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Abstract

Early onset infection (EOI) in preterm infants <32 weeks ges-
tational age (GA) is associated with a high mortality rate and
the development of severe acute and long-term complications.
The pathophysiology of EOI is not fully understood and clin-
ical and laboratory signs of early onset infections in this pa-
tient cohort are often not conclusive. Thus, the aim of this
study was to identify signatures characterizing preterm infants
with EOI by using genome-wide gene expression (GWGE)
analyses from umbilical arterial blood of preterm infants.
This prospective cohort study was conducted in preterm in-
fants <32 weeks GA. GWGE analyses using CodeLink hu-
man microarrays were performed from umbilical arterial
blood of preterm infants with and without EOl. GWGE anal-
yses revealed differential expression of 292 genes in preterm
infants with EOI as compared to infants without EOIL. Infants
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with EOI could be further differentiated into two subclasses
and were distinguished by the magnitude of the expression of
genes involved in both neutrophil and T cell activation. A
hallmark activity for both subclasses of EOI was a common
suppression of genes involved in natural killer (NK) cell func-
tion, which was independent from NK cell numbers.
Significant results were recapitulated in an independent vali-
dation cohort. Gene expression profiling may enable early and
more precise diagnosis of EOI in preterm infants.

Key message

*  Gene expression (GE) profiling at birth characterizes pre-
term infants with EOL.

* GE analysis indicates dysregulation of NK cell activity.

* NKcell activity at birth may be a useful marker to improve
early diagnosis of EOI.
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Introduction

Preterm birth (PTB) remains a major problem in perinatal medi-
cine and accounts for 75 % of the perinatal mortality and 50 % of
the perinatal morbidity [1]. Early onset infections (EOI) in PTB are
associated with significant morbidity and a mortality rate of 15—
50 %, especially in very immature preterm infants [2, 3]. Although
clinical and experimental studies continue to provide valuable in-
sight into processes leading to EOI and its attendant complications
[4, 5], biological pathways relevant to the complex pathophysiol-
ogy of EOI remain poorly understood. This is reflected in the
limitations of early diagnostic markers and the absence of targeted
treatment approaches in this high-risk patient cohort. Clinical signs
are ambiguous and difficult to interpret in the absence of reliable
early biochemical markers [6-8]. The gold standard of blood
culture-proven sepsis severely underestimates the rate of severe
infections in newborns and especially preterm infants, as the diag-
nostic approach is complicated by maternal antibiotic therapy and
hampered by small blood volumes [2, 9]. As outcome and prog-
nosis of EOI mainly depend on early and efficient treatment, sen-
sitive and specific indicators of EOI are crucial at the earliest stage
of disease.

In this prospective cohort study, we applied gene expres-
sion profiling from umbilical arterial blood of preterm infants
<32 weeks of gestational age to provide comprehensive bio-
logical information and identify biological pathways relevant
for the development of EOI in order to enable the identifica-
tion of early diagnostic markers.

Material and methods
Patients

Newborn infants <32 weeks gestational age (GA) were prospec-
tively included in this study.

Depending on the availability of diagnostic criteria at birth,
infants were pro- or retrospectively excluded when one of the
following diagnoses was present: premature rupture of mem-
branes >3 weeks prior to birth leading to oligo- or anhydramnios,
severe congenital malformations, diagnosis of severe metabolic
disorders, prepartum treatment of the mother with cytostatic or
immunosuppressive medication other than for lung maturation,
and postnatal treatment with corticosteroids in a dose >1 mg/kg
body weight. Analysis of C-reactive protein (CRP), whole white
blood count (WBC), and microbiological examination of blood
cultures, swabs, urine, and stool samples were carried out in the
first 72 h of life. Patients were clinically re-evaluated in short
intervals and continuously monitored for vital signs, i.e., heart
rate, blood pressure, microcirculation, and breathing pattern.
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Patients were allocated to one of the two following groups: (I)
EOI and (II) non-EOI (no signs of infection in the first 72 h of
life). EOI was diagnosed if the infant showed both a pathologic
ratio of immature to total granulocytes (IT ratio > 0.2 as deter-
mined by manual counts) and/or a pathologic white blood cell
count paralleled or followed by an increase in CRP > 6 mg/l in
the first 72 h of life [7, 10—14]. These laboratory signs had to be
accompanied by at least three of the following clinical signs
suggestive of bacterial infection in the new born infants: pallor,
gray skin color, capillary refill >3 s, requiring volume resuscita-
tion or substitution of any catecholamines, dyspnea, tachypnea,
requiring respiratory support or supplemental oxygen, increased
thermal instability, unexplained hypo- and hyperglycemia, feed-
ing difficulties, bilious reflux and abdominal distension, increas-
ing incidence of apnea and/or bradycardia, lethargy, irritability,
and increased or decreased muscle tone [2, 15]. All patients who
did not meet the criteria for the EOI were considered as non-EOL
The characteristics and clinical parameters in the first 72 h of life
of the patient cohort are given in Table 1 (exploration cohort). P
values were calculated using Fisher’s exact test for qualitative
parameters and Wilcoxon U test for quantitative parameters.

