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miR-26a enhances autophagy to protect against ethanol-induced
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Abstract

Autophagy is a process for the turnover of intracellular organ-
elles and molecules during stress responses. microRNAs
(miRNAs) are small, non-coding endogenous RNAs that
may regulate almost every cellular process. However, the roles
of miRNAs in autophagy are still poorly understood. In this
study, we show that miR-26a enhances autophagy in both
culture cells and the mouse liver. Hepatic overexpression of
miR-26a in mice alleviated ethanol-induced hepatic steatosis
and liver injury. Overexpression of miR-26a increased the
expression of the autophagy mediator Beclin-1, which is
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regulated by mitogen-activated protein kinases (MAPKSs).
We identified DUSP4 and DUSPS, two MAPKSs inhibitors,
as direct targets of miR-26a. We further demonstrated that
miR-26a targeted the 3’-UTRs of several other negative regu-
lators of autophagy. Our results thus identify a novel miRNA-
mediated mechanism that enhances cytoprotective autophagy
in the liver.

Key messages

* miR-26a enhances autophagy in liver cells.

* Hepatic overexpression of miR-26a in mice alleviates
ethanol-induced liver injury.

* Overexpression of miR-26a increases the expression of au-
tophagy mediator Beclin-1.

* DUSP4 and DUSP5, two MAPKSs inhibitors, were identified
as direct targets of miR-26a.

Keywords miR-26a - Autophagy - Hepatic steatosis -
Mitogen-activated protein kinases - Ethanol binge

Abbreviations

3'-UTR 3’ untranslated region

miRNAs MicroRNAs

miR-26a  MicroRNA 26a

MAPKs  Mitogen-activated protein kinases
LDs Lipid droplets

mRNAs  Messenger RNAs

CcQ Chloroquine

tf-LC3 Tandem fluorescent-tagged LC3
PCR Real-time polymerase chain reaction
ALT Alanine aminotransferase

TEM Transmission electron microscopy
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Introduction

Macroautophagy (hereafter referred to as autophagy) is a bulk
intracellular degradation system that is responsible for the
turnover of long-lived proteins, cytosolic components, and
damaged organelles [1]. Autophagy occurs at low levels in
all cells to maintain cellular homeostasis, via processes that
include the turnover of misfolded proteins and damaged or-
ganelles. However, under cellular stress conditions, such as a
nutrient-deficient environment, autophagy is rapidly activated
to provide an alternative source of energy to enable cells to
survive. The molecular mechanism of autophagy involves
several conserved autophagy-related proteins (ATGs).
Beclin-1, the mammalian orthologue of yeast ATG6, has a
central role in autophagy. It interacts with several cofactors
to regulate the lipid kinase Vps-34 protein and promote the
formation of Beclin-1-Vps34-Vps15 core complexes, there-
by inducing autophagy [2]. Therefore, regulation of Beclin-1
is an important mechanism to control autophagy under phys-
iological and pathological conditions. It has been reported that
activation of the mitogen-activated protein kinase (MAPK)
family, including ERK, p38, and JNK, leads to an increase
in Beclin-1 expression, which in turn results in cytoprotective
autophagy [3].

Autophagy is also known to be widely involved in the
pathogenesis of diseases and is activated under a variety of
stress conditions. For example, it is activated in response to
ethanol exposure. This ethanol-induced autophagy in the liver
is important to avert the pathologic effects of ethanol metab-
olism. Pretreatment of mice with rapamycin, a well-known
autophagy inducer, dramatically reduced the number of lipid
droplets (LDs) in the ethanol-treated livers. These results in-
dicate that autophagy plays an important role in alleviating
ethanol-induced hepatic steatosis and liver injury [4]. The un-
derlying mechanism for ethanol-induced autophagy remains
poorly understood, although a recent study showed that
FOXO3 may play a role in this process [5].

microRNAs (miRNAs) are 20- to 22-nucleotide non-cod-
ing RNAs that repress the expression of their cognate target
genes by specifically binding and cleaving messenger RNAs
(mRNAs), inhibiting translation, and/or deadenylating mRNA
tails [6]. miRNAs have been shown to control various funda-
mental biological processes, including cell proliferation, apo-
ptosis, and autophagy [7-9]. The regulatory roles of miRNAs
in autophagy were first uncovered in 2009 when Beclin-1, an
important autophagy-promoting gene, was shown to be
post-transcriptionally modulated by miR-30a [10]. Soon
after this report, a number of miRNAs were character-
ized to modulate some members of ATGs and their reg-
ulators at different autophagic stages. Importantly, these
miRNAs have been associated with certain diseases, in-
cluding cancers, cardiac pathologies, bacterial infection,
and Crohn’s disease [11-14].
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miR-26a is completely conserved across vertebrates. It
plays a dual role in different cancers, either as a tumor sup-
pressor [15—17] or a tumor promoter [18, 19]. miR-26a also
plays important roles in regulating IFN-3 anti-inflammatory
signaling [20], HASMC hypertrophy [21], pancreatic cell dif-
ferentiation [22], pathological and physiological angiogenesis
[23], hepatocyte proliferation during liver regeneration [24],
and other processes. However, the role of miR-26a in autoph-
agy remains unknown. Recent studies have demonstrated that
hypoxia activates autophagy [25]. Interestingly, miR-26a is
induced by hypoxia and can decrease proapoptotic signaling
in a hypoxic environment [26], suggesting a potential role of
miR-26a in autophagy.

