutralizing antibodies generated
from earlier infection with SARS-CoV-1. In worst-case sce-
narios, SARS-CoV-1 cross-neutralizing antibodies could lead
to antibody-dependent enhancement (ADE) [112]. SARS-
CoV-2 non-neutralizing antibodies that bind to regions of
the S protein outside the RDB domain have greater chances
of generating ADE responses [113].

During ADE, antibodies attached to non-neutralized virus
gain entry into macrophages through Fc receptors (FcR) and
reprogram them to secrete proinflammatory cytokines that sus-
tain viral pathogenesis [114]. SARS-CoV-2 also distorts type I
IFN signaling leading to delayed secretion of type I interferons.
This results in augmented virus replication which reaches its
maximum 5–6 days after the onset of symptoms [115]. The
immense replication of the virus within epithelial cells and
enhanced virus entry into alveolar macrophages leads to in-
creased cell death by pyroptosis as the levels of cytokines such
as IL-1β and IL6 that drive the formation of the inflammasome

cascade are elevated [116, 117]. As a result, a massive loss of
alveolar macrophage frequencies mirrored with an enrichment
of inflammatory Ficolin-1+ (FCN1+) macrophages within the
lung bronchoalveolar occurs [101].

These inflammatory macrophages together with other dys-
regulated antigen-presenting cells (APCs) then forward proc-
essed peptides to the adaptive immune system in a defective
manner that leads to impaired virus specific T cell responses.
Hence, while high frequencies of T cells that secrete high levels
of the TH1/ IL-17 family of cytokines that are crucial for viral
eradication have been noticed [118], these cells express high
levels of hyperactivated (CD38/Human Leukocyte Antigen-
DR (HLA-DR)) and exhaustion markers such as the pro-
grammed death ligand 1 (PD-1)) [119]. As a result, this
hyperactivated state dampens host-specific T cell responses
and further impairs T cell functionality [120–122]. In addition,
CD4+ T cells from individuals who develop severe symptoms of
COVID-19 have been reported to have defective IFNγ secretion
and as such poorly orchestrate help to other cell subsets [122].

Lastly, the N protein of SARS-CoV-2 binds to mannose-
binding lectin (MBL) leading to the activation of the alterna-
tive complement pathway [123]. This leads to the deposition
of anaphylatoxins such as C5a that serve as chemo attractants
for other inflammatory cells such as monocytes, neutrophils,
and eosinophils through the secretion of diverse inflammatory
cytokines and chemokines [123, 124]. This partly contributes
to the ongoing cytokine storm as the excessive unchecked
production of cytokines such as IL-6, IL-10, GMCSF, IL-
1β, and TNF-α ensues [125, 126]. This uncontrolled release
of inflammatory cytokines results in both local and systemic
pathology. Within the lungs, injury occurs to the lung endo-
thelium, epithelial cells, and bronchoalveolar capillaries lead-
ing to elevated vascular permeability, disseminated intravas-
cular coagulation, focal demarcation of hemorrhages, and pro-
teinaceous exudates within alveolar spaces [127–129].
Shortness of breath arises from poor oxygen supply/
diffusion and low efficiency of gaseous exchange that gives
the lungs an appearance of bi-lateral ground-glass opacity
during computed tomography (CT) scans [130]. Systemic ef-
fects of COVID-19 also include damage to the central nervous
system, which presents with acute hemorrhagic necrotizing
encephalopathy [131], altered mental status, and seizures
[132]. As a result of the cytokine storm, multiple organ failure
that is characterized by clotting and elevated D-dimer levels
within the cardiovascular system occurs. Acute kidney injury
also takes place alongside necrotic destruction of the lymph
nodes and spleen [133–135], (Fig. 4).

Conclusions and future perspectives

This review has focused on both virus evolution and transmis-
sion patterns, changes in virus structure that enhance

1375J Mol Med (2020) 98:1369–1383



pathogenesis, and the immune evasion strategies that are used
by the virus to evade immune detection. Except for the brief
sidenote on targeting macrophages as reserviors/carriers for
SARS-CoV-2 , we chose not to delve into therapeutic options

that could be utilized to eradicate the pathogen as these ap-
proaches have been elaborately discussed in separate reviews
[71, 109]. Indeed, comprehensive analysis of several tissues
revealed that macrophages play a crucial role in redirecting

Fig. 3 Immunological events that occur in individuals who develop
asymptomatic/mild to moderate symptoms of COVID-19 following ex-
posure to SARS-CoV-2. Infection can be cleared by neutralizing antibod-
ies (nabs). Upon recognition of foreign invaders via pattern recognition
receptors (PRRs), macrophages secrete type I interferons that lead to an
antiviral state. In addition, these macrophages phagocytose virus-infected

cells that could have been opsonized by the nabs, carry out efficient
antigen presentation to T cells, clear all the debris in the lungs, and resolve
inflammation. As a result, highly functional T cells (CD4+ T cells ex-
pressing high levels of IFNγ and increased CD8+ T cell cytotoxicity) are
obtained.
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inflammation and driving the pathogenesis of SARS-CoV-2
[136]. It has recently been shown that CD169+ tissue resident

macrophages in the lymph nodes and spleens could serve as
viral carriers of SARS-CoV-2 [137]. Similar to what is