The comprehensive monitoring of the perinatal course is fur-
ther defined in Supplemental Materials and Methods. The study
has been approved by the legal ethical committee (File 79/01,
University of Giessen, Germany).

Blood sampling, RNA isolation, and microarrays

Blood for standard laboratory analyses including WBC and
blood samples for transcriptome analyses were obtained from
an indwelling umbilical artery catheter immediately after birth.
WBCs were repeated upon clinical indication in the later postna-
tal course as a possible indicator of developing (congenital and
nosocomial) infections. Details of the microarray experiments
and data analysis can be found in Supplemental Materials and
Methods.

Briefly, 250-300 pl of umbilical arterial blood was obtained
immediately after birth from an indwelling umbilical artery cath-
eter and directly transferred to 750-900 pl of the PAXgene
Blood RNA System (PreAnalytiX, Heidelberg, Germany).
RNA isolation was performed according to the manufacturer’s
recommendations (PreAnalytiX). RNA was hybridized on
CodeLink UniSet Human 10 K Bioarrays (GE Healthcare) using
the CodeLink Expression Assay Kit (GE Healthcare) and sam-
ples processed using CodeLink Expression Software V4.1 (GE
Healthcare).

Gene expression analysis

In order to account for confounding effects of WBCs on the
transcriptome pattern, we evaluated differences between EOI
and non-EOI preterm infants in their differential WBCs at
birth by using the Wilcoxon rank-sum test. Missing data from
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Table 1 Neonatal characteristics

of preterm infants EOI Non-EOI (control) P value
n 16 8
GA (weeks) 29 (24-30) 31(29-31) 0.008
Birth weight (g) 1085 (590-1730) 1445 (900-1760) 0.046
IUGR 1(6.25 %) 1(12.25 %) 1
ANCS 6 (37.5 %)*9 (56.3 %) 6 (75 %)/*6 (75 %) 0.667/1
Chorioamnionitis 8 (50 %) 0 0.081
PROM 1(6.25 %) 0 1
C-section 15 (93.75 %) 8 (100 %) 1
CRIB 6 (1-17) 1(0-13) 0.102
RDS 16 (100 %) 7 (87.5 %) 0.333
RDS > grade IIT 9 (56.3 %) 1(12.5 %) 0.079
IVH 7 (43.75 %) 1(12.5 %) 0.189
BPD 10 (62.5 %) 0 0.002
Length of mechanical ventilation (days) 7 (3-44) 0(0-7) <0.001
ROP 9 (69 %) 4 (50 %) 0.646
Length of hospital stay (days) 70 (10-138) 47 (23-89) 0.065
Death 1(6.25 %) 0 1
Blood culture positive 1 (6.25 %) 0 1
IT max 0.32 (0.11-0.8)° 0.17 (0.04-0.37)° 0.018
CRP,,0x (mg/dl) 17.8 (7.1-52.3)° 4 (4-5.5)° <0.001

Data are given as median and range or percent of total in group. P values are calculated using Fisher’s exact test for
qualitative parameters and Wilcoxon U test for quantitative parameters

EOI early onset infection, GA gestational age, /UGR intrauterine growth restriction, PROM premature rupture of
membranes, ANCS antenatal corticosteroids: complete course including two doses of betamethasone given >24 h
prior to birth, last dose <7 days before birth; CRIB critical risk index for babies, RDS respiratory distress
syndrome, /VH intraventricular hemorrhage, BPD bronchopulmonary dysplasia, ROP retinopathy of prematurity

* Any ANCS before birth

®Value below lower determination threshold (4 mg/dl) was set to be 4 mg/dl

WBC counts resulting from technical problems or limited
sample size were imputed based on a model using a regular-
ized iterative principal component analysis algorithm [16] tak-
ing into account relevant clinical data correlating with WBC,
i.e., GA, birth weight, maximum IT ratio, maximum CRP,
clinical risk index for babies (CRIB) score, and the presence
of respiratory distress syndrome (RDS).

