Skip to main content

Advertisement

Log in

Galectin-3 suppresses mucosal inflammation and reduces disease severity in experimental colitis

  • Original Article
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

Galectin-3, a member of the β-galactoside-binding lectin family, expresses in many different immune cells and modulates broad biological functions including cell adhesion, cell activation, cell growth, apoptosis, and inflammation. However, the role of galectin-3 in mucosal immunity or inflammatory bowel diseases is still not clear. We demonstrate here that galectin-3 knockout mice have more severe disease activity in the dextran sulfate sodium (DSS)-induced colitis model, indicating that galectin-3 may protect from inflammation in DSS-induced colitis. Furthermore, treating with galectin-3 reduced body weight loss, shortened colonic length, and ameliorated mucosal inflammation in mice having DSS-induced colitis. However, the protective effects of galectin-3 were eliminated by the administration of anti-CD25 mAb. In addition, primary T cells treated with galectin-3 ex vivo induced the expression of FOXP3, ICOS, and PD-1 with a Treg cell phenotype having a suppression function. Moreover, adoptive transfer of galectin-3-treated T cells reduced bowel inflammation and colitis in the T cell transfer colitis model. In conclusion, our results indicate that galectin-3 inhibited colonic mucosa inflammation and reduced disease severity by inducing regulatory T cells, suggesting that it is a potential therapeutic approach in inflammatory bowel disease.

Key messages

  • Galectin-3 offers protection from inflammation in experimental colitis.

  • Galectin-3 knockout mice have more severe disease activity in DSS-induced colitis.

  • Adoptive transfer of galectin-3-treated T cells reduced bowel inflammation.

  • Galectin-3 inhibited colonic mucosa inflammation by inducing regulatory T cells.

  • Galectin-3 is a potential therapeutic approach in inflammatory bowel disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Rabinovich GA, Toscano MA (2009) Turning ‘sweet’ on immunity: galectin-glycan interactions in immune tolerance and inflammation. Nat Rev Immunol 9:338–352

    Article  CAS  PubMed  Google Scholar 

  2. Chen HY, Fermin A, Vardhana S, Weng IC, Lo KF, Chang EY, Maverakis E, Yang RY, Hsu DK, Dustin ML et al (2009) Galectin-3 negatively regulates TCR-mediated CD4+ T-cell activation at the immunological synapse. Proc Natl Acad Sci U S A 106:14496–14501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Fukumori T, Takenaka Y, Yoshii T, Kim HR, Hogan V, Inohara H, Kagawa S, Raz A (2003) CD29 and CD7 mediate galectin-3-induced type II T-cell apoptosis. Cancer Res 63:8302–8311

    CAS  PubMed  Google Scholar 

  4. Stillman BN, Hsu DK, Pang M, Brewer CF, Johnson P, Liu FT, Baum LG (2006) Galectin-3 and galectin-1 bind distinct cell surface glycoprotein receptors to induce T cell death. J Immunol 176:778–789

    Article  CAS  PubMed  Google Scholar 

  5. Jiang HR, Al Rasebi Z, Mensah-Brown E, Shahin A, Xu D, Goodyear CS, Fukada SY, Liu FT, Liew FY, Lukic ML (2009) Galectin-3 deficiency reduces the severity of experimental autoimmune encephalomyelitis. J Immunol 182:1167–1173

    Article  CAS  PubMed  Google Scholar 

  6. Forsman H, Islander U, Andreasson E, Andersson A, Onnheim K, Karlstrom A, Savman K, Magnusson M, Brown KL, Karlsson A (2011) Galectin 3 aggravates joint inflammation and destruction in antigen-induced arthritis. Arthritis Rheum 63:445–454

    Article  CAS  PubMed  Google Scholar 

  7. Saegusa J, Hsu DK, Chen HY, Yu L, Fermin A, Fung MA, Liu FT (2009) Galectin-3 is critical for the development of the allergic inflammatory response in a mouse model of atopic dermatitis. Am J Pathol 174:922–931