Fig 4 Immunological events that lead to severe COVID-19. SARS-CoV-
2 evades detection by neutralizing antibodies (nabs). Present non-nabs
could contribute to the severity of pathogenesis by causing antibody-
dependent enhancement (ADE). Following macrophage detection of the
virus, delays in secretion of type 1 interferons avoid antiviral state hence
favoring increased viral replication. In addition, macrophage function is
dysregulated as evidenced by the failure to resolve inflammation within
the lungs, inadequate repairs of the alveolar barrier, damage to the

alveolar capillary networks, and increased buildup of debris leads to poor
oxygen saturation as demonstrated by bi-lateral ground-glass opacity. In
addition, the depletion of alveolar macrophages followed by subsequent
enrichment of inflammatory Ficolin-1+ (FCN1+) macrophages, infiltra-
tion of polymorphonuclear neutrophils (PMNs) followed by activation of
complement pathways lead to exaggerated production of inflammatory
cytokines that later sustains a cytokine storm, and fuels systemic
pathology.
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currently being done to develop long-acting HIV therapy
[138–140], repurposing drugs to directly target diverse mye-
loid carriers such as macrophages may not only lower viral
loads but also ensure the timely dissemination of pro-drugs
into diverse tissues as these cells could act as drug carriers.

In addition, the intricate role of the stimulation of inter-
ferons (IFN) such as IFNα and IFNβ in delaying or exacer-
bating SARS-CoV-2 is yet to be fully delineated. The five
transmembrane PRR referred to as the stimulator of interferon
response genes (STING) is expressed in the endoplasmic re-
ticulum of lung alveolar epithelial cells, endothelial cells, and
splenocytes. STING senses PAMPs such as damaged DNA,
viral nucleic acid sequences, or intermediate products
resulting in the stimulation of type 1 IFN responses [141].
Early in infection, SARS-CoV-1 releases viral papain-like-
proteases, found within the nsp3 and nsp16 proteins that in-
hibit STING’s downstream IFN secretion [142, 143]. There is
no evidence of SARS-CoV-2 dysregulating STING function.
However, Berthelot et al. suggest that extensive inflammatory
damage associated with severe COVID-19 provides elevated
amounts of damaged DNA leading to extensive hyperactiva-
tion of STING [141]. This could possibly lead to elevated
expression of IFNs that could facilitate the continued infiltra-
tion of inflammatory cells such as neutrophils into the lungs
and sustain the cytokine storm. Intriguingly, in bats, which are
placental mammals that coexist with several coronaviruses
and serve as natural reserviors [144], STING polymorphisims
ensure lower IFN secretion that later contributes towards re-
duced immune pathogenesis [145]. Collectively, these obser-
vations highlight the need for further investigation of how
STING polymorphisims could affect SARS-CoV-2 immune
pathogenesis.

Tracing transmission patterns and evolutionary genomic
changes in SARS-CoV-2 while factoring alterations in host
immunity could accurately inform epidemiological models
that offer reliable predictions on when the number of
COVID-19 infections will decrease [146]. Additional studies
are required to validate observations that the extent of patho-
genicity could vary with different L and S SARS-CoV-2 lin-
eages. Further investigations are also required to cross-
validate the differences in pathogenesis observed in the pre-
dominant clades of the US west versus east coasts [41].

Recently, Korber et al. provided evidence that the predom-
inant D614 mutation in the SARS-CoV-2 Spike protein is
gradually being replaced by G614 mutations in diverse popu-
lations worldwide. This newly predominant mutant was
shown to have acquired a fitness advantage highlighted by
an increased replication capacity that was demonstrated by
elevated viral loads. Infection with this variant was also dem-
onstrated by reduced disease severity as measured by extend-
ed hospitalization. Lastly, it was also shown that G614 pseudo
virions were more prone to neutralization antibodies [147].
Collectively, these results show that within an evolutionary

context, SARS-CoV-2 is slowly transitioning into variants
that favor suitable host-pathogen interactions [148]. By ensur-
ing enhanced virus replication within a host while limiting
host death, the predomianant G614 mutant guarantees better
adaptation to the human host in comparisons to the original
Wuhan D614 variant. Experiments are currently being con-
ducted to evaluate whether these observed increases in infec-
tivity have any visible effects on transmission dynamics with-
in diverse populations [149]. In addition, an in-depth SARS-
CoV-2 report by Kupferschmidt argues that although the
G614 mutant easily infects a lab cell line, observations may
not be reproducible within the diverse cell types found within
a human host [149].

Though datasets such as that of GISAID may not re-
flect the true dynamism of transmission in resource-
limited regions such as Africa, routine evaluation of mu-
tations that occur in these areas is needed to inform the
scientific community about how SARS-CoV-2 adapts to
regions with endemic tropical co-infections such as HIV,
malaria, helminths, and TB [150–152]. There is a need to
carry out further research focused on the dynamics of
SARS-CoV-2 spread in African Americans as these indi-
viduals have been shown to have higher incidences of
COVID-19 [153, 154]. Additional studies are warranted
to dissect which MHC/HLA-DR polymorphisms across
different populations are associated with protection or
susceptibility across different populations.

Future studies will also be needed to evaluate whether im-
munity developed following exposure to SARS-CoV-2 is ca-
pable of protection from future encounters with the pathogen
[155]. Testing whether repeated exposures boost immunity
[156] and evaluating protection from future infection with
different SARS-CoV-2 clades without development of delete-
rious immune responses such as ADE could also inform strat-
egies to design future vaccines. Lastly, extensive research
should also be carried out to understand changes that occur
in asymptomatic individuals as these persons have been re-
ported to enable the rapid spread of COVID-19 and sustain
transmission patterns of the global epidemic [22].
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