The gene expression dataset was normalized using quantile
normalization in R [17]. For statistical analyses of the gene
expression data, a rank-based statistics, i.e., Rank Products,
was used to identify differentially regulated genes between
EOI and non-EOI preterm infants. Being superior to classical
and moderated ¢ statistics in studies with small sample sizes,
this method was chosen for primary analysis [18]. A false
discovery rate (FDR) was calculated for each transcript.

To support the results derived from Rank Products and to ac-
count for potential hidden confounders affecting gene expression
analysis, the data were first corrected for variables that significantly
correlated with structural differences between the groups, i.e., the
EOI and non-EOI cohort (Table 1). These confounding variables,
i.e., gestational age, birth weight, and WBCs, were subsequently

taken into account using limma in order to adjust their effect on
gene expression analysis. Second, surrogate variable analysis
(SVA) [19] was conducted to account for hidden structures in
the cohorts, thereby excluding further unknown effects on gene
expression analysis (for detailed description see Supplemental
Material and Methods). For SVA, two models were compared:
the first model corrected gene expression analysis only for the
effect of the aforementioned confounders; the second model addi-
tionally took the EOI status into account. The identified surrogate
variable was used in limma to adjust gene expression analysis.
Finally, Rank Products was used to analyze the adjusted data for
differential gene expression.

Subsequent statistical analyses were conducted using the soft-
ware tools “dChip” for hierarchical clustering, “DAVID” for gene
ontology, and functional annotation clustering following the soft-
ware recommendations (Supplemental Materials and Methods).

Principal component analysis (PCA)

PCA as a mathematical vector space transformation allows for
the reduction of multidimensional data sets to lower
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dimensions (principle components) accounting for the vari-
ability of the data set [20]. PCA was conducted for 292 differ-
entially regulated genes as identified by Rank Products
analysis.

Disease load index (DLI)

To compare disease-dependent differences in the magnitude
of gene expression in preterm infants, we used an aggregate
measure designated DLI as described previously [21]. The
DLI is a unit-less measure representing the sum of the normal-
ized expression values of defined differentially regulated
genes in an individual. Here, the DLI for each infant in clusters
1 and 2 (Fig. 1) was calculated. Subsequently, mean DLIs of
each patient group (non-EOI; EOI) were compared and the
significant differences between the DLIs of each patient group
were given as a P value derived from analysis of variances
(ANOVA), pairwise Student’s ¢ test with Benjamini-Hochberg
correction for group A genes as well as the non-parametric
Kruskal-Wallis test and the non-parametric pairwise Wilcoxon
ranks sum test with Benjamini-Hochberg correction for group
B genes. The complete data set is available at the Gene
Expression Omnibus (GEO) database under the accession
number GSE5760.

Measurement of NK cell number and activation

Umbilical arterial blood specimens for measurement of natu-
ral killer (NK) cell number were collected from a separate
cohort of preterm infants (n = 20) < 32 weeks of GA included
and characterized exactly as described above. Hematopoietic

cell staining was performed with a PeCy5.5-labeled mouse
IgG1 anti-human CD45 antibody from Invitrogen (Carlsbad,
CA, USA) and separation of leukocyte fractions by simulta-
neously using the following antibodies: PB-labeled mouse
IgG1 anti-human CD3, Alx700-labeled mouse IgG1 anti-
human CD19 and APC-labeled mouse IgG1 anti-human
NKp46 from BD Biosciences (San Jose, CA, USA), APC-
Alx750-labeled mouse IgG2a anti-human CD14 from
Invitrogen, FITC-labeled mouse IgG 1 anti-human CD15
from Miltenyi Biotec (Bergisch Gladbach, Germany), and
corresponding isotype controls. Flow cytometry was per-
formed on a LSRII Flow Cytometer (BD) using the proper
controls to set gates and analyzed with FlowJo8.7.1 software.
Dead cells were excluded using propidium iodide labeling and
doublets by gating on single cells (FSC-H to FSC-W channel).

Validation and replication of the microarray results
by TagMan RT-PCR

Microarray results were confirmed within the exploration co-
hort and validated in an independent validation cohort by RT-
PCR using TagMan® technology (Applied Biosystems,
Darmstadt, Germany) (Supplemental Materials and Methods).