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Fermin Lee A, Chen HY, Wan L, Wu SY, Yu JS, Huang AC, Miaw SC, Hsu DK, Wu-Hsieh BA, Liu FT (2013) Galectin-3 modulates Th17 responses by regulating dendritic cell cytokines. Am J Pathol 183:1209–1222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kamada N, Seo SU, Chen GY, Nunez G (2013) Role of the gut microbiota in immunity and inflammatory disease. Nat Rev Immunol 13:321–335

    Article  CAS  PubMed  Google Scholar 

  10. Peterson LW, Artis D (2014) Intestinal epithelial cells: regulators of barrier function and immune homeostasis. Nat Rev Immunol 14:141–153

    Article  CAS  PubMed  Google Scholar 

  11. Frol'ova L, Smetana K Jr, Borovska D, Kitanovicova A, Klimesova K, Janatkova I, Malickova K, Lukas M, Drastich P, Benes Z et al (2009) Detection of galectin-3 in patients with inflammatory bowel diseases: new serum marker of active forms of IBD? Inflamm Res 58:503–512

    Article  PubMed  Google Scholar 

  12. Jensen-Jarolim E, Gscheidlinger R, Oberhuber G, Neuchrist C, Lucas T, Bises G, Radauer C, Willheim M, Scheiner O, Liu FT et al (2002) The constitutive expression of galectin-3 is downregulated in the intestinal epithelia of Crohn's disease patients, and tumour necrosis factor alpha decreases the level of galectin-3-specific mRNA in HCT-8 cells. Eur J Gastroenterol Hepatol 14:145–152

    Article  CAS  PubMed  Google Scholar 

  13. Muller S, Schaffer T, Flogerzi B, Fleetwood A, Weimann R, Schoepfer AM, Seibold F (2006) Galectin-3 modulates T cell activity and is reduced in the inflamed intestinal epithelium in IBD. Inflamm Bowel Dis 12:588–597

    Article  PubMed  Google Scholar 

  14. Bregenholt S, Claesson MH (1998) Splenic T helper cell type 1 cytokine profile and extramedullary haematopoiesis in severe combined immunodeficient (scid) mice with inflammatory bowel disease (IBD). Clin Exp Immunol 111:166–172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Hundorfean G, Neurath MF, Mudter J (2012) Functional relevance of T helper 17 (Th17) cells and the IL-17 cytokine family in inflammatory bowel disease. Inflamm Bowel Dis 18:180–186

    Article  PubMed  Google Scholar 

  16. Iijima H, Takahashi I, Kishi D, Kim JK, Kawano S, Hori M, Kiyono H (1999) Alteration of interleukin 4 production results in the inhibition of T helper type 2 cell-dominated inflammatory bowel disease in T cell receptor alpha chain-deficient mice. J Exp Med 190:607–615

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Monteleone I, Sarra M, Pallone F, Monteleone G (2012) Th17-related cytokines in inflammatory bowel diseases: friends or foes? Curr Mol Med 12:592–597

    Article  CAS  PubMed  Google Scholar 

  18. Tanner SM, Staley EM, Lorenz RG (2013) Altered generation of induced regulatory T cells in the FVB.mdr1a-/- mouse model of colitis. Mucosal Immunol 6:309–323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Okamura M, Yoh K, Ojima M, Morito N, Takahashi S (2014) Overexpression of GATA-3 in T cells accelerates dextran sulfate sodium-induced colitis. Exp Anim 63:133–140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Sujino T, Kanai T, Ono Y, Mikami Y, Hayashi A, Doi T, Matsuoka K, Hisamatsu T, Takaishi H, Ogata H et al (2011) Regulatory T cells suppress development of colitis, blocking differentiation of T-helper 17 into alternative T-helper 1 cells. Gastroenterology 141:1014–1023

    Article  CAS  PubMed  Google Scholar 

  21. Lindebo Holm T, Poulsen SS, Markholst H, Reedtz-Runge S (2012) Pharmacological evaluation of the SCID T cell transfer model of colitis: as a model of Crohn’s disease. Int J Inflam 2012:412178

