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Abstract

Chronic kidney disease (CKD) may progress to end-stage renal disease (ESRD) at different pace. Early markers of disease
progression could facilitate and improve patient management. However, conventional blood and urine chemistry have proven
unable to predict the progression of disease at early stages. Therefore, we performed untargeted plasma peptidome analysis to
select the peptides involved in progression, which are suitable for long prospective studies in future. The study consists of non-
CKD (n=66) and CKD (n=106) patients with different stages. We performed plasma peptidomics on these subjects using
chromatography and mass spectrometric approaches. Initially, we performed LC-ESI-MS and applied least absolute shrinkage
and selection operator logistic regressions to select the peptides that are differentially expressed and we generated a peptidomic
score for each subject. Later, we identified and sequenced the peptides with MALDI-MS/MS and also performed univariate and
multivariate analyses with the clinical variables and peptidomic score to reveal their association with progression of renal disease.
A logistic regression model selected 14 substances showing different concentrations according to renal function, of which seven
substances were most likely occur in CKD patients. The peptidomic model had a global P value of < 0.01 with R* of 0.466, and
the area under the curve was 0.87 (95% CI, 0.8149-0.9186; P < 0.0001). The predicted score was significantly higher in CKD
than in non-CKD patients (2.539+0.2637 vs —0.9382+0.1691). The model was also able to predict stages of CKD: the
Spearman correlation coefficient of the linear predictor with CKD stages was 0.83 with concordance indices of 0.899 (95%
CI10.863-0.927). In univariate analysis, the most consistent association of peptidomic score in CKD patients was with C-reactive
protein, sodium level, and uric acid, which are unanticipated substances. Peptidomic analysis enabled to list some unanticipated
substances that have not been extensively studied in the context of CKD but were associated with CKD progression, thus
revealing interesting candidate markers or mediators of CKD of potential use in CKD progression management.
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Key messages

* Conventional blood and urine chemistry have proven unable to predict the progression of disease at early stages of chronic

kidney disease (CKD).

» We performed untargeted plasma peptidome analysis to select the peptides involved in progression.

* A logistic regression model selected 14 substances showing different concentrations according to renal function.

* These peptides are unanticipated substances that have not been extensively studied in the context of CKD but were associated
with CKD progression, thus revealing markers or mediators of CKD of potential use in CKD progression management.

Keywords Chronic kidney disease - End-stage renal disease - Disease progression - Systems medicine - proteomics - peptidomics

Introduction

The progression of chronic kidney disease (CKD) irrespec-
tive of its origin markedly contributes to the high prevalence
of end-stage renal disease (ESRD). Numerous mechanisms
of disease progression have been identified such as arterial
hypertension, hyperphosphatemia, secondary hyperpara-
thyroidism, and proteinuria [1-3]. However, the progres-
sive nature of CKD is still an area of intensive research.
Recently, the hypothesis was put forward that certain ure-
mic toxins could create a vicious circle of disease progres-
sion, with the accumulation of uremic toxins self-
perpetuating the loss of renal function [4]. Mainly small
uremic toxins have been implicated in this mechanism of
disease so far, such as indoxyl sulphate, phenylacetic acid p-
cresylsulphate, 5-methoxythryptophan, canavanin
osuccinate, acetylcarnitine, tiglycarnitine, and taurine
[5-8]. On the other hand, the large group of so-called mid-
dle molecules has not been intensively studied in this re-
spect so far. However, especially the role of peptides for
CKD progression may be of interest, as several of these
peptides may specifically activate signaling pathways in-
volved in fibrosis, apoptosis, and other cellular mechanisms
of renal damage. The identification of peptides affecting
CKD may not only help to understand CKD progression,
but could also establish new markers of disease progression.
Early markers of disease progression could facilitate the
attempts to reverse the frequently relentless progression to
end-stage renal disease. In addition, also those peptides that
showed decreased plasma concentrations with decreasing
renal function may be of interest. Potentially, the loss of
their renal protective effects may contribute to progressive
renal failure.

The value of the LC-MS technique as a tool for identi-
fying biomolecules such as peptides or metabolites is
shown by recent studies in different renal diseases
[8-12]. Using a mass spectrometric approach, we identi-
fied both peptides accumulating and peptides showing re-
duced concentrations with decreasing renal function, as
these peptides may be of interest for establishing new ther-
apeutic targets and/or new markers of CKD progression.

@ Springer

Materials and methods
Study subjects

The study cohort consisted of 66 non-CKD patients, three
patients with estimated glomerular filtration rate (eGFR)
greater than 60 ml/min with proteinuria, 44 patients with
CKD 3, 15 patients with CKD 4, 9 patients with CKD 5,
and 35 patients on dialysis with CKD 5. These subjects
were recruited from the University Hospital Essen
(Germany), Department of Nephrology. Inclusion criteria
were (a) patients suffering from CKD 3-5 (KDOQI guide-
line) with stable chronic renal disease, eGFR < 60 ml/min
for more than 3 months, and pathologic urinary sediment,
proteinuria, and/or pathologic biopsy; (b) patients on di-
alysis for more than 3 months; and (c) patients without
history of kidney disease, e€GFR > 60 ml/min, unremark-
able urinary sediment, no proteinuria, and normal kidney
sonography, thus considered as non-CKD patients. We
excluded patients younger than 18 and older than 85 years,
pregnant or breast-feeding women, and/or patients not
signing the informed consent document. The study was
approved by the local ethical committee of the
University Hospital Essen, Germany (ethical vote 08—
3817) and all study subjects gave written informed
consent.

