Skip to main content
Log in

Endometrial autophagy is essential for embryo implantation during early pregnancy

  • Original Article
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

Embryo implantation is an essential and complex process in mammalian reproduction. However, little evidence has indicated the involvement of autophagy during embryo implantation. To determine the possible role of autophagy in uterine of pregnant mice during the peri-implantation stage, we first examined the expression of autophagy-related markers ATG5 and LC3 on day 4, 5, and 6 of pregnancy (D4, D5, and D6, respectively). Compared with expression on D4, downregulation of the autophagy-related markers was observed on D5 and D6, the days after the embryo attached to the receptivity endometrium. Further examination showed that autophagy-related markers ATG5, ATG12, LC3, cathepsin B, and P62 at the implantation site were significantly decreased when comparing with the inter-implantation site. Fewer number of autophagosomes at the implantation site were also observed by transmission electron microscopy. To confirm the functional role of autophagy during embryo implantation in mice, we administered the autophagy inhibitor 3-methyladenine and chloroquine to mice. After treated with 3-methyladenine, the expression of decidual markers HOXA10 and progesterone receptor were significantly reduced. Furthermore, a reduction in implantation sites and increase in the HOXA10 and PR protein levels were observed in response to chloroquine treatment. In addition, impaired uterine decidualization and dysregulation of the PR and HOXA10 protein levels was observed after autophagy inhibited by 3-methyladenine and chloroquine in in vivo artificial decidualization mouse model. In the last, LC3 and P62 were also observed in normal human proliferative, secretory, and decidua tissues. In conclusion, endometrial autophagy may be essential for embryo implantation, and it may be associated with endometrial decidualization during early pregnancy.

Key message

• Autophagy-related markers were significantly decreased at implantation site.

• Autophagy inhibition results in abnormal decidualization.

• Autophagy is essential for embryo implantation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Liu S, He J, Chen X, Ding Y, Geng Y, Wu M, Liu X, Wang Y (2014) Costimulatory molecule CD28 participates in the process of embryo implantation in mice. Reprod Sci 21:686–695

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Liao XG, Li YL, Gao RF, Geng YQ, Chen XM, Liu XQ, Ding YB, Mu XY, Wang YX, He JL (2015) Folate deficiency decreases apoptosis of endometrium decidual cells in pregnant mice via the mitochondrial pathway. Nutrients 7:1916–1932

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Zhang S, Lin H, Kong S, Wang S, Wang H, Wang H, Armant DR (2013) Physiological and molecular determinants of embryo implantation. Mol Asp Med 34:939–980

    Article  CAS  Google Scholar 

  4. Ruan YC, Chen H, Chan HC (2014) Ion channels in the endometrium: regulation of endometrial receptivity and embryo implantation. Hum Reprod Update 20:517–529

    Article  CAS  PubMed  Google Scholar 

  5. Lamb CA, Yoshimori T, Tooze SA (2013) The autophagosome: origins unknown, biogenesis complex. Nat Rev Mol Cell Biol 14:759–774

    Article  CAS  PubMed  Google Scholar 

  6. Glick D, Barth S, Macleod KF (2010) Autophagy: cellular and molecular mechanisms. J Pathol 221:3–12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Song ZH, Yu HY, Wang P, Mao GK, Liu WX, Li MN, Wang HN, Shang YL, Liu C, Xu ZL, Sun QY, Li W (2015) Germ cell-specific Atg7 knockout results in primary ovarian insufficiency in female mice. Cell Death Dis 6:e1589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Pyo JO, Nah J, Jung YK (2012) Molecules and their functions in autophagy. Exp Mol Med 44:73–80

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Weckman A, Rotondo F, Di Ieva A, Syro LV, Butz H, Cusimano MD, Kovacs K (2015) Autophagy in endocrine tumors. Endocr Relat Cancer 22:R205–R218

    Article  CAS  PubMed  Google Scholar 

  10. White E, Mehnert JM, Chan CS (2015) Autophagy, metabolism, and Cancer. Clin Cancer Res 21:5037–5046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Xie Y, Kang R, Sun X, Zhong M, Huang J, Klionsky DJ, Tang D (2015) Posttranslational modification of autophagy-related proteins in macroautophagy. Autophagy 11:28–45

    Article  PubMed  CAS  Google Scholar 

  12. Wesselborg S, Stork B (2015) Autophagy signal transduction by ATG proteins: from hierarchies to networks. Cell Mol Life Sci 72:4721–4757

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Mizushima N, Yamamoto A, Hatano M, Kobayashi Y, Kabeya Y, Suzuki K, Tokuhisa T, Ohsumi Y, Yoshimori T (2001) Dissection of autophagosome formation using Apg5-deficient mouse embryonic stem cells. J Cell Biol 152:657–668