Briefly, TagMan quantitative real-time (RT)-PCR was per-
formed for 10 human genes deriving from the microarray
results (ANXA1, CD163, GNLY, HIF1A, KLRC2, KLRDI,
MPO, PGLYRPI1, TNFRSF10A, CD177) and three house-
keeping genes glucose-6-phosphate dehydrogenase (G6PD),
succinate dehydrogenase complex, subunit A, flavoprotein
(Fp) (SDHA), and phosphoglycerate kinase 1 (PGK1) as in-
ternal controls for normalization. To test whether the
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Fig. 1 Transcriptional profiles of preterm using hierarchical clustering of
differentially expressed genes based on 292 differentially regulated genes.
Hierarchical clustering of differentially expressed genes of infants with
and without EOI resulted in two main clusters (clusters 1 and 2). Group A
genes are upregulated genes in infants with EOI and involved in
neutrophil activation, T cell proliferation, hypoxia-induced signaling,
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and carbohydrate metabolism. Group B genes are downregulated in in-
fants with EOI and mainly involved in NK cell activation. The group of
infants with EOI could be further differentiated in a group with low
expression of group A genes (EOI*) and EOI with high expression of
group A genes (EOI*¥)
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microarray results could be replicated, the gene expression of
the same 10 genes was investigated in a validation cohort
consisting of 43 new preterm infants by RT-PCR as described
in Supplemental Materials and Methods. The patient charac-
teristics of the validation cohort (15 patients with EOIL, 28 non-
EOQI) are given in Supplemental Table 2.

Results

Thirty very preterm infants were prospectively enrolled in this
study. Twenty-four of 30 samples met the high RNA quality
criteria and were further processed for microarray analyses; of
these, 16 were retrospectively allocated to the EOI cohort
based on the presence of clinical parameters for EOI in the
first 72 h of life. Eight infants without EOI were assigned to
the control group (non-EOI). The characteristics of the patient
cohorts are shown in Table 1.

Gene expression analysis of umbilical arterial blood
reveals differential gene expression profiles in preterm
infants with EOI at birth

Using a rank-based statistics, comparison of gene expression
of infants with and without EOI revealed 292 differentially
regulated genes (FDR < 0.1). Of these, 219 genes had signif-
icantly higher gene expression levels (upregulated genes) in
infants with EOI, while 73 genes had significantly lower ex-
pression levels (downregulated genes) (Supplemental
Table 1a, b).

The differentially regulated transcripts were involved in pro-
cesses related to inflammatory response (enrichment score
(ES) = 5.5), chemotaxis (ES 1.9), and leucocyte activation (ES
1.8) as well as in catabolic processes (protein catabolic processes
ES = 1.8, ghcolysis ES = 1.2) (Supplemental Table 4).

To account for unknown confounders and hidden struc-
tures affecting gene expression analysis, the data set was
corrected for the variables GA, birth weight, and WBC
using SVA and limma. The analysis revealed a consider-
able overlap of functional categories and the correspond-
ing genes when compared with the results derived from
Rank Products only (Supplemental Tables 4 and 5), i.e.,
the findings obtained from adjusted gene expression data
supported the results from the initial Rank Products anal-
ysis. Notably, comparison of the differential WBCs at
birth showed no significant differences between EOI and
non-EOI preterm infants (Table 2).

Gene expression profiling reveals two groups of preterm
infants with EOI

Hierarchical clustering of the differentially regulated genes
(FDR < 0.1) identified by Rank Products analysis separated

173
Table 2  White blood count of EOI and non-EOI
White blood cells [x*/ul] EOI Non-EOI P value
N Mean SE N Mean SE

LEU 12 692 026 8 590 03 0.589

segNEU 11 344 038 6 129 0.15 0.145

bandNEU 11 226 028 5 030 0.05 0.141

juvNEU 10 038 0.03 7 037 0.03 0.695

LYM 11 348 0.16 6 442 029 0248

MON 11 096 0.12 6 0.57 0.05 0.960

P value from Wilcoxon U test

LEU leucocytes, segNEU segmented neutrophils, bandNEU band neutro-
phils, juvNEU juvenile neutrophils, LYM lymphocytes, MON monocytes,
SE standard error

the cohort of preterm infants into clusters 1 and 2 (Fig. 1).
Cluster 1 included preterm infants from both groups, EOI
(EOI*), as well as non-EOI, while cluster 2 included infants
with EOI (EOI**) with one exception. Thus, two subclasses
of EOI were identified, designated as EOI*, occurring mainly
in cluster 1 and EOI** in cluster 2. The two subclasses of EOI
were also identified by PCA which provided a high degree of
separation between the two subclasses EOI* and EOI**
(Fig. 2a, b).

