Skip to main content

Advertisement

Log in

Transcriptional signature of resting-memory CD4 T cells differentiates spontaneous from treatment-induced HIV control

  • Original Article
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

The HIV reservoir is the main barrier to eradicating HIV infection, and resting memory CD4 T (Trm) cells are one of the most relevant cellular component harboring latent proviruses. This is the first study analyzing the transcriptional profile of Trm cells, in two well-characterized groups of HIV patients with distinct mechanisms of viral replication control (spontaneous versus treatment-induced). We use a systems biology approach to unravel subtle but important differences in the molecular mechanisms operating at the cellular level that could be associated with the host’s ability to control virus replication and persistence. Despite the absence of significant differences in the transcriptome of Trm cells between Elite Controllers (ECs) and cART-treated (TX) patients at the single gene level, we found 353 gene ontology (GO) categories upregulated in EC compared with TX. Our results suggest the existence of mechanisms at two different levels: first boosting both adaptive and innate immune responses, and second promoting active viral replication and halting HIV latency in the Trm cell compartment of ECs as compared with TX patients. These differences in the transcriptional profile of Trm cells could be involved in the lower HIV reservoir observed in ECs compared with TX individuals, although mechanistic studies are needed to confirm this hypothesis. Combining transcriptome analysis and systems biology methods is likely to provide important findings to help us in the design of therapeutic strategies aimed at purging the HIV reservoir.

Key messages

  • HIV-elite controllers have the lowest HIV-DNA content in resting memory CD4 T cells.

  • HIV-ECs show a particular transcriptional profile in resting memory CD4 T cells.

  • Molecular mechanisms of enhanced adaptative and innate immune response in HIV-ECs.

  • High viral replication and low viral latency establishment associate to the EC status.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

ADCC:

Antibody-dependent cellular cytotoxicity

cART:

Combination antiretroviral therapy

Ct:

Cycle threshold

ddPCR:

Digital droplet PCR

ECs:

Elite controllers

FDR:

False discovery rate

GO:

Gene ontology

GSE:

Gene set enrichment

HLA:

Human leukocyte antigen

HIV:

Human immunodeficiency virus

LRA:

Latency-reversing agent

LTNP:

Long-term nonprogressor

NK:

Natural killer

PBMC:

Peripheral blood mononuclear cell

PCA:

Principal component analysis

qRT-PCR:

Quantitative real-time PCR

Trm:

Resting memory CD4 T

References

  1. Perelson AS, Essunger P, Cao Y, Vesanen M, Hurley A, Saksela K, Markowitz M, Ho DD (1997) Decay characteristics of HIV-1-infected compartments during combination therapy. Nature 387:188–191

    CAS  PubMed  Google Scholar 

  2. Katlama C, Kirk O, Reiss P, d’Arminio Monforte A, Knysz B, Dietrich M, Phillips AN, Lundgren JD et al (2003) Decline in the AIDS and death rates in the EuroSIDA study: an observational study. Lancet 362:22–29

    PubMed  Google Scholar 

  3. de Jong MD, de Boer RJ, de Wolf F, Foudraine NA, Boucher CA, Goudsmit J, Lange JM (1997) Overshoot of HIV-1 viraemia after early discontinuation of antiretroviral treatment. AIDS 11:F79–F84

    PubMed  Google Scholar 

  4. Chun TW, Davey RT Jr, Ostrowski M, Shawn Justement J, Engel D, Mullins JI, Fauci AS (2000) Relationship between pre-existing viral reservoirs and the re-emergence of plasma viremia after discontinuation of highly active anti-retroviral therapy. Nat Med 6:757–761

    CAS  PubMed  Google Scholar 

  5. Calin R, Hamimi C, Lambert-Niclot S, Carcelain G, Bellet J, Assoumou L, Tubiana R, Calvez V, Dudoit Y, Costagliola D (2016) Treatment interruption in chronically HIV-infected patients with an ultralow HIV reservoir. AIDS 30:761–769

    CAS  PubMed  Google Scholar 

  6. Lorenzo-Redondo R, Fryer HR, Bedford T, Kim EY, Archer J, Kosakovsky SLK, Chung YS, Penugonda S, Chipman J, Fletcher CV (2016) Persistent HIV-1 replication maintains the tissue reservoir during therapy. Nature 530:51–56