Biochemical measurements

Plasma-EDTA was isolated from peripheral blood by
spinning at 2500 g and stored at —80 °C. For biochem-
ical characterization, blood urea nitrogen (BUN), calci-
um, creatinine, C-reactive protein (CRP), fibrinogen, he-
matocrit (HCT), high-density lipoprotein (HDL), hemo-
globin, low-density lipoprotein (LDL), phosphate, para-
thyroid hormone (PTH), sodium, triglycerides, uric acid,
urinary albumin, and white blood cell count (WBC) were
measured using standard autoanalyzer techniques by the
hospital laboratory. eGFR was calculated using the
MDRD formula [13].
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Sample preparation for untargeted peptidomics

For peptide analysis, plasma-EDTA samples were processed.
Prior to analysis, the plasma samples were randomly distrib-
uted to reduce the sampling errors. Samples were thawed and
centrifuged at 13,000g for 5 min at 4 °C to remove the dena-
tured proteins. Equal volumes (300 pl) of plasma were
aliquoted for all samples, followed by addition of an internal
standard to each sample (1 pg of [Sar', Thr®]-angiotensin II,
Sigma-Aldrich, Taufkirchen, Germany). By using 19.6 ul of
70% perchloric acid (Merck, Darmstadt, Germany), high
abundant proteins were denatured and vortexed for 30 s. The
samples were centrifuged at 13,000g for 2 min at 4 °C and the
resulting supernatants were transferred to a reaction tube. The
supernatant was increased in pH to 9.0 by adding 19.6 pl of
15 M potassium hydroxide (Sigma-Aldrich, Taufkirchen,
Germany) and vortexed for 30 s. Until the separation by
high-pressure liquid chromatography (HPLC), these samples
were stored at — 20 °C for at least 24 h. Later, the samples were
thawed and centrifuged at 13,000g for 5 min at 4 °C. The
supernatant was collected in a reaction tube, the volume was
increased to 5 ml with 0.1% trifluoroacetic acid (Sigma-
Aldrich, Taufkirchen, Germany), and the pH was adjusted
between 6 and 7 using 25% hydrochloric acid (Sigma-
Aldrich, Taufkirchen, Germany) or 10 M sodium hydroxide.

Peptide fractionation by reversed-phase
chromatography

The peptides extracted from the plasma samples were frac-
tionated using a C18-“Chromolith”™-reversed-phase
chromatographic column (100 mm X 4.6 mm; Merck,
Germany) combined with a UV detector and sample col-
lector. Prior to loading, the column was rinsed with 100%
ethanol (Sigma-Aldrich, Taufkirchen, Germany) followed
by 100% milliQ water with 0.1% trifluoroacetic acid. The
samples were loaded on the C18 column using the
“BioLogic DuoFlow” HPLC injecting system (BioRad,
USA). The peptides were fractionated using 0.1% TFA in
water (v/v) (Fisher Scientific, Pittsburgh, USA) as a polar
solvent (A) and 80% ethanol in water (v/v) as a non-polar
solvent (B) at a flow rate of 1 ml/min for 36.9 min. A
stepwise gradient was run as follows: 0—5 min 0% B,
5.1-11.1 min 20% B, 11.2-17.3 min 40% B, 17.3-
22.3 min 100% B, 22.3-27.4 min 100% A, 31.4—
36.9 min 0% B. Peptide separation and elution were mon-
itored with UV absorbance at A,go nm and collected in a
12-min interval. Desalting of the samples was performed
simultaneously along with the chromatographic peptide
separation. The resulted fractions were pooled and concen-
trated using the freeze-drying technique (Thermo Fisher
Scientific, Lanerwehe, Germany) and then stored at —
20 °C for further analysis.

Plasma peptidome analysis by liquid chromatography
online coupled to electrospray ionization mass
spectrometry (LC-ESI-MS)

For untargeted plasma peptidomic analysis of the cohort, we
used capillary-HPLC system (Agilent 1200, Agilent,
Germany) interfaced with an electrospray ionizer and HCT
mass spectrometer (Bruker-Daltonics, Germany). For separa-
tion of peptides, “C18 SB Zorbax” column (150 x 0.5 mm;
5 um, Agilent Technologies, Germany) was used and with the
help of HyStar software (Bruker-Daltonics, Germany) data
was acquired and processed. For chromatography, 0.1%
formic acid in water as eluent A and 100% acetonitrile
(Thermo Fisher Scientific, Lanerwehe, Germany) with 0.1%
formic acid as eluent B were used. The flow rate was main-
tained at 60 pl/min for 22.0 min and the column temperature
was constantly maintained around 50 °C. The column was
equilibrated by rinsing with 100% acetonitrile followed by
100% LC-MS-grade water. The freeze-dried samples were
reconstituted with 50 ul of 0.1% formic acid in water (v/v)
and 2 pl of the reconstituted sampled was injected into the
column by the auto-sampler of the chromatographic system. A
linear gradient was applied as follows: 0.0—2.0 min 0% mobile
phase B, 2.0-10.0 min 0-30% mobile phase B, 10.0—13.5 min
30-100% mobile phase B, 13.5-15.5 min 100% mobile phase
B, 15.5-16.0 min 100-0% mobile phase B, and 16.0—
22.0 min 0% B. The mass analyzer was operated in positive
ion mode with source temperature at 300 °C. The nebulizer
gas was maintained at 20 psi and the dry gas flow was adjusted
to 9 I/min respectively. For the detection of peptides, global
mode was used with the accumulation time set to 200 ms. The
mass spectrometer was tuned in wide-mode option on m/z
800, operated in enhanced mode with the scan range of
100-1500 m/z. All data were acquired and processed using
Compass 1.3 Software (Bruker-Daltonics, Germany).