The two subclasses EOI* and EOI** were distinguished by
the expression of two groups of genes, namely group A and B
genes (Fig. 1): Group A genes were overexpressed in EOI**
as compared to EOI* and non-EOI and were involved in neu-
trophil activation, T cell proliferation, hypoxia-induced
signaling, and carbohydrate metabolism. Group B genes were
downregulated in both EOI* and EOI** as compared to non-
EOI and were involved in NK cell activation. To compare for
differences in the magnitude of the gene expression of group
A and B genes, the aggregative DLIs of group A and B genes
in EOI* and EOI** were determined (Fig. 3): EOI** had a
significantly higher DLI for group A genes than both EOI*
(P =0.0143) and non-EOI (P = 1¢-05). Hence, the subclass
EOI** activated genes involved in neutrophil activation, T
cell proliferation, hypoxia-induced signaling, and carbohy-
drate metabolism on a higher level than subclass EOI*. For
group B genes, no significant differences occurred in the ex-
pression level between the subclasses EOI* and EOI**
(Fig. 3, P = 0.8292). But both EOI* and EOI** showed a
significantly lower DLI for group B genes compared to non-
EOI (P = 0.0280 and P = 0.0036, respectively) indicating
decreased expression of genes involved in NK cell activation.
Clinical variables characterizing EOI* and EOI** subclasses
are given in Table 4, showing no statistically significant dif-
ferences between the groups. However, although not signifi-
cant, preterm infants in the EOI* group showed more compli-
cations than EOI**, i.e., higher RDS > grade III,
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Fig. 2 a Three-dimensional principal component analysis (PCA) and b
boxplots of principal components (PC) based on 292 differentially
regulated genes. Individual patients are plotted based on their respective

intraventricular hemorrhage (IVH), and development of
bronchopulmonary dysplasia (BPD).

Increased activation of neutrophils in preterm infants
with EOI

Neutrophils play a pivotal role in the innate immune response,
as they migrate to the site of infection and help limit microbial
infections. Increased activity of neutrophils in infants with
EQ]I, especially in subclass EOI*#, is indicated by overexpres-
sion of group A genes involved in phagocytotic activity,
granula secretion, and respiratory burst of neutrophils as
depicted in the interaction network in Fig. 4. The increased
activation is given by overexpression of phospholipid
scramblase 1 (PLSCR1), an enzyme involved in hematopoi-
etic proliferation and differentiation of neutrophils (Table 3).
Overexpression of the proinflammatory calgranulins A
(S100A8), B (S100A9), and C (S100A12) suggests enhanced

Group A genes
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Fig. 3 Mean DLIs of differentially regulated group A and B genes in
preterm infants with and without EOI. Comparison of disease load indices
(DLIs) of non-EOI, EOI with low expression of group A genes (EOI*)
and EOI with high expression of group A genes (EOI**). Group A genes
show significantly higher DLI of group A genes in EOI** compared to
EOI* and non-EOI. Group B genes show significantly lower DLI in both
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neutrophil chemotaxis, adhesion, and migration in infants
with EOL Furthermore, increased expression of CD177, a
receptor on the surface of neutrophils, indicated enhanced
transmigration. Strong activation of the neutrophils was also
reflected by the overexpression of myeloperoxidase (MPO),
neutrophil cytosolic factor 2 (NCF2), lactoferrin (LTF),
azurocidin 1 (AZU1), peptidoglycan recognition protein 1
(PGLYRP1) as well as cathepsin D (CTSD).

Decreased activation of NK cells in preterm infants
with EOI

NK cells constitute a component of the innate immune system
in combating intracellular pathogens and activating and mod-
ulating the adaptive immune response. Activation of NK cells
is regulated by the expression of a variety of receptors.

In EOI, the NK cell activating killer cell lectin-like receptors
(KLRs) such as KLR subfamily B member 1 (KLRB1), KLR

Group B genes
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EOI* and EOI** compared to non-EOI. The significance of the
difference between the DLIs of the patients groups was given as a P
value deriving from pairwise Student’s # test with Benjamini-Hochberg
correction for group A genes and from non-parametric Kruskal-Wallis
test and non-parametric pairwise Wilcoxon ranks sum test with
Benjamini-Hochberg correction for group B genes
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Fig. 4 Regulation of neutrophil activation. The gene interaction network
regulation of neutrophil activation of the differentially regulated genes in
EOI shows the interaction between calgranulins (SI00A8, S100A9,
S100A12) and genes involved in phagocytotic activity, granula
secretion, and respiratory burst of neutrophils (e.g., MPO, AZU1, LTF,
NCF2). Upregulated genes are depicted in red and downregulated genes
in green. P value and fold change are given beneath each gene symbol.
Genes with an unknown regulation are depicted in white. Relationships
and interactions between molecules are abbreviated as follows: A