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Chun TW, Stuyver L, Mizell SB, Ehler LA, Mican JA, Baseler M, Lloyd AL, Nowak MA, Fauci AS (1997) Presence of an inducible HIV-1 latent reservoir during highly active antiretroviral therapy. Proc Natl Acad Sci USA 94:13193–13197

    CAS  PubMed  Google Scholar 

  8. Wong JK, Hezareh M, Günthard HF, Havlir DV, Ignacio CC, Spina CA, Richmann (1997) Recovery of replication-competent HIV despite prolonged suppression of plasma viremia. Science 278:1291–1295

    CAS  PubMed  Google Scholar 

  9. Finzi D, Hermankova M, Pierson T, Carruth LM, Buck C, Chaisson RE, Quinn TC, Chadwick K, Margolick J, Brookmeyer R et al (1997) Identification of a reservoir for HIV-1 in patients on highly active antiretroviral therapy. Science 278:1295–1300

    CAS  PubMed  Google Scholar 

  10. Barton K, Winckelmann A, Palmer S (2016) HIV-1 Reservoirs during suppressive therapy. Trends Microbiol 24:345–355

    CAS  PubMed  PubMed Central  Google Scholar 

  11. García M, Buzón MJ, Benito JM, Rallón N (2018) Peering into the HIV reservoir. Rev Med Virol 28:e1981

    PubMed  PubMed Central  Google Scholar 

  12. Siliciano JD, Kajdas J, Finzi D, Quinn TC, Chadwick K, Margolick JB, Kovacs C, Gange SJ, Siliciano RF (2003) Long-term follow-up studies confirm the stability of the latent reservoir for HIV-1 in resting CD4+ T cells. Nat Med 9:727–728

    CAS  PubMed  Google Scholar 

  13. Chun TW, Engel D, Berrey MM, Shea T, Corey L, Fauci AS (1998) Early establishment of a pool of latently infected, resting CD4(+) T cells during primary HIV-1 infection. Proc Natl Acad Sci USA 95:8869–8873

    CAS  PubMed  Google Scholar 

  14. Archin NM, Vaidya NK, Kuruc JD, Liberty AL, Wiegand A, Kearney MF, Cohen MS, Coffin JM, Bosch RJ, Gay CL (2012) Immediate antiviral therapy appears to restrict resting CD4+ cell HIV-1 infection without accelerating the decay of latent infection. Proc Natl Acad Sci USA 109:9523–9528

    CAS  PubMed  Google Scholar 

  15. Finzi D, Blankson J, Siliciano JD, Margolick JB, Chadwick K, Pierson T, Smith K, Lisziewicz J, Lori F, Flexner C et al (1999) Latent infection of CD4+ T cells provides a mechanism for lifelong persistence of HIV-1, even in patients on effective combination therapy. Nat Med 5:512–517

    CAS  PubMed  Google Scholar 

  16. de Masson A, Kirilovsky A, Zoorob R, Avettand-Fenoel V, Morin V, Oudin A, Descours B, Rouzioux C, Autran B (2014) Blimp-1 overexpression is associated with low HIV-1 reservoir and transcription levels in central memory CD4+ T cells from elite controllers. AIDS 28:1567–1577

    PubMed  Google Scholar 

  17. Chomont N, El-Far M, Ancuta P, Trautmann L, Procopio FA, Yassine-Diab B, Boucher G, Boulassel MR, Ghattas G, Brenchley JM et al (2009) HIV reservoir size and persistence are driven by T cell survival and homeostatic proliferation. Nat Med 15:893–900

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Donahue DA, Wainberg MA (2013) Cellular and molecular mechanisms involved in the establishment of HIV-1 latency. Retrovirology 10:11

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Laird GM, Bullen CK, Rosenbloom DI, Martin AR, Hill AL, Durand CM, Siliciano JD, Siliciano RF (2015) Ex vivo analysis identifies effective HIV-1 latency-reversing drug combinations. J Clin Invest 125:1901–1912

    PubMed  PubMed Central  Google Scholar 

  20. Darcis G, Kula A, Bouchat S, Fujinaga K, Corazza F, Ait-Ammar A, Delacourt N, Melard A, Kabeya K, Vanhulle C et al (2015) An in-depth comparison of latency-reversing agent combinations in various in vitro and ex vivo HIV-1 latency models identified bryostatin-1+JQ1 and ingenol-B+JQ1 to potently reactivate viral gene expression. PLoS Pathog 11:e1005063