Data pre-processing

The raw data from LC-MS experiments were processed using
“Data-analysis 4.0” (Bruker-Daltonics, Germany). For
selecting high-quality peaks, so-called molecular features,
the following parameters were used: (a) signal-to-noise ratio
(S/N), 3; (b) correlation coefficient threshold, 0.7; (¢) mini-
mum compound length, 10 spectra; (d) smoothing width, 2.
Spectral background subtraction was also performed. The data
were transformed into buckets of 0.3 s difference in retention
time and 0.2 m/z difference for statistical analysis using profile
analysis software (Bruker-Daltonics, Germany) and were nor-
malized with internal standard signal intensity. Then, an algo-
rithm for peak picking (“find molecular features”) was
employed to combine all ions that derive from the same com-
pound, thus considerably reducing the size and complexity of
the dataset to be analyzed. Further, to simplify the huge data
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for statistical analysis, chromatograms were transferred into
buckets with the information on intensity, m/z, and the reten-
tion time of each molecular feature. Figure 1 a represents the
workflow for selection of mass signals that distinguish CKD
and non-CKD through a peptidomic-biostatistical integrated
approach.

Statistical methods

Statistical analysis was performed using “Statistical Analysis
System” (SAS) software version 9.3 (SAS Institute, USA), R
version 3.2.4. (Team 2016), and GraphPad Prism 6.0 software.
Continuous variables were reported as means and standard
deviation (SD) and compared between non-CKD patients
and all stages of CKD patients using unpaired ¢ tests.
Categorical variables are reported as percentages and
frequencies.

A plasma peptidomic classifier distinguishing CKD from
non-CKD was developed using logistic and ridge regression.
The peptide intensity values were transformed into log-base-2
values, and transformed values were used in all regression anal-
ysis. If peptide intensity was not detected by the mass spec-
trometer or a peptide was not present in a sample, it was scored
as zero instead of a missing value. Firstly, we filtered out the
peptides with more than 25% missing values across all samples.

Depletion of abundant proteins

¥

Separation and desalting using
C18 column (RP-LC) prior to LC-MS

v

Freeze dry and reconstitution
with 0.1% formic acid

v

LC-ESI-MS

v

Peak picking

¥

Data Processing and bucketing based
on m/z, intensity and retention time

v

Regression analysis

v

Identification of selected m/z

Fig. 1 Outline of the steps followed in sample preparation for mass
spectrometer and processing the data for statistical analysis
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Later, zero values of a peptide were assigned to the minimum
measured value of the respective peptide on the log scale minus
a constant value of d. A logistic model was fitted with “least
absolute shrinkage and selection operator” (LASSO) to select
the peptides of importance by tuning a A parameter such that
the cross-validated deviance is minimized. Lastly, the model
was re-estimated using ridge logistic regression based on two
variables for each selected peptide: one dichotomous binary
variable D that distinguished zero from non-zero measurements
and a second continuous variable X which was equal to the
logarithm of the mass-signal intensity of the peptide. If the
mass-signal intensity was not detectable, it was set to the mean
logarithm of peptide intensity to maintain interpretability of the
binary variable’s coefficient. By tuning d by a leave-one-out
cross-validation loop, we optimized the model. By this method,
regression coefficients for detection/non-detection (/3p) and for
the peptide intensity (Oy) were obtained and cross-validated
linear predictor scores for each subject were calculated by re-
peating the whole model development process on datasets ex-
cluding that subject. The cross-validated linear predictor scores
were compared between CKD stages and between non-CKD
and CKD patients and their ability to distinguish between the
two groups was described using ROC (c-) statistic. Pseudo R
values were computed as the difference in predicted CKD prob-
ability between CKD and non-CKD patients (discrimination
slope). [14]

Prior to assessing the associations between the cross-
validated scores and clinical variables and to overcome the
problem of sparse missing clinical data, we performed impu-
tation of missing clinical variables using the R package MICE
version 3.1 [15]. As imputation method, we selected predic-
tive mean matching (PMM) and performed imputation on
CKD and non-CKD samples separately. We then compared
the distributions of the original and imputed data to make sure
that the imputed values are indeed plausible values. To assess
whether the cross-validated peptidomic scores were associat-
ed with clinical variables, we then performed the following
statistical tests: Spearman’s correlation for continuous valued
variables and two-sample ¢ test for discrete binary valued var-
iables, and multivariate logistic regression with CKD status
(CKD vs non-CKD) as binomial outcome and the cross-
validated peptidomic linear predictor score, hypertension sta-
tus, hyperparathyroidism, age, sex, white blood cell count
(WBCO), waist, fibrinogen, hemoglobin, hematocrit, level of
sodium, and uric acid as explanatory variables.