subfamily C member 2 (KLRC2), and KLR subfamily D mem-
ber 1 (KLRD1) were downregulated (Tables 3 and 4). GNLY,
whose expression is regulated via signaling through KLRBI,
KLRC2, and KLRDI, is an antimicrobial, cytolytic protein in
the granules of NK cells and was also downregulated in EOL.
Two transcription factors, GATA-binding protein 3
(GATA3) and CREB-binding protein (CREBBP), which
are known to regulate the expression of KLRs were down-
regulated. GATA3 is a transcription factor preferentially
expressed in NK and T cells that plays an important role
in the early phase of NK cell development. Its activity is
crucial for the diversification of the NK cell receptor rep-
ertoire and interferon y (IFNG) production and thus piv-
otal for an effective NK cell response to viruses and bac-
teria. The downregulation of GATA3 and CREBBP in

PD, PP (26

spiratory burst >

<IFx3 activation of maT:LE@

hemotaxis of nTo;@

[Ex:| migration of neutrophils

activation, B binding, C causes/leads to, CC chemical-chemical
interactions, CP chemical—protein interactions, £ expression (includes
metabolism/synthesis for chemicals), £C enzyme catalysis, / inhibition,
L proteolysis (includes degradation for chemicals), LO localization, M
biochemical modification, MB group/complex membership, P
phosphorylation/dephosphorylation, PD protein-DNA interactions, PP
protein—protein interactions, PR protein—RNA interactions, RB
regulation of binding, RE reaction, RR RNA-RNA interactions, T’
transcription, 7R translocation

infants with EOI could explain the reduced gene expres-
sion of NK cell receptors in these patients as depicted in
the interaction network in Fig. 5.

The measurement of NK cell counts in a cohort of preterm
infants with and without EOI showed no significant difference
in NK cell number between the two groups (non-EOI 7.8 5.3
cells/ul vs. EOI 5.8 £ 5.3 cells/ul; mean and standard devia-
tion (SD) each). This result suggested that the downregulation
of NK cell activating genes as seen in EOI was not related to
the NK cell count.

Validation of microarray results

To validate the microarray data, TagMan quantitative RT-PCR was
performed on 10 human target genes involved in EOI (ANXAI,
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Table 3 Selected genes in
relevant biological processes
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Biological process/gene name Symbol Fold FDR
change
Neutrophil function
Azurocidin 1 (cationic antimicrobial protein 37) AZUI1? 1.57 0.001
Catalase CAT* 3.51 0.000
Cathepsin D CTSD 2.00 0.007
CD177 CD177* 3.49 0.000
Formyl peptide receptor 1 FPR1 226 0.000
Grancalcin, EF-hand calcium binding protein GCA* 2.79 0.000
Lactotransferrin LTF* 2.82 0.000
Leukotriene A4 hydrolase LTA4H 2.34 0.003
Myeloperoxidase MPO 224 0.000
Neutrophil cytosolic factor 2 (65 kDa, chronic granulomatous disease, NCF2 2.08 0.004
autosomal 2)
Peptidoglycan recognition protein 1 PGLYRPI®* 242 0.000
Phospholipid scramblase 1 PLSCR1? 2.55 0.000
S100 calcium binding protein A8 (calgranulin A) S100 A8 2.07 0.001
S100 calcium binding protein A9 (calgranulin B) S100 A9 2.14 0.001
S100 calcium binding protein A12 (calgranulin C) S100 A12 242 0.000
S100 calcium binding protein P S100P 2.55 0.000
Natural killer cell function
Killer cell lectin-like receptor subfamily B, member 1 KLRBI -1.75 0.069
Killer cell lectin-like receptor subfamily C, member 2 KLRC2? —1.64 0.030
Killer cell lectin-like receptor subfamily D, member 1 KLRD1 —-1.83 0.053
Granulysin GNLY* —2.48 0.001
C-type lectin domain family 1, member B CLECIB —-1.70 0.036
Solute carrier family 30 (zinc transporter), member 1 SLC30A1 —-1.89 0.071
Zinc finger, CCHC domain containing 2 ZCCHC2* -2.14 0.010
Zinc finger E-box binding homeobox 1 ZEB1 -1.72 0.007
Zinc finger protein 839 ZNF839 -1.72 0.089
Zinc finger protein 671 ZNF671% -2.69 0.000
T cell function
Carcinoembryonic antigen-related cell adhesion molecule 1 (biliary gly- CEACAM1 1.78 0.032
coprotein)
Chemokine (C-X-C motif) receptor 4 CXCR4? 1.69 0.022
Hematopoietic cell-specific Lyn substrate 1 HCLS1?* 221 0.002
Integrin, beta 1 (fibronectin receptor, beta polypeptide, antigen CD29 ITGB1 1.97 0.045
includes MDF2, MSK12)
Interferon gamma receptor 2 (interferon gamma transducer 1) IFNGR2? 1.88 0.004
Interleukin 10 IL10 1.71 0.022
Protein tyrosine phosphatase, non-receptor type 22 (lymphoid) PTPN22 233 0.003
Protein tyrosine phosphatase, receptor type, C PTPRC* 2.30 0.001
Transcription
Hypoxia-inducible factor 1, alpha subunit (basic helix-loop-helix tran- HIFIA 1.75 0.055
scription factor)
CCAAT/enhancer binding protein (C/EBP), beta CEBPB* 2.35 0.000
CCAAT/enhancer binding protein (C/EBP), alpha CEBPA 2.10 0.002
B-cell CLL/lymphoma 6 BCL6 2.00 0.017
CREB binding protein CREBBP —-1.95 0.023
GATA binding protein 3 GATA3? —-1.84 0.043