In the present study, we investigated the potential role of
miR-26a in modulating autophagy and acute alcoholic liver
injury in mice. Our study demonstrated that miR-26a expres-
sion was significantly increased during the autophagic pro-
cess. The overexpression of miR-26a promoted autophagy in
both culture cells and the mouse liver. More importantly, liver-
specific overexpression of miR-26a protected the mice against
ethanol-induced acute liver injury through the upregulation of
autophagy. Our findings thus identify a novel miRNA-
mediated mechanism for enhancing cytoprotective autophagy
and provide a new approach to treat ethanol-induced liver

injury.

Materials and methods

Mice To generate liver-specific miR-26a transgenic (L-TG)
mice, a genomic DNA fragment encoding the miR-26a-1 lo-
cus, preceded by the synthetic CAG promoter and a loxP-
flanked Neo-STOP cassette, was inserted into the Rosa26 lo-
cus. Mice were generated by injecting targeted ES cells into
blastocysts and maintained in a mixed C57BL/6 and 129
background [22]. Mice carrying the targeted allele were bred
with Alb-Cre mice, which selectively deleted the “Neo-
STOP” cassette in hepatocytes. Heterozygous miR-26a trans-
genic mice and littermate wild-type mice were used for exper-
iments. All procedures followed the National Institutes of
Health guidelines for the care and use of laboratory animals.

The ethanol binge was conducted as previously described
[4]. Briefly, after 6 h of fasting, mice were given 33 % (vol/
vol) ethanol at a total accumulative dosage of 4.5 g/kg body
weight by three equally divided gavages at 20-min intervals.
Control mice received the same volume of water. For autoph-
agy inhibition, chloroquine (CQ; 60 mg/kg) was given
(intraperitoneally) to the mice 30 min before the administra-
tion of ethanol. Mice were analyzed 16 h later.

In vivo delivery of locked nucleic acid -modified anti-miR-
26a The locked nucleic acid (LNA)—-anti-miR26a oligonucle-
otides were purchased from Exiqon (Denmark). Five 6-week-
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old 129 mice per group were injected intraperitoneally with
10 mg/kg of anti-miR-26a or vehicle control every 2 days for a
total of four injections.

miR-26a and LNA miR-26a inhibitor transfections The
miRNA mimic and miRCURY LNA miR-26a inhibitor
were purchased from Ambion (Austin, TX, USA) and
Exiqon (Vedbaek, Denmark), respectively. Transfections
of miRNA or inhibitors were performed using HiPerFect
(Qiagen, Valencia, CA, USA) according to the manufac-
turer’s protocol.

Renilla luciferase-based screening assay SK-Hep-1 cells
with stable expression of renilla luciferase (RLuc)-LC3™"
or RLuc-LC39"?%* were reverse-transfected side by side in
96-well format with 20 nM of miRNA or siRNA.
Transfections were performed using HiPerFect (Qiagen).
At 22 h after transfection, 50 nM of EnduRen substrate
(Promega, Madison, WI, USA) was added. RLuc activ-
ity was measured at 24 and 48 h after transfection.
Luciferase measurements were performed using the
DTX 800 Multimode Detector (Beckman Coulter,
Fullerton, CA).

Luciferase activity assays Hela cells were transfected with
40 nM miRNA precursors (GenePharma, Shanghai, China)
and 200 ng of psicheck2.2 (Promega) constructs containing
an insert of the 3’ untranslated region (3'-UTR) or flanking
sequences of seed nucleotides of miR-26a target genes using
Attractene (Qiagen) in 96-well plates. At 24 h after transfec-
tion, cells were analyzed with a Dual-Luciferase Reporter
Assay (Promega). For mutant reporter constructs, the seed
sequence in the 3-UTR, 5'-TACTTGA-3’, was mutated to
5'-ATGATGA-3'".