Peptide identification using matrix-assisted laser
desorption-time of flight mass spectrometry
(MALDI-TOF-MS) and LTQ Orbitrap XL mass
spectrometry

Peptides that were selected by the model were identified off-
line from the reconstituted samples by MALDI-time of flight
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(TOF)/TOF fragment ion analysis as well as by LTQ Orbitrap
XL mass spectrometry. One microliter of sample and x-4-
hydroxycinnamic acid matrix was spotted on the target
(MTP AnchorChip 400/384; Bruker-Daltonics, Germany)
using dried droplet method «-4-hydroxycinnamic acid
(Sigma-Aldrich, Germany) as described previously [12]. All
measurements were performed on a Bruker Ultraflex-III TOF/
TOF mass spectrometry (Bruker-Daltonics, Germany) that
was equipped with a Smart Beam Laser operated at a repeti-
tion rate of 100-200 Hz and operated in positive mode. The
instrument was calibrated to determine the calibration con-
stants using standard peptides (Bradykinin (1-7), Ang II,
P14R, ACTH (18-39); Sigma-Aldrich, Germany) resulting in
an error of 100 ppm for the recorded mass spectra. The pre-
sented spectra are the representative average spectra with sum
of 200 single-shot spectra for MS mode, and 600 for MS/MS
mode. The positively charged ions mass spectra were ana-
lyzed in the reflector mode using delayed ion extraction.
Using the LIFT option of the Ultraflex (Bruker-Daltonics,
Germany), fragment ion spectra were recorded. Peptides were
identified using the Mascot search engine (Matrix Science,
UK) as well as by the RapideNovo 3.0.1 sequencing tool
(Bruker-Daltonics, Germany) by searching for Homo sapiens
Proteins based on the fragment ion-mass data.

To cross-check the identified molecular features, we per-
formed mass spectrometric analyses using the high-end instru-
ment MALDI LTQ Orbitrap XL (Thermo-Fisher Scientific,
Germany) equipped with a nitrogen laser (MNL-100; LTB
Lasertechnnik, Germany) operating at a wavelength of
337.1 nm with a spectral bandwidth of 0.1 nm, pulse repetition
rate up to 60 Hz with 3-ns pulse width, and 75 pJ energy per
pulse. Fourier transform mass spectrometric (FTMS) data
were acquired in a measuring grid across the membrane area
with a resolution of 60,000 in a positive range. The ion trap for
the second scan event (MS/MS) and an activation type of
“collision-induced dissociation” (CID) with a resolution of
60,000 in a positive range, a collision energy of 35 J, and an
activation time of 30,000 ms. All data acquisitions were per-
formed in the centroid mode using the mass range of 100—
2000 m/z. The mass spectra were accumulated in with
Xcaliber 2.1.0 and analyzed by Proteome Discoverer 1.4 (both
Thermo Fischer Scientific, Germany). For identification, we
downloaded the human.fast and uniprot.fast as well as an in-
house Mascot database (Matrix Science Inc., US).

Results
Baseline characteristics of CKD and non-CKD patients
The study subjects were classified based on the eGFR and

were divided into 106 CKD (cases) and 66 non-CKD (con-
trols). The CKD and non-CKD patient’s characteristics are

shown in Table 1. Thirty-two percent and 67.0% were males
in non-CKD and CKD, respectively. CKD patients were older
(67.5 (51.3-73.0) years) than non-CKD patients (53.0 (49.8—
65.0) years). CKD patients have had significantly lower dia-
stolic pressure (DBP, 71.91 +12.32 mm Hg) than non-CKD
patients (75.45+9.67 mm Hg). No significant differences
were observed in height, weight, systolic pressure (SBP),
and heart rate between these two groups during physical ex-
amination. Creatinine, BUN, CRP, fibrinogen, phosphate,
PTH, uric acid, and WBC levels as well as urinary albumin
were significantly higher and eGFR and HCT significantly
lower in CKD patients. The lipid profiles were also signifi-
cantly different between two groups. Lower hemoglobin
levels were observed in CKD patients as anticipated.

Plasma peptidomic analysis

The plasma samples were processed to enrich the naturally
occurring endogenous peptides by depleting the high abun-
dant plasma proteins by acid denaturation. The processed
samples were later fractionated and desalted to reduce the
complexity of the samples. Elution was monitored by UV
absorbance at \,gop nm using analytical HPLC. Figure 2a
shows a representative chromatogram of the separated pep-
tides eluted with 80% ethanol. Figure 2b and c represent the
characteristic total ion chromatogram of a CKD and a non-
CKD patient respectively, demonstrating differences in their
total ion chromatogram. Figure 2d and e represent the respec-
tive average spectra of a CKD and a non-CKD, which show
significant differences in the mass signals. Figure 3 shows the
density view of one of the selected features with their naturally
occurring isotopes, which is detected through LC-ESI-MS.