    PubMed  PubMed Central  Google Scholar 

  21. Archin NM, Kirchherr JL, Sung JA, Clutton G, Sholtis K, Xu Y, Allard B, Stuelke E, Kashuba AD, Kuruc JD et al (2017) Interval dosing with the HDAC inhibitor vorinostat effectively reverses HIV latency. J Clin Invest 127:3126–3135

    PubMed  PubMed Central  Google Scholar 

  22. Ho YC, Shan L, Hosmane NN, Wang J, Laskey SB, Rosenbloom DI, Lai J, Blankson JN, Siliciano JD, Siliciano RF (2013) Replication-competent noninduced proviruses in the latent reservoir increase barrier to HIV-1 cure. Cell 155:540–551

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Hyrcza MD, Kovacs C, Loutfy M, Halpenny R, Heisler L, Yang S, Wilkins O, Der SD OM (2007) Distinct transcriptional profiles in ex vivo CD4+ and CD8+ T cells are established early in human immunodeficiency virus type 1 infection and are characterized by a chronic interferon response as well as extensive transcriptional changes in CD8+ T cells. J Virol 81:3477–3486

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Wu JQ, Dwyer DE, Dyer WB, Yang YH, Wang B, Saksena NK (2011) Genome-wide analysis of primary CD4+ and CD8+ T cell transcriptomes shows evidence for a network of enriched pathways associated with HIV disease. Retrovirology 8:18

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Vigneault F, Woods M, Buzon MJ, Li C, Pereyra F, Crosby SD, Rychert J, Church G, Martinez-Picado J, Rosenberg ES (2011) Transcriptional profiling of CD4 T cells identifies distinct subgroups of HIV-1 elite controllers. J Virol 85:3015–3019

    CAS  PubMed  Google Scholar 

  26. Iglesias-Ussel M, Vandergeeten C, Marchionni L, Chomont N, Romerio F (2013) High levels of CD2 expression identify HIV-1 latently infected resting memory CD4+ T cells in virally suppressed subjects. J Virol 87:9148–9158

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Descours B, Petitjean G, López-Zaragoza JL, Bruel T, Raffel R, Psomas C, Reynes J, Lacabaratz C, Levy Y, Schwartz O et al (2017) CD32a is a marker of a CD4 T-cell HIV reservoir harbouring replication-competent proviruses. Nature 543:564–567

    CAS  PubMed  Google Scholar 

  28. Pérez L, Anderson J, Chipman J, Thorkelson A, Chun TW, Moir S, Haase AT, Douek DC, Schacker TW, Boritz EA (2018) Conflicting evidence for HIV enrichment in CD32+ CD4 T cells. Nature 561:E9–E16

    PubMed  PubMed Central  Google Scholar 

  29. Bertagnolli LN, White JA, Simonetti FR, Beg SA, Lai J, Tomescu C, Murray AJ, Antar AAR, Zhang H, Margolick JB et al (2018) The role of CD32 during HIV-1 infection. Nature 561:E17–E19

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Osuna CE, Lim SY, Kublin JL, Apps R, Chen E, Mota TM, Huang SH, Ren Y, Bachtel ND, Tsibris AM et al (2018) Evidence that CD32a does not mark the HIV-1 latent reservoir. Nature 561:E20–E28

    CAS  PubMed  PubMed Central  Google Scholar 

  31. García M, Navarrete-Muñoz MA, Ligos JM, Cabello A, Restrepo C, López-Bernaldo JC, de la Hera FJ, Barros C, Montoya M, Fernandez-Guerrero M et al (2018) CD32 Expression is not Associated to HIV-DNA content in CD4 cell subsets of individuals with Different Levels of HIV Control. Sci Rep 8:15541

    PubMed  PubMed Central  Google Scholar 

  32. Abdel-Mohsen M, Kuri-Cervantes L, Grau-Exposito J, Spivak AM, Nell RA, Tomescu C, Vadrevu SK, Giron LB, Serra-Peinado C, Genesca M, et al. (2018) CD32 is expressed on cells with transcriptionally active HIV but does not enrich for HIV DNA in resting T cells. Sci Transl Med 10 (437):pii: eaar6759.