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ferraro E, Cecconi F (2007) Autophagic and apoptotic response to stress signals in mammalian cells. Arch Biochem Biophys 462:210–219

    Article  CAS  PubMed  Google Scholar 

  15. Parzych KR, Klionsky DJ (2014) An overview of autophagy: morphology, mechanism, and regulation. Antioxid Redox Signal 20:460–473

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Mizushima N, Yoshimori T (2007) How to interpret LC3 immunoblotting. Autophagy 3:542–545

    Article  CAS  PubMed  Google Scholar 

  17. Myeku N, Figueiredo-Pereira ME (2011) Dynamics of the degradation of ubiquitinated proteins by proteasomes and autophagy: association with sequestosome 1/p62. J Biol Chem 286:22426–22440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Bjorkoy G, Lamark T, Pankiv S, Overvatn A, Brech A, Johansen T (2009) Monitoring autophagic degradation of p62/SQSTM1. Methods Enzymol 452:181–197

    Article  PubMed  CAS  Google Scholar 

  19. Gondi CS, Rao JS (2013) Cathepsin B as a cancer target. Expert Opin Ther Targets 17:281–291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. White E (2015) The role for autophagy in cancer. J Clin Invest 125:42–46

    Article  PubMed  PubMed Central  Google Scholar 

  21. Gawriluk TR, Ko C, Hong X, Christenson LK, Rucker EB 3rd (2014) Beclin-1 deficiency in the murine ovary results in the reduction of progesterone production to promote preterm labor. Proc Natl Acad Sci U S A 111:E4194–E4203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Akaishi R, Yamada T, Nakabayashi K, Nishihara H, Furuta I, Kojima T, Morikawa M, Yamada T, Fujita N, Minakami H (2014) Autophagy in the placenta of women with hypertensive disorders in pregnancy. Placenta 35:974–980

    Article  CAS  PubMed  Google Scholar 

  23. Gong JS, Kim GJ (2014) The role of autophagy in the placenta as a regulator of cell death. Clin Exp Reprod Med 41:97–107

    Article  PubMed  PubMed Central  Google Scholar 

  24. Chen Q, Gao R, Geng Y, Chen X, Liu X, Zhang L, Mu X, Ding Y, Wang Y, He J (2018) Decreased autophagy was implicated in the decreased apoptosis during decidualization in early pregnant mice. J Mol Histol 49:589–597

    Article  CAS  PubMed  Google Scholar 

  25. Lee JE, Oh HA, Song H, Jun JH, Roh CR, Xie H, Dey SK, Lim HJ (2011) Autophagy regulates embryonic survival during delayed implantation. Endocrinology 152:2067–2075

    Article  CAS  PubMed  Google Scholar 

  26. Wu X, He L, Chen F, He X, Cai Y, Zhang G, Yi Q, He M, Luo J (2014) Impaired autophagy contributes to adverse cardiac remodeling in acute myocardial infarction. PLoS One 9:e112891

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Qin L, Xu T, Xia L, Wang X, Zhang X, Zhang X, Zhu Z, Zhong S, Wang C, Shen Z (2016) Chloroquine enhances the efficacy of cisplatin by suppressing autophagy in human adrenocortical carcinoma treatment. Drug Des Devel Ther 10:1035–1045

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Tan Y, Tan D, He M, Gu M, Wang Z, Zeng G, Duan E (2005) A model for implantation: coculture of blastocysts and uterine endometrium in mice. Biol Reprod 72:556–561

    Article  CAS  PubMed  Google Scholar 

  29. Noyes RW, Hertig AT, Rock J (1975) Dating the endometrial biopsy. Am J Obstet Gynecol 122:262–263

    Article  CAS  PubMed  Google Scholar 

  30. Long J, Yang CS, He JL, Liu XQ, Ding YB, Chen XM, Tong C, Peng C, Wang YX, Gao RF (2019) FOXO3a is essential for murine endometrial decidualization through cell apoptosis during early pregnancy. J Cell Physiol 234:4154–4166

    Article  CAS  PubMed  Google Scholar 

  31. Zhu P, Xue J, Zhang ZJ, Jia YP, Tong YN, Han D, Li Q, Xiang Y, Mao XH, Tang B (2017) Helicobacter pylori VacA induces autophagic cell death in gastric epithelial cells via the endoplasmic reticulum stress pathway. Cell Death Dis 8:3207

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Chen X, He J, Ding Y, Zeng L, Gao R, Cheng S, Liu X, Wang Y (2009) The role of MTOR in mouse uterus during embryo implantation. Reproduction 138:351–356