Serum alanine aminotransferase and hepatic triglyceride
analysis Serum was obtained by centrifuging whole mouse
blood (1300g for 10 min) at 4 °C. Levels of serum alanine
aminotransferase (ALT) were measured at the City of Hope
Helford Research Hospital. To quantify the hepatic triglycer-
ide content, liver tissues (100 mg) were homogenized in ice-
cold buffer containing 20 mmol/L Tris-HCI, 150 mmol/L
NaCl, 2 mmol/L EDTA, and 1 % Triton X-100, pH 7.5. The
triglyceride content of this 100-p1L solution was determined at
the City of Hope Helford Research Hospital.

Statistical analysis Data are expressed as mean+SD. A two-
tailed Student’s ¢ test was used to determine the differences
between two data groups. P<0.05 was considered as statisti-
cally significant.

Other methods Please see supplementary “Materials and
methods”.

Results
miR-26a is regulated during the autophagic process

Nutrient deprivation and rapamycin treatment are known to
activate autophagy in various types of cells. To explore the
potential involvement of miR-26a in autophagy, we measured
the endogenous miR-26a expression upon autophagy induc-
tion in several cell lines, including SK-Hep-1, Huh 7, HepG2,
and Hela. Quantitative RT-PCR (qRT-PCR) analysis revealed
that miR-26a was significantly upregulated in cells treated
with autophagic stimuli compared to the untreated controls
(supplementary Fig. 1a), which suggests the induction of
miR-26a by the autophagic process. We further examined
miR-26a expression in SK-Hep-1 cells over different time
courses of autophagy. Supplementary Fig. 1b shows that
miR-26a expression was gradually increased by HBSS or
rapamycin treatment. These results suggest a potential role
for this miRNA in response to autophagic stimuli.

Overexpression of miR-26a induces autophagic activity

Starvation- and rapamycin-induced miR-26a expression could
be a cause or merely a consequence of autophagy. To clarify
this possibility, we employed four independent approaches to
investigate the effects of miR-26a on autophagy. First, the
levels of LC3 and p62/SQSTMI1, two classic markers of au-
tophagy, were determined by immunoblot analysis. As shown
in Fig. la, LC3-1I, a PE-conjugated form of LC3, which is
converted from LC3-I upon autophagy induction, was signif-
icantly increased in cells transfected with miR-26a precursors.
By contrast, p62, a selective substrate of autophagy and a
biomarker for autophagic flux, was significantly decreased
in cells transfected with miR-26a under normal or autophagic
conditions. These results indicate that overexpression of miR-
26a activates autophagy in cells. In addition, inhibition of
endogenous miR-26a expression by transfection of anti-
miR-26a increased the expression of p62 in SK-Hep-1 cells
under normal or stressful conditions (Fig. 1b).

In the second approach, ultrastructural analysis by trans-
mission electron microscopy (TEM) showed that overexpres-
sion of miR-26a in SK-Hep-1 cells resulted in increased au-
tophagic vacuoles containing organelle remnants (Fig. 1c).
Quantification of autolysosomes per cellular cross-section re-
vealed a significant increase upon miR-26a overexpression,
relative to the scramble control (Fig. 1d), thereby confirming
our findings described above.

Third, to separately evaluate the extent of autophagosome
and autolysosome accumulation, we used SK-Hep-1 cells that
stably express the tandem fluorescent mRFP-GFP-LC3 plas-
mid (SK-Hep-1/tf-LC3) [27]. mRFP retains its fluorescence,
even in the acidic environment of lysosomes, whereas GFP
loses its fluorescence. Thus, green LC3 puncta primarily
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Fig. 1 miR-26a overexpression promotes autophagy. a Cells were
transfected with miR-26a or scramble miRNA (miR-NC) for 24 h.
Then, cells were treated with HBSS for 4 h or 125 nM rapamycin for
24 h. The expression of p62 and LC3 was detected by immunoblotting. b
SK-Hep-1 cells were transfected with miR-26a inhibitor (miR-26al) or
negative control for 24 h. Then, cells were treated with HBSS for 4 h or
125 nM rapamycin for 24 h. The expression of p62 was detected by
immunoblotting. The relative quantity of p62 in a and b was calculated
by ImagelJ densitometric analysis and normalized using GAPDH. ¢
Representative TEM images of SK-Hep-1 cells transfected with miR-

indicate autophagosomes, whereas red LC3 puncta indicate
both autophagosomes and autolysosomes. The red puncta that
overlay with the green puncta and appear yellow in merged
images are indicators of autophagosomes, whereas the free red
puncta that do not overlay with the green puncta and appear
red in merged images are indicative of autolysosomes. The
numbers of yellow and red puncta were both significantly
increased after miR-26a transfection (supplementary Figs. 2
and Fig. le), indicating that miR-26a enhanced the formation
of both autophagosomes and autolysosomes in SK-Hep-