  33. Lambotte O, Boufassa F, Madec Y, Nguyen A, Goujard C, Meyer L, Rouzioux C, Venet A, Delfraissy JF, SEROCO-HEMOCO Study Group (2005) HIV controllers: a homogeneous group of HIV1 infected patients with spontaneous control of viral replication. Clin Infect Dis 41:1053–1056

    PubMed  Google Scholar 

  34. Graf EH, Mexas AM, Yu JJ, Shaheen F, Liszewski MK, Di Mascio M, Migueles SA, Connors M, O’Doherty U (2011) Elite suppressors harbor low levels of integrated HIV DNA and high levels of 2-LTR circular HIV DNA compared to HIV+ patients on and off ART. PLoS Pathog 7:e1001300

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Buzon MJ, Yang Y, Ouyang Z, Sun H, Seiss K, Rogich J, Le Gall S, Pereyra F, Rosenberg ES, Yu XG et al (2014) Susceptibility to CD8 T cell-mediated killing influences the reservoir of latently HIV-1-infected CD4 T cells. J Acquir Immune Defic Syndr 65:1–9

    CAS  PubMed  PubMed Central  Google Scholar 

  36. García M, Górgolas M, Cabello A, Estrada V, Ligos JM, Fernández-Guerrero M, Barros C, López-Bernaldo JC, de la Hera FJ, Montoya M et al (2017) Peripheral T follicular helper cells make a difference in HIV reservoir size between elite controllers and patients on successful cART. Sci Rep 7:16799

    PubMed  PubMed Central  Google Scholar 

  37. Chen H, Li C, Huang J, Cung T, Seiss K, Beamon J, Carrington MF, Porter LC, Burke PS, Yang Y et al (2011) CD4+ T cells from elite controllers resist HIV-1 infection by selective upregulation of p21. J Clin Invest 121:1549–1560

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Leng J, Ho HP, Buzon MJ, Pereyra F, Walker BD, Yu XG, Chang EJ, Lichterfeld M (2014) A cell-intrinsic inhibitor of HIV-1 reverse transcription in CD4 (+) T cells from elite controllers. Cell Host Microbe 15:717–728

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Buzon MJ, Seiss K, Weiss R, Brass AL, Rosenberg ES, Pereyra F, Yu XG, Lichterfeld M (2011) Inhibition of HIV-1 integration in ex vivo-infected CD4 T cells from elite controllers. J Virol 85:9646–9650

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Morón-López S, Puertas MC, Gálvez C, Navarro J, Carrasco A, Esteve M, Manyé J, Crespo M, Salgado M, Martinez-Picado J (2017) Sensitive quantification of the HIV-1 reservoir in gut-associated lymphoid tissue. PLoS One 12:e0175899

    PubMed  PubMed Central  Google Scholar 

  41. Trypsteen W, Kiselinova M, Vandekerckhove L, De Spiegelaere W (2016) Diagnostic utility of droplet digital PCR for HIV reservoir quantification. J Virus Erad 2:162–169

    PubMed  PubMed Central  Google Scholar 

  42. Liszewski MK, Yu JJ, O’Doherty U (2009) Detecting HIV-1 integration by repetitive-sampling Alu-gag PCR. Methods 47:254–260

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Palmer S, Wiegand AP, Maldarelli F, Bazmi H, Mican JM, Polis M, Dewar RL, Planta A, Liu S, Metcalf JA et al (2003) New real-time reverse transcriptase-initiated PCR assay with single-copy sensitivity for human immunodeficiency virus type 1 RNA in plasma. J Clin Microbiol 41:4531–4536

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Martínez-Bonet M, Puertas MC, Fortuny C, Ouchi D, Mellado MJ, Rojo P, Noguera-Julian A, Muñoz-Fernandez MA, Martinez-Picado J (2015) Establishment and replenishment of the viral reservoir in perinatally HIV-1-infected children initiating very early antiretroviral therapy. Clin Infect Dis 61:1169–1178

    PubMed  PubMed Central  Google Scholar 

  45. Hindson BJ, Ness KD, Masquelier DA, Belgrader P, Heredia NJ, Makarewicz AJ, Bright IJ, Lucero MY, Hiddessen AL, Legler TC et al (2011) High-throughput droplet digital PCR system for absolute quantitation of DNA copy number. Anal Chem 83:8604–8610