#Significant in Rank Products and SVA
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Table 4 Characteristics of

preterm infants EOI* and EOI** EOrI* EOI** P value
n 5 11
GA (weeks) 28 (24-30) 29 (24-30) 0910
Birth weight (g) 1060 (700-1390) 1100 (590-1730) 0.610
IUGR 0 19 %) 1
ANCS 3 (60 %)/*4 (80 %) 3 (27 %)*5 (55 %) 0.580/%0.228
Chorioamnionitis 2 (40 %) 6 (55 %) 1
PROM 0 1 1
C-section 5 (100 %) 10 (91 %) 1
CRIB 2 (1-11) 7 (1-17) 0.351
RDS 5 (100 %) 11 (100 %) 1
RDS > grade 111 4 (80 %) 6 (55 %) 0.588
IVH 3 (60 %) 4 (36 %) 0.596
BPD 4 (80 %) 6 (55 %) 0.600
Length of mechanical ventilation (days) 7 (5-44) 7 (3-23) 0.597
ROP 2 (50 %) 7 (78 %) 0.596
Length of hospital stay (days) 74 (51-138) 70 (10-124) 0.844
Blood culture positive 1 (20 %) 0 0.267
IT max 0.2 (0.1-0.7)° 0.4 (0.1-0.8)° 0.733
CRP, a0 (mg/dl) 12.4 (7.7-24.3)° 18.9 (7.1-52.3)° 0.257
White blood cell counts, mean (standard error)
LEU 8.32(0.97) 6.21 (0.32) 0.552
segNEU 3.37(0.9) 3.46 (0.59) 0.759
bandNEU 4.02 (1.73) 1.6 (0.26) 0.475
juvNEU 0.43 (0.07) 0.35 (0.06) 0.594
LYM 3.32(0.49) 3.54 (0.24) 1
MON 2.15(0.77) 0.52 (0.05) 0.126

Data are given as median and range or percent of total in group. P values are calculated using Wilcoxon U test for
quantitative parameters and Fisher’s exact test for qualitative parameters

EOI early onset infection, GA gestational age, [UGR intrauterine growth restriction, ANCS antenatal corticoste-
roids: complete course including two doses of betamethasone given >24 h prior to birth, last dose <7 days before
birth, CRIB critical risk index for babies, RDS respiratory distress syndrome, /VH intraventricular hemorrhage,
BPD bronchopulmonary dysplasia, ROP retinopathy of prematurity, LEU leucocytes, segNEU segmented neu-
trophils, bandNEU band neutrophils, juvNEU juvenile neutrophils, LYM lymphocytes, MON monocytes

* Any ANCS before birth

® Value below lower determination threshold (4 mg/dl) was set to be 4 mg/dl

CD163, GNLY, HIF1A, KLRC2, KLRD1, MPO, PGLYRP1,
TNFRSF10A, CD177). The overall correspondence between
mRNA levels measured by microarrays and by RT-PCR analyses
was high (R* = 0.88) (Supplemental Fig. 1).

Replication of the results in an independent validation
cohort

To test the reproducibility of the obtained results, 10 selected genes
were analyzed by RT-PCR in a validation cohort (n = 43,
Supplemental Table 2). The results show an overall good correla-
tion (R” = 0.74) of the gene expression between the exploration
and the validation cohort of preterm infants indicating reproduc-
ibility of the results (Supplemental Fig. 2).