    Article  CAS  PubMed  Google Scholar 

  33. Pawar S, Laws MJ, Bagchi IC, Bagchi MK (2015) Uterine epithelial estrogen receptor-alpha controls decidualization via a paracrine mechanism. Mol Endocrinol 29:1362–1374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Whirledge SD, Oakley RH, Myers PH, Lydon JP, DeMayo F, Cidlowski JA (2015) Uterine glucocorticoid receptors are critical for fertility in mice through control of embryo implantation and decidualization. Proc Natl Acad Sci U S A 112:15166–15171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Padmanabhan RA, Laloraya M (2016) Estrogen-initiated protein interactomes during embryo implantation. Am J Reprod Immunol 75:256–262

    Article  PubMed  Google Scholar 

  36. Sun X, Park CB, Deng W, Potter SS, Dey SK (2016) Uterine inactivation of muscle segment homeobox (Msx) genes alters epithelial cell junction proteins during embryo implantation. FASEB J 30:1425–1435

    Article  CAS  PubMed  Google Scholar 

  37. Li SJ, Wang TS, Qin FN, Huang Z, Liang XH, Gao F, Song Z, Yang ZM (2015) Differential regulation of receptivity in two uterine horns of a recipient mouse following asynchronous embryo transfer. Sci Rep 5:15897

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Vitale I, Manic G, Dandrea V, De Maria R (2015) Role of autophagy in the maintenance and function of cancer stem cells. Int J Dev Biol 59:95–108

    Article  CAS  PubMed  Google Scholar 

  39. Mizushima N, Komatsu M (2011) Autophagy: renovation of cells and tissues. Cell 147:728–741

    Article  CAS  PubMed  Google Scholar 

  40. Choi S, Shin H, Song H, Lim HJ (2014) Suppression of autophagic activation in the mouse uterus by estrogen and progesterone. J Endocrinol 221:39–50

    Article  CAS  PubMed  Google Scholar 

  41. Ekizceli G, Inan S, Oktem G, Onur E, Ozbilgin K (2017) Assessment of mTOR pathway molecules during implantation in rats. Biotech Histochem 92:450–458

    Article  CAS  PubMed  Google Scholar 

  42. Cha J, Sun X, Dey SK (2012) Mechanisms of implantation: strategies for successful pregnancy. Nat Med 18:1754–1767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Liang YX, Liu L, Jin ZY, Liang XH, Fu YS, Gu XW, Yang ZM (2018) The high concentration of progesterone is harmful for endometrial receptivity and decidualization. Sci Rep 8:712

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Wei X, Zhou Z, Li L, Gu J, Wang C, Xu F, Dong Q, Zhou X (2016) Intrathecal injection of 3-methyladenine reduces neuronal damage and promotes functional recovery via autophagy attenuation after spinal cord ischemia/reperfusion injury in rats. Biol Pharm Bull 39:665–673

    Article  CAS  PubMed  Google Scholar 

  45. Kimura T, Takabatake Y, Takahashi A, Isaka Y (2013) Chloroquine in cancer therapy: a double-edged sword of autophagy. Cancer Res 73:3–7

    Article  CAS  PubMed  Google Scholar 

  46. Clementi C, Tripurani SK, Large MJ, Edson MA, Creighton CJ, Hawkins SM, Kovanci E, Kaartinen V, Lydon JP, Pangas SA, DeMayo F, Matzuk MM (2013) Activin-like kinase 2 functions in peri-implantation uterine signaling in mice and humans. PLoS Genet 9:e1003863

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Tan J, Raja S, Davis MK, Tawfik O, Dey SK, Das SK (2002) Evidence for coordinated interaction of cyclin D3 with p21 and cdk6 in directing the development of uterine stromal cell decidualization and polyploidy during implantation. Mech Dev 111:99–113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Joshi A, Mahfooz S, Maurya VK, Kumar V, Basanna CS, Kaur G, Hanif K, Jha RK (2014) PARP1 during embryo implantation and its upregulation by oestradiol in mice. Reproduction 147:765–780

    Article  CAS  PubMed  Google Scholar 

  49. Zhu Y, Zhao L, Liu L, Gao P, Tian W, Wang X, Jin H, Xu H, Chen Q (2010) Beclin 1 cleavage by caspase-3 inactivates autophagy and promotes apoptosis. Protein Cell 1:468–477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Mukhopadhyay S, Panda PK, Sinha N, Das DN, Bhutia SK (2014) Autophagy and apoptosis: where do they meet? Apoptosis 19:555–566

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (Nos. 31771663, 31571190, and 81300486) and the Natural Science Foundation of Chongqing (No. cstc2018jcyjAX0309).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ying-Xiong Wang or Ru-Fei Gao.

Ethics declarations

All animal procedures were approved by the Ethics Committee of Chongqing Medical University, China

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOC 515 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Su, Y., Zhang, JJ., He, JL. et al. Endometrial autophagy is essential for embryo implantation during early pregnancy. J Mol Med 98, 555–567 (2020). https://doi.org/10.1007/s00109-019-01849-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-019-01849-y

Keywords

Navigation