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Alonso R, Salavert F, Garcia-Garcia F, Carbonell-Caballero J, Bleda M, Garcia-Alonso L, Sanchis-Juan A, Perez-Gil D, Marin-Garcia P, Sanchez R et al (2015) Babelomics 5.0: functional interpretation for new generations of genomic data. Nucleic Acids Res 43:W117–W121

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Montaner D, Dopazo J (2010) Multidimensional gene set analysis of genomic data. PLoS One 27:e10348

    Google Scholar 

  48. Lam VC, Folkersen L, Aguilar OA, Lanier LL (2019) KLF12 Regulates Mouse NK Cell Proliferation. J Immunol 203:981–989

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Côrtes FH, Passaes CP, Bello G, Teixeira SL, Vorsatz C, Babic D, Sharkey M, Grinsztejn B, Veloso V, Stevenson M et al (2015) HIV controllers with different viral load cutoff levels have distinct virologic and immunologic profiles. J Acquir Immune Defic Syndr 68:377–385

    PubMed  PubMed Central  Google Scholar 

  50. Nissen SK, Christiansen M, Helleberg M, Kjær K, Jørgensen SE, Gerstoft J, Katzenstein TL, Benfield T, Kronborg G, Larsen CS et al (2018) Whole exome sequencing of HIV-1 long-term non-progressors identifies rare variants in genes encoding innate immune sensors and signaling molecules. Sci Rep 8:15253

    PubMed  PubMed Central  Google Scholar 

  51. Kwaa AK, Garliss CC, Ritter KD, Laird GM, Blankson JN (2020) Elite suppressors have low frequencies of intact HIV-1 proviral DNA. AIDS 34:641–643

    PubMed  Google Scholar 

  52. Burbelo PD, Bayat A, Rhodes CS, Hoh R, Martin JN, Fromentin R, Chomont N, Hütter G, Kovacs JA, Deeks SG (2014) HIV antibody characterization as a method to quantify reservoir size during curative interventions. J Infect Dis 209:1613–1617

    CAS  PubMed  Google Scholar 

  53. Julg B, Pereyra F, Buzón MJ, Piechocka-Trocha A, Clark MJ, Baker BM, Lian J, Miura T, Martinez-Picado J, Addo MM et al (2010) Infrequent recovery of HIV from but robust exogenous infection of activated CD4(+) T cells in HIV elite controllers. Clin Infect Dis 51:233–238

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Canouï E, Lécuroux C, Avettand-Fenoël V, Gousset M, Rouzioux C, Saez-Cirion A, Meyer L, Bousaffa F, Lambotte O, Noël N et al (2017) A subset of extreme human immunodeficiency virus (HIV) controllers is characterized by a small HIV blood reservoir and a weak T-cell activation level. Open Forum Infect Dis 4:ofx064

    PubMed  PubMed Central  Google Scholar 

  55. Nunnari G, Fagone P, Condorelli F, Nicoletti F, Malaguarnera L, Di Rosa M (2016) CD4+ T-cell gene expression of healthy donors, HIV-1 and elite controllers: immunological chaos. Cytokine 83:127–135

    CAS  PubMed  Google Scholar 

  56. Zhang LL, Zhang ZN, Wu X, Jiang YJ, Fu YJ, Shang H (2017) Transcriptomic meta-analysis identifies gene expression characteristics in various samples of HIV-infected patients with nonprogressive disease. J Transl Med 15:191

    PubMed  PubMed Central  Google Scholar 

  57. Graf EH, Pace MJ, Peterson BA, Lynch LJ, Chukwulebe SB, Mexas AM, Shaheen F, Martin JN, Deeks SG, Connors M et al (2013) Gag-positive reservoir cells are susceptible to HIV-specific cytotoxic T lymphocyte mediated clearance in vitro and can be detected in vivo. PLoS One 8:e71879

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Alsahafi N, Richard J, Prévost J, Coutu M, Brassard N, Parsons MS, Kaufmann DE, Brockman M, Finzi A (2017) Impaired downregulation of NKG2D ligands by Nef proteins from elite controllers sensitizes HIV-1-infected cells to antibody-dependent cellular cytotoxicity. J Virol 91:e00109–e00117

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Tomescu C, Duh FM, Hoh R, Viviani A, Harvill K, Martin MP, Carrington M, Deeks SG, Montaner LJ (2012) Impact of protective killer inhibitory receptor/human leukocyte antigen genotypes on natural killer cell and T-cell function in HIV-1-infected controllers. AIDS 26:1869–1878