The RT-PCR results in the validation cohort confirmed signif-
icant upregulation of ANXAI1, CD163, MPO, PGLYRPI,
HIF1A, TNFRSF10A, and CD177 in the group of infants with
EOL In contrast, genes involved in NK cell activation, i.e.,
KLRC2, KLRDI1, and GNLY, were found to be significantly
downregulated (Fig. 6).

The results show that the validation cohort could support the
key biologic findings found in the exploration cohort.

Discussion and conclusions

We performed transcriptional profiling from umbilical arterial
blood samples to obtain insights into the pathways involved in
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Fig. 6 Comparison of gene expression between EOI and non-EOI for
selected genes in a second patient cohort (replication cohort). TagMan
quantitative RT-PCR results of 10 selected genes were compared in
infants with and without EOI within the replication cohort: RT-PCR
results confirmed a significant overexpression of ANXA1, CD163,
MPO, PGLYRPI1, HIF1A, TNFRSF10A, and CD177 and a significant
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downregulation of genes involved in NK cell activation, i.e., KLRC2,
KLRD1, and GNLY in the group of infants with EOI. P values are
given for ANXA1, PGLYRP1, and TNFRSF10A using the Welch test,
for CD163, HIF1 A, and GNLY using the parametric Kruskal-Wallis rank-
sum test, and for KLRC2, KLRD1, MPO, and CD177 using the Student’s
t test
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early EOI development in very premature infants. Comparison of
the gene expression profiles of infants with EOI and without EOI
revealed NK cell inactivation to be a hallmark of EOI discrimi-
nating EOI and non-EOI neonates (Figs. 1 and 2).

Impairment of NK cell function plays a critical role in the
host response to infectious challenges in preterm infants with
EOI, but a comprehensive evaluation of their cell state is lack-
ing [22]. Our results indicate that decreased activation through
downregulation of key surface markers, their regulating tran-
scription factors GATA3 and CREBBP and downstream lytic
enzymes account for the impairment of NK cell function,
while NK cell numbers were similar among patients with
and without EOL NK cell interactions with other immune
cells are regulating a wide range of immune responses [23]
including bacterial clearance during bacterial sepsis by NK
cell and macrophage interaction [24]. The decrease in NK cell
activation may contribute to impaired clearance of pathogens
leading to overwhelming systemic infections, frequent in pre-
mature infants. Insufficient elimination of pathogens due to
impaired orchestration by NK cells could also explain the
excessive neutrophil response in patients with EOI, consistent
with findings from studies in infants with fetal inflammatory
response syndrome (FIRS) [25].

Recent studies in infants up to 3 years of age revealed impaired
adaptive immune system responses and specifically inhibition of
NK cell activation in septic shock, supporting a key observation in
our study [26, 27]. This is consistent with the findings of El-
Sameea et al. [28] and Georgeson et al. [29], who showed a
positive correlation between reduced NK cell activity and the pres-
ence, severity, and outcome of neonatal sepsis in term newborns.

Here, we show that similar concepts apply to EOI in pre-
term infants and validated the expression of key markers of
NK cell activation (and the inhibition thereof) in an indepen-
dent cohort. Overall, these findings suggest that a qualitative
NK cell impairment, measured by gene expression profiling,
may be inherent to EOI and provide a superior diagnostic tool
for the early detection of EOL.

We identified two subclasses within the EOI cohort (EOI*
and EOI**) characterized by increased neutrophil activation, T
cell proliferation, hypoxia-induced signaling, and carbohydrate
metabolism in EOI** preterm infants. Clinically, the group of
infants classified as EOI* showed more infection-associated
complications when compared with EOI**. In the light of im-
paired NK cell activation in both EOI subclasses, increased acti-
vation of neutrophils, T cell proliferation, hypoxia-induced sig-
naling, and carbohydrate metabolism might indicate protective
mechanisms helping to prevent complications of EOI in preterm
infants when classified as EOI**.

To conclude, the results of this study indicate that (1) tran-
scriptome patterns derived from umbilical arterial blood enable
the discrimination of preterm infants with and without EOI and
that (2) the group of preterm infants with EOI can be divided in
two subclasses showing a common phenomenon of dysregulated

NK cell activation but differing in the activation of neutrophils, T
cell proliferation, hypoxia-induced signaling, and carbohydrate
metabolism.

We propose that the addition of NK cell activity into the
standard diagnostic repertoire for critically ill (preterm) neo-
nates could be a useful complement to current laboratory di-
agnostics in order to improve early diagnosis of EOL.
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