Performance of the model

The raw mass spectrometric profiles were processed, and then
buckets with m/z and retention time were generated based on
the difference in the retention time and m/z of all samples. The
bucket table was analyzed to find the significant differences in
molecular masses between non-CKD and CKD and a linear
prediction model was developed to distinguish among con-
trols (non-CKD) and cases (stages 2—5d of CKD). Firstly,
the prediction model was developed using regression analysis.
Fourteen molecular features were selected. The regression co-
efficients of the 14 features selected for the model are shown
in Table 2. Later, we applied the same model building proce-
dure to the features that were not selected in the first model,
but no further features were selected.

The first peptidomic model had a global P value <0.01
with an overall R> of 0.466. Among the selected features,
seven were downregulated and seven were upregulated in
CKD compared with non-CKD. The predicted score was sig-
nificantly higher in CKD (stages 2—5d) than in non-CKD

@ Springer
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Table 1 Baseline characteristics

of the NTSVP cohort Variable Non-CKD (1 = 66) CKD (n=106) P value
Demographics
Age (years)* 53.0 (49.8-65.0) 67.5(51.3-73.0) 0.0011
Male, N (%) 32 (48%) 67 (63%) n.s
Physical examination
DBP (mm Hg) 75.4+9.7 71.9+£12.3 0.0301
Heart rate (bpm)* 67.0 (62.0-74.0) 69.0 (60.5-77.5) n.s
Height (cm) 171.5+9.5 171.9+9.7 0.7479
SBP (mm Hg) 134.7+19.8 138.9+£24.4 0.0945
Weight (kg)* 76.5 (66.8-89.3) 78.0 (69.0-91.9) 0.271
Biochemical data
BUN (mg dL 1y* 15.0 (12.0-18.0) 32.0 (19.0-52.0) <0.0001
Calcium (mmol Lfl)* 2.3(2.3-24) 232224 n.s
Creatinine (mg dL h* 1.0 (0.9-1.1) 2.8 (1.3-4.9) <0.0001
CRP (mg/L)* 0.5 (0.1-0.5) 0.5 (0.5-0.8) 0.0252
¢GFR (ml/min/1.73 m?)* 68.5 (63.0-75.3) 28.5 (13.0-48.3) <0.0001
Fibrinogen (mg dL™')* 334 (298-356) 410.5 (329.5-527.3) <0.0001
HCT 0.42+0.003 0.39+£0.004 <0.0001
HDL (mg dL™")* 57.5 (46.0-70.0) 48.5 (39.0-60.0) 0.0007
Hemoglobin (g dL™")* 13.8 (12.9-14.6) 12.6 (11.3-13.8) <0.0001
LDL (mg dL ™ "y* 127.5 (74.0-153.8) 102.0 (51.0-126.0) <0.0001
Phosphate (mg dL™")* 34 (3.1-3.8) 3.7(3.34.8) 0.0006
PTH (ng L™ "y* 39.7 (33.5-55.1) 85.2 (44.8-138.1) <0.0001
Sodium (mmol L") 139.7+£0.24 138.9+0.28 0.0448
Triglyceride (mg dL")* 101.0 (71.3-153.3) 121.0 (81.3-173.0) 0.0277
Uric acid (mg dL™")* 5.4 (4.8-6.17) 5.9 (4.5-7.8) 0.0092
Urine albumin (mg L") 0 77.2 (3.2-380.4) 0.0246
WBC (107 cells L™"y* 5.89 (4.9-6.9) 6.6 (5.4-8.2) 0.0025
Renal replacement therapy
Dialysis (CKD5, in %) 0 33.0

*Median and interquartile range. BUN blood urea nitrogen, CRP C-reactive protein, DBP diastolic blood pressure,
eGFR estimated glomerular filtration rate, HCT hematocrit, HDL high-density lipoprotein, LDL low-density
lipoprotein, PTH para thyroid hormone, SBP systolic blood pressure, WBC white blood cell, n.s not significant

patients (2.539+0.2637 vs —0.9382+£0.1691), as shown in
the box plots of Fig. 4a. With the linear model, we conducted a
leave-one-out cross-validation and generated hereby a cross-
validated predictor. The diagnostic power of the 14 selected
molecular features was measured using ROC analysis. The
area under curve of the model was found to be 0.87 (95%
confidence interval, 0.8149-0.9186; P <0.0001) as shown in
Fig. 4b.

Further, the CKD patients were subdivided into the respec-
tive stages of CKD (GFR > 60 ml/min with proteinuria, CKD
stage 3, CKD stage 4, CKD stage 5, and patients on dialysis
(CKD stage 5D)) with the unmodified cross-validated predic-
tor as shown in Fig. 4c. We observed that the score generated
for each subject was directly proportional to the stage of CKD
(Fig. 4c). The Spearman correlation coefficients of the linear
predictor and the cross-validated linear predictor with the
CKD stages were 0.83 and 0.78, respectively. The

@ Springer

concordance indices were 0.899 (95% CI 0.863-0.927) for
the linear predictor and 0.872 (0.830-0.905) for the cross-
validated linear predictor.

Clinical correlates of the peptidomic score

In correlation analyses, the peptidomic scores were most sig-
nificantly correlated to C-reactive protein (7 = 0.2, uncorrected
P value =0.03), sodium level (»=—0.2, uncorrected P value
=0.03) and uric acid (»=—0.21, P value = 0.02) (see Table 3
for all uncorrected P values). There was no significant differ-
ence in CKD patients due to sex (2.40+2.53 vs 2.70 £2.93;
P =0.59) or dyslipoproteinemia (2.79 +£2.11 vs 2.42+2.82;
P=0.56).