    CAS  PubMed  Google Scholar 

  60. Meier A, Chang JJ, Chan ES, Pollard RB, Sidhu HK, Kulkarni S, Wen TF, Lindsay RJ, Orellana L, Mildvan D et al (2009) Sex differences in the Toll-like receptor-mediated response of plasmacytoid dendritic cells to HIV-1. Nat Med 15:955–959

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Golden-Mason L, Stone AE, Bambha KM, Cheng L, Rosen HR (2012) Race- and gender-related variation in natural killer p46 expression associated with differential anti-hepatitis C virus immunity. Hepatology 56:1214–1222

    CAS  PubMed  PubMed Central  Google Scholar 

  62. O’Connell KA, Brennan TP, Bailey JR, Ray SC, Siliciano RF, Blankson JN (2010) Control of HIV-1 in elite suppressors despite ongoing replication and evolution in plasma virus. J Virol 84:7018–7028

    PubMed  PubMed Central  Google Scholar 

  63. Hatano H, Delwart EL, Norris PJ, Lee TH, Dunn-Williams J, Hunt PW, Hoh R, Stramer SL, Linnen JM, McCune JM et al (2009) Evidence for persistent low-level viremia in individuals who control human immunodeficiency virus in the absence of antiretroviral therapy. J Virol 83:329–335

    CAS  PubMed  Google Scholar 

  64. Pereyra F, Palmer S, Miura T, Block BL, Wiegand A, Rothchild AC, Baker B, Rosenberg R, Cutrell E, Seaman MS et al (2009) Persistent low-level viremia in HIV-1 elite controllers and relationship to immunologic parameters. J Infect Dis 200:984–990

    PubMed  PubMed Central  Google Scholar 

  65. Dinoso JB, Kim SY, Siliciano RF, Blankson JN (2008) A comparison of viral loads between HIV-1-infected elite suppressors and individuals who receive suppressive highly active antiretroviral therapy. Clin Infect Dis 47:102–104

    PubMed  PubMed Central  Google Scholar 

  66. Maldarelli F, Palmer S, King MS, Wiegand A, Polis MA, Mican J, Kovacs JA, Davey RT, Rock-Kress D, Dewar R et al (2007) ART suppresses plasma HIV-1 RNA to a stable set point predicted by pretherapy viremia. PLoS Pathog 3:e46

    PubMed  PubMed Central  Google Scholar 

  67. Pace MJ, Graf EH, Agosto LM, Mexas AM, Male F, Brady T, Bushman FD, O`Doherty U. (2012) Directly infected resting CD4 + T cells can produce HIV Gag without spreading infection in a model of HIV latency. PLoS Pathog 8:e1002818

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Zicari S, Sessa L, Cotugno N, Ruggiero A, Morrocchi E, Concato C, Rocca S, Zacari P, Manno EC, Palma P (2019) Immune activation, inflammation, and non-AIDS co-morbidities in HIV-infected patients under long-term ART. Viruses 11:200

    CAS  PubMed Central  Google Scholar 

  69. Gebara NY, El Kamari V, Rizk N (2019) HIV-1 elite controllers: an immunovirological review and clinical perspectives. J Virus Erad 5:163–166

    PubMed  PubMed Central  Google Scholar 

  70. Zhao S, Fung-Leung WP, Bittner A, Ngo K, Liu X (2014) Comparison of RNA-Seq and microarray in transcriptome profiling of activated T cells. PLoS One 9:e78644

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We would like to thank all participants and healthy donors who participated in the study.