    Article  PubMed  PubMed Central  Google Scholar 

  22. Rose WA 2nd, Sakamoto K, Leifer CA (2012) Multifunctional role of dextran sulfate sodium for in vivo modeling of intestinal diseases. BMC Immunol 13:41

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Yan Y, Kolachala V, Dalmasso G, Nguyen H, Laroui H, Sitaraman SV, Merlin D (2009) Temporal and spatial analysis of clinical and molecular parameters in dextran sodium sulfate induced colitis. PLoS One 4, e6073

    Article  PubMed  PubMed Central  Google Scholar 

  24. Hsu DK, Yang RY, Pan Z, Yu L, Salomon DR, Fung-Leung WP, Liu FT (2000) Targeted disruption of the galectin-3 gene results in attenuated peritoneal inflammatory responses. Am J Pathol 156:1073–1083

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Yang RY, Hsu DK, Liu FT (1996) Expression of galectin-3 modulates T-cell growth and apoptosis. Proc Natl Acad Sci U S A 93:6737–6742

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Robertson MW, Albrandt K, Keller D, Liu FT (1990) Human IgE-binding protein: a soluble lectin exhibiting a highly conserved interspecies sequence and differential recognition of IgE glycoforms. Biochemistry 29:8093–8100

    Article  CAS  PubMed  Google Scholar 

  27. Hsu DK, Zuberi RI, Liu FT (1992) Biochemical and biophysical characterization of human recombinant IgE-binding protein, an S-type animal lectin. J Biol Chem 267:14167–14174

    CAS  PubMed  Google Scholar 

  28. Schepp-Berglind J, Atkinson C, Elvington M, Qiao F, Mannon P, Tomlinson S (2012) Complement-dependent injury and protection in a murine model of acute dextran sulfate sodium-induced colitis. J Immunol 188:6309–6318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Maloy KJ (2007) Induction and regulation of inflammatory bowel disease in immunodeficient mice by distinct CD4+ T-cell subsets. Methods Mol Biol 380:327–335

    Article  CAS  PubMed  Google Scholar 

  30. Nakanishi Y, Tsuneyama K, Nomoto K, Fujimoto M, Salunga TL, Nakajima T, Miwa S, Murai Y, Hayashi S, Kato I et al (2008) Nonalcoholic steatohepatitis and hepatocellular carcinoma in galectin-3 knockout mice. Hepatol Res 38:1241–1251

    PubMed  Google Scholar 

  31. Nomoto K, Tsuneyama K, Abdel Aziz HO, Takahashi H, Murai Y, Cui ZG, Fujimoto M, Kato I, Hiraga K, Hsu DK et al (2006) Disrupted galectin-3 causes non-alcoholic fatty liver disease in male mice. J Pathol 210:469–477

    Article  CAS  PubMed  Google Scholar 

  32. Pugliese G, Pricci F, Iacobini C, Leto G, Amadio L, Barsotti P, Frigeri L, Hsu DK, Vlassara H, Liu FT et al (2001) Accelerated diabetic glomerulopathy in galectin-3/AGE receptor 3 knockout mice. FASEB J 15:2471–2479

    Article  CAS  PubMed  Google Scholar 

  33. Strauch UG, Obermeier F, Grunwald N, Gurster S, Dunger N, Schultz M, Griese DP, Mahler M, Scholmerich J, Rath HC (2005) Influence of intestinal bacteria on induction of regulatory T cells: lessons from a transfer model of colitis. Gut 54:1546–1552

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Elson CO, Cong Y, Iqbal N, Weaver CT (2001) Immuno-bacterial homeostasis in the gut: new insights into an old enigma. Semin Immunol 13:187–194

    Article  CAS  PubMed  Google Scholar 

  35. Sellon RK, Tonkonogy S, Schultz M, Dieleman LA, Grenther W, Balish E, Rennick DM, Sartor RB (1998) Resident enteric bacteria are necessary for development of spontaneous colitis and immune system activation in interleukin-10-deficient mice. Infect Immun 66(66):5224–5231

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Kohatsu L, Hsu DK, Jegalian AG, Liu FT, Baum LG (2006) Galectin-3 induces death of Candida species expressing specific beta-1,2-linked mannans. J Immunol 177:4718–4726