In multiple logistic regression analysis, we first used
LASSO logistic regression with 10-fold cross-validation
to identify a solid sub-list of clinical features to include
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Fig. 2 Analysis of the
preprocessed samples using
online coupled liquid
chromatography electrospray
ionization mass spectrometry. a
Separation and desalting of
peptides on reversed-phase
chromatographic column
performed using HPLC. Peptides
are separated and eluted based on
the hydrophobic nature of the
solvent to reduce the sample
complexity. The elution of
peptides is monitored by the UV
absorbance at \,gy nm and
desalting is monitored by the
conductometer. b Characteristic
total ion chromatogram of a
sample from the CKD group. ¢
Characteristic total ion
chromatogram of a sample from
the non-CKD subject group. d
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in the final multiple logistic regression model. LASSO
was trained on a random subset (80%) of the samples
and the most predictive features were chosen. We per-
formed multivariable logistic regression with CKD vs
non-CKD status as binomial outcome and the cross-
validated peptidomic score, hypertension status, hyper-
parathyroidism, age, sex, waist, WBC, fibrinogen,
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hemoglobin, hematocrit, level of sodium, and uric acid
as explanatory variables. The association with the pres-
ence of CKD was significant for the peptidomic score,
hyperparathyreoidism, and hematocrit as shown in
Table 4. We used the remaining 20% of samples to assess
the ability of the model to distinguish between CKD and
non-CKD patients. The model had an AUC =0.95.
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Fig. 3 Density view of the 971.41 m/z selected feature by the model with their naturally occurring isotopic forms
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Table 2 Selected features and their coefficients
m/z Description of intensity values Multivariable model
Proportion non-zero Proportion non-zero By (per doubling Bp (detection vs Partial R?
among progressors among Non-progressors of intensity non-detection of peptide)
Upregulated in CKD
367.22 0.94 0.78 0.19 1.58 0.006
384.19 0.79 0.39 0.13 0.92 0.002
971.41 0.5 0.16 0.09 1.37 —0.006
551.13 0.81 0.46 0.09 1.33 —0.001
972.39 0.36 0.14 0.08 1.23 —0.004
831.17 0.49 0.07 0.07 0.65 —0.006
129.85 0.59 0.28 0.05 0.18 —0.005
Downregulated in CKD
188.42 0.86 0.96 —-0.16 -1.13 0.003
537.08 0.5 0.68 -0.14 -0.7 0.011
433.26 0.51 0.83 -0.11 —0.68 0.003
389.27 0.27 0.62 -0.1 -0.83 0
342.25 0.41 0.7 -0.05 -0.58 —0.001
636.36 0.32 0.62 -0.02 -0.67 —0.002
576.05 0.66 0.22 -0.01 0.32 —0.007
Identification and sequencing of selected features Discussion

After selection of molecular features, their molecular struc-
tures were identified using MALDI TOF/TOF-MS and LTQ
Orbitrap XL. Figure Sa represents the MS spectrum of a
feature with 972.4 m/z, which is upregulated in CKD pa-
tients and Fig. 5b represents its respective MS/MS fragmen-
tation ion spectra, which is a fragment of amiloride-
sensitive amine oxidase (AOCI1, ABP1, DAO1) with the
amino acid sequence of HYPRALCL. Also, fragments of
osteocalcin (BGLAP), angio-associated migratory cell pro-
tein (AAMP), putative inactivation escape (INE1), sodium
bicarbonate transporter like protein (SLC4A11/BTR1), and
lysine were also upregulated in CKD. Fragments of eryth-
rocyte membrane glycopeptide, thymosin beta-10
(TMSB10/PTMB10/THYB10), humanin (MT-RNR2/HN),
aldehyde dehydrogenase family 3 member 1 (ALDH3A1/
ALDH3), and tryptophan were identified protein fragments
that were downregulated in CKD patients. Further, the mod-
el selected osteocalcin based on three peptides with differ-
ent amino acid sequences, and AOC1 based on two peptides
with similar sequence. The list of identified features is
shown with their sequences in Table 5. Afterwards, litera-
ture mining was performed on the identified peptides to
investigate their pathophysiological roles. Although, few
of the proteins were reported in the context of renal failure,
most of them were related to either atherosclerosis, hyper-
tension, or cardiovascular diseases. Each protein role is
discussed in detail in the “Discussion” section.

@ Springer

Peptide-based comparative analyses of non-CKD and CKD
patients at different stages were performed using a peptido-
biostatistic integrated approach on human plasma. As plasma
provides a snapshot of the molecular status of the CKD pa-
tients at the point of collection, any alterations in the blood
peptidome in CKD can be detected by comparing with non-
CKD patients. Thus, we developed a plasma peptidomic linear
predictor model to determine CKD stages based on the signif-
icant differences between CKD and non-CKD. The predictor
model developed discriminates between CKD and non-CKD
and has great stability, as no other features were identified
after excluding the selected features at the time of the model
development process. The little drop in the R* of each selected
feature illustrates that it is not a single feature that influences
the model, but rather a panel of features are essential for the
superior performance of the model. The model also differen-
tiates between different stages of CKD based on selected fea-
tures score, as shown in Fig. 4c.