Funding

This work was supported by projects CP14/00198, PI16/01769, and RD16/0025/0013, integrated into the State Plan for Scientific and Technical Research and Innovation from the General Sub-Directorate for research assessment and promotion, Spanish Carlos III Institute of Health (ISCIII) co-funded by the European Regional Development Fund (ERDF). Norma Rallón is a Miguel Servet II investigator from the ISCIII [grant CPII19/00025]. P Minguez is a Miguel Servet investigator [CP16/00116 grant]. S Morón-López was funded by a predoctoral fellowship from the Agència de Gestió d’Ajuts Universitaris i de Recerca [2013FI_B 00275]. The CNIC is supported by the Ministerio de Ciencia, Innovación y Universidades (MCNU) and the Pro CNIC Foundation, and is a Severo Ochoa Center of Excellence (SEV-2015-0505). Clara Restrepo is funded by project RD16/0025/0013. Maria A Navarrete-Muñoz is funded by IND2018/BMD9651. M García was a predoctoral student co-funded by CP14/00198 project, and is currently co-funded by project RD16/0025/0013 and an Intramural Research Scholarship from IIS-FJD.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, JMB and NR. Data curation, JCLB, AC, MFG, FJDH, VE, CB, and MGo. Formal analysis, MG, LLF, PM, SML, JMP, JMB, and NR. Funding acquisition, JMB and NR. Investigation, MG, SML, AB, CR, MANM, and MIG. Methodology, LLF, JMP, JMB, and NR. Project administration, JMB and NR. Resources, JCLB, AC, MFG, FJDH, VE, CB, and MGo. Software, MG, LLF, PM, JMB, and NR. Supervision, JMB and NR. Validation, JMB and NR. Visualization, JMB and NR. Writing the original draft, MG, LLF, PM, SML, JMP, JMB, and NR. Writing, review, and editing, JMB and NR.

Corresponding authors

Correspondence to José M. Benito or Norma Rallón.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Clinical perspectives

• Background

The HIV reservoir is the main barrier to eradicate HIV infection, being resting memory CD4 T (Trm) cells one of the most relevant cellular component harboring latent proviruses. Previous studies have reported a smaller HIV reservoir size in the special group of HIV-infected individuals able to spontaneously control viral replication (elite controllers (EC)) compared with well-suppressed HIV individuals on cART and viremic progressors. However, the specific intrinsic mechanisms of the EC subjects intervening in the viral reservoir control have not been evaluated in these Trm cells.

• Results

Our results show a particular transcriptional profile with specific biological pathways in the Trm cells of the EC subjects, different to that associated to individuals with antiretroviral treatment-induced control. Our data suggest that molecular mechanisms involving enhanced adaptative and innate immune response, high viral genome replication, and low viral latency establishment could promote the EC status and could be related to the reduced HIV reservoir size observed in these individuals.

•Potential significance of the results to human health and disease: These findings highlight the relevance of combining transcriptome analysis and systems biology methods to provide important findings to help us in the design of therapeutic strategies aimed at purging the HIV reservoir and achieve HIV remission.

Electronic supplementary materials

ESM 1

Representative flow cytometry of immuno-magnetic purification of Trm cells (defined as CD4+CD45RO+CD69-CD25-HLADR- cells). The gating strategy and percentages of different T cell populations are shown (PNG 4948 kb)

High Resolution Image (TIF 144 kb)

ESM 2

The characteristics of HIV-infected individuals included in the study (DOCX 14 kb)

ESM 3

List of GO biological processes upregulated in EC compared with TX individuals. Processes are ordered by GO code (DOCX 332 kb)

ESM 4

List of GO biological processes upregulated in TX compared with EC individuals. Processes are ordered by GO code (DOCX 220 kb)

ESM 5

List of GO biological processes upregulated in ECs compared with HC subjects. Processes are ordered by GO code (DOCX 299 kb)

ESM 6

List of GO biological processes upregulated in TX individuals compared with HC subjects. Processes are ordered by GO code (DOCX 176 kb)

ESM 7

GO biological processes related to the immune system are overrepresented in EC individuals compared with HC subjects. a Proportions of the immune system and non-immune system GO biological processes upregulated in Trm cells of EC versus HC (gray-toned left graph) and categories of immune system GO processes (color-coded right graph). b Proportions of the immune system and non-immune system GO biological processes upregulated in Trm cells of TX individuals versus HC (gray-toned left graph) and categories of immune system GO processes (color-coded right graph). EC, elite controllers; TX, cART-suppressed non-controllers; HC, healthy controls (PNG 4948 kb)

High Resolution Image (TIF 4392 kb)

ESM 8

List of GO biological processes upregulated in EC compared with TP individuals. Processes are ordered by GO code (DOCX 185 kb)

ESM 9

List of GO biological processes upregulated in TX compared with TP individuals. Processes are ordered by GO code (DOCX 166 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

García, M., López-Fernández, L., Mínguez, P. et al. Transcriptional signature of resting-memory CD4 T cells differentiates spontaneous from treatment-induced HIV control. J Mol Med 98, 1093–1105 (2020). https://doi.org/10.1007/s00109-020-01930-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-020-01930-x

Keywords

Navigation