    Article  CAS  PubMed  Google Scholar 

  37. Quattroni P, Li Y, Lucchesi D, Lucas S, Hood DW, Herrmann M, Gabius HJ, Tang CM, Exley RM (2012) Galectin-3 binds Neisseria meningitidis and increases interaction with phagocytic cells. Cell Microbiol 14:1657–1675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Sano H, Hsu DK, Apgar JR, Yu L, Sharma BB, Kuwabara I, Izui S, Liu FT (2003) Critical role of galectin-3 in phagocytosis by macrophages. J Clin Invest 112:389–397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Sato S, St-Pierre C, Bhaumik P, Nieminen J (2009) Galectins in innate immunity: dual functions of host soluble beta-galactoside-binding lectins as damage-associated molecular patterns (DAMPs) and as receptors for pathogen-associated molecular patterns (PAMPs). Immunol Rev 230:172–187

    Article  CAS  PubMed  Google Scholar 

  40. Stowell SR, Arthur CM, McBride R, Berger O, Razi N, Heimburg-Molinaro J, Rodrigues LC, Gourdine JP, Noll AJ, von Gunten S et al (2014) Microbial glycan microarrays define key features of host-microbial interactions. Nat Chem Biol 10:470–476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Wu C, Thalhamer T, Franca RF, Xiao S, Wang C, Hotta C, Zhu C, Hirashima M, Anderson AC, Kuchroo VK (2014) Galectin-9-CD44 interaction enhances stability and function of adaptive regulatory T cells. Immunity 41:270–282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Boehm F, Martin M, Kesselring R, Schiechl G, Geissler EK, Schlitt HJ, Fichtner-Feigl S (2012) Deletion of Foxp3+ regulatory T cells in genetically targeted mice supports development of intestinal inflammation. BMC Gastroenterol 12:97

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Fantini MC, Becker C, Tubbe I, Nikolaev A, Lehr HA, Galle P, Neurath MF (2006) Transforming growth factor beta induced FoxP3+ regulatory T cells suppress Th1 mediated experimental colitis. Gut 55:671–680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Himmel ME, Yao Y, Orban PC, Steiner TS, Levings MK (2012) Regulatory T-cell therapy for inflammatory bowel disease: more questions than answers. Immunology 136:115–122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Ito T, Hanabuchi S, Wang YH, Park WR, Arima K, Bover L, Qin FX, Gilliet M, Liu YJ (2008) Two functional subsets of FOXP3+ regulatory T cells in human thymus and periphery. Immunity 28:870–880

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Garin MI, Chu CC, Golshayan D, Cernuda-Morollon E, Wait R, Lechler RI (2007) Galectin-1: a key effector of regulation mediated by CD4+CD25+ T cells. Blood 109:2058–2065

    Article  CAS  PubMed  Google Scholar 

  47. Seki M, Oomizu S, Sakata KM, Sakata A, Arikawa T, Watanabe K, Ito K, Takeshita K, Niki T, Saita N et al (2008) Galectin-9 suppresses the generation of Th17, promotes the induction of regulatory T cells, and regulates experimental autoimmune arthritis. Clin Immunol 127:78–88

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr. Fu-Tong Liu (Academia Sinica, Taiwan) for kindly providing the galectin-3 knockout mice. We also thank the Department of Medical Research and core laboratory of National Taiwan University Hospital for facility support. This work was supported by grants from the National Science Council, Taiwan (NSC 98-2320-B-002-049-MY3, 100-2320-B-038-026, and 101-2321-B-002-008).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ping-Ning Hsu.

Ethics declarations

Disclosures

The authors declare that they have no competing financial interests.

Additional information

Hwei-Fang Tsai and Chien-Sheng Wu contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tsai, HF., Wu, CS., Chen, YL. et al. Galectin-3 suppresses mucosal inflammation and reduces disease severity in experimental colitis. J Mol Med 94, 545–556 (2016). https://doi.org/10.1007/s00109-015-1368-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-015-1368-x

Keywords

Navigation