A plethora of molecular mechanisms/pathways have been
illustrated to be involved in CKD pathology, such as vascular
calcification and stiffness due to an imbalance in calcium and
phosphate levels [16], the renin-angiotensin-aldosterone sys-
tem (RAAS) [17], endothelial dysfunction [18], inflammation
[19], coagulation processes [20], and oxidative and metabolic
stress [21, 22]. The results of this study show that in CKD
patients, several peptides show increased plasma concentra-
tions, whereas others are lower than in non-CKD condition.
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This finding indicates that the changes in plasma peptide con-
centrations in renal failure are not simply due to accumulation
as a consequence of diminished urinary excretion. In addition
to lower excretion, also up- and downregulation of peptide
synthesis may play a role. Furthermore, uremic toxins may
inhibit or activate peptidases involved in the generation and/
or degradation of these peptides.

Among those peptides showing increased concentrations in
renal failure patients, several substances deserve mention:

Table 3 Correlation analysis of clinical variables with cross-validated
peptidomic score in CKD patients

Variable Correlation coeff P value
Age 0.085 0.389
BNP 0.004 0.971
BUN —0.071 0.472
Calcium —0.061 0.535
Chloride —0.103 0.297
Cholesterol 0.087 0.377
Creatinine —0.001 0.996
CRP 0.203 0.039
DBP —0.033 0.741
eGFR 0.059 0.555
Fibrinogen 0.010 0916
HbAc 0.018 0.857
HDL —0.053 0.592
Heart rate 0.047 0.637
Height —0.154 0.119
Hematocrit 0.118 0.231
Hemoglobin 0.109 0.271
LDL —0.035 0.724
Lipoprotein A —0.069 0.485
Glucose 0.057 0.567
Phosphate 0.044 0.659
Potassium 0.063 0.528
PTH —0.056 0.574
SBP 0.011 0.909
Sodium -0.207 0.035
Total protein 0.047 0.634
Triglycerides —0.037 0.711
Troponin 0.049 0.616
Uric acid —0.216 0.028
Urinary albumin 0.154 0.119
Waist —0.047 0.634
WBC 0.045 0.651
Weight 0.002 0.986

Significance code in the table: BNP brain natriuretic peptide, BUN blood
urea nitrogen, CRP c-reactive protein, DBP diastolic blood pressure,
eGFR estimated glomerular filtration rate, HbA ;c glycated hemoglobin,
HDL high density lipoprotein, LDL low density lipoprotein, PTH para-
thyroid hormone, SBP systolic blood pressure, WBC white blood cell

“angio-associated migratory cell protein” (AAMP) plays a
role in angiogenesis and cellular adhesion. Blocking AAMP
inhibits the formation of neo-intima in advanced atherosclero-
sis by driving the proliferation and migration of smooth mus-
cle cells [23]. The latter may explain why patients with CKD
have a poor clinical outcome after percutaneous coronary in-
tervention [24]. Further, although these findings do not ex-
plain the role of increased AAMP levels in renal failure, it
may be speculated that AAMP is reactively stimulated.
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Table 4  Logistic regression model linking the presence of CKD with
the peptidomic score and major clinical variables

Variables Odds ratio  95% CI P value
Peptidomic score 2.018 1.44-2.82 4.4e—(Q5%**
Hypertension (yes) 2.076 0.42-10.19  0.36814
Hyperparathyreoidism (yes)  15.91 2.79-90.80  0.00184%**
Age (per year) 1.01 0.96-1.06 0.68837
Sex (female) 2.049 0.45-9.23 0.35019
WBC (10° cells L™) 0.895 0.59-135  0.60140
Hemoglobin (g/dL) 0.925 0.64-1.34 0.67714
Hematocrit <0.001 0-0.57 0.04366*
Fibrinogen (mg dL™") 1.006 0.99-1.01 0.19046
Sodium (mmol L") 1.05 0.80-1.37 0.72399
Uric acid (mg dL™") 1.339 0.89-2.00 0.15889
Waist (cm) 1.039 0.98-1.09 0.14602

Significance code in the table: “***’<0.001, “***’<0.01, “*’<0.05, *.’<
0.1

“Amiloride-sensitive amine oxidase” has been identified as
a key enzyme in renal fibrosis, which is one important histo-
pathological correlate of renal disease progression [25].
Indeed, Lin et al. found a significant association between di-
amine oxidase activity and renal disease progression [26]. The
present results suggest that also plasma diamine oxidase levels
may serve as a marker of renal disease progression. Moreover,
if renal interstitial fibrosis can be influenced by modifying
diamine oxidase activity, diamine oxidase may also emerge
as a promising therapeutic target to slow progression of renal
disease.

The “sodium bicarbonate transporter like protein” (Cl/
HCO,) is a ubiquitous cellular transport system. It is especial-
ly highly expressed in the cornea and in renal tissue. CI/HCO;
transporter knockout mice show polyuria and low urinary os-
molality [27]. In contrast to its denomination, this transporter
may act as a NH3/2H™ cotransporter [28]. The increased levels
in renal failure may be part of a counter regulation to maintain
acid-base homeostasis under these conditions.

Several peptide concentrations were found to be decreased
in CKD; “Thymosin 3 10” is a peptide inhibiting angiogene-
sis [29]. Suppression of thymosin 3 10 increases cell migra-
tion [30]. Currently it is difficult to integrate this finding in the
pathophysiology of renal failure. Embryonic kidneys express
thymosin (3 10 especially in the proximal and distal tubules
[31], but it remains open whether reduced thymosin 3 10
plasma levels may reflect altered regenerative processes in
renal tissue.

“Humanin” is a mitochondrial peptide showing protec-
tive effects in ischemia/reperfusion injury by decreasing
reactive oxygen species production [32, 33]. Moreover, it
was shown that humanin increases glucose-stimulated in-
sulin secretion [34]. Humanin also exhibits anti-
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inflammatory effects in hypercholesterolemic apoE-
deficient mice [35], improves endothelial function and
inhibits atherogenesis [36]. This spectrum of actions sug-
gests that decreased humanin production may be related
to the pathophysiology of uremia characterized by insulin
insensitivity, activated inflammatory processes, increased
oxidative stress, impaired endothelial function, and pre-
mature atherosclerosis.

“Aldehyde dehydrogenase family 3 member 17
(ALDH3A1) serves as a catalyzer for oxidizing several alde-
hydes thereby inducing their detoxification, thus helping to
maintain cellular homeostasis under the conditions of oxida-
tive stress [37]. Further, ALDH3AI also has anti-oxidant ca-
pacities through the generation of the anti-oxidant NADPH
and by scavenging ROS [38]. Moreover, ALDH3A1 serves
as a chaperone [39]. Therefore, decreased levels of
ALDH3AL1 could be a further important factor in uremic path-
ophysiology, both with respect to the increased oxidative
stress in uremia and to impaired protein function.
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Table 5 List of the peptide

sequences and their respective RT min/m/z Sequence Identification
proteins identified by MALDI-
MS 9.3/129.85 K Lysine
3.8/188.42 W Tryptophan
2.1/342.25 LNP Osteocalcin
1.8/367.22 GYE Angio-associated migratory cell protein (AAMP)
6.9/384.19 DHI Osteocalcin
9.2/389.27 LKK Thymosin beta-10 (TMSB10/PTMB10/THYB10)
9.7/433.26 LLTS Humanin (MT-RNR2/HN)
1.4/537.08 HDHGA Erythrocyte membrane glycopeptide (BGLAP)
8.2/551.13 GLPQH Putative inactivation escape (INE1)
6.9/576.05 CELNP Osteocalcin
12.4/636.36 TQTSSGG Aldehyde dehydrogenase family 3 member 1 (ALDH3A1/ALDH3)
8.1/831.17 ALFSGQPL Sodium bicarbonate transporter like protein (SLC4A11/BTR1)
9.6/971.41 HYPRALCL Amiloride-sensitive amine oxidase (AOC1, ABP1, DAOI1)
9.8/972.39 HYPRALCL Anmiloride-sensitive amine oxidase

Apart from proteins, the model includes two free deaminated
forms of amino acids, lysine and tryptophan; the latter was
downregulated in CKD patients. Exogenous supplementation
of lysine was reported to normalize/reduce blood pressure in
hypertensive patients [40], osteoporosis, and incidence of car-
diovascular disease [41]. However, its role in renal failure seems
to be protective due to increase in lysine levels. This feature was
found to be upregulated and clearly shows the importance of this
feature to be included in the biostatistical model.

The present study is an initial step to select plasma peptides
as potential biomarkers of renal disease progression. In con-
trast to earlier studies on plasma proteomics/peptidomics, this
study uses a non-selective (untargeted) approach [42]. No se-
lection of peptides/proteins of interest was done with respect
to the number or identity of analyzed proteins and peptides. A
selective approach based on our current understanding of ure-
mic pathophysiology carries the risk that important peptides
involved in important mechanisms of uremic pathophysiolo-
gy, but yet unidentified, may be excluded from analysis.

The main strength of the study is that a rigorous cross-
validation was performed to avoid overestimation of the mod-
el. However, as drawback of this peptidomic study, the
resulting data do not inform on a potential causal relationship
between the identified peptides and CKD. Validation of the
model in other cohorts would provide further support for a
potential role of the identified peptides as biomarker and/or
mediator of CKD, after which functional and mechanistic
analyses might pave a path towards identifying novel culprits
of CKD progression and thus promising drug targets. In this
study, we used patients from different etiologies since CKD
itself is a complex disease. The candidate peptides selected in
this study fulfilled the criteria that (1) they showed plasma
concentrations significantly different from those in non-

CKD subjects and (2) their plasma concentrations are related
to the stage of renal insufficiency. In a next step, cohorts with
prospective clinical data will have to be analyzed to assess
whether one or several of these peptides may represent a bio-
marker predictive of renal disease progression.

In conclusion, peptide statistical analysis of plasma of CKD
patients enabled us to list possible biomarkers and/or mediators
of CKD, with plasma levels altered dependent on CKD stage.
Thus, a peptidomic platform as in this study may be beneficial
along with other advancing laboratory technology in routine
clinical practice for stratification of CKD and could also facili-
tate or/and improve CKD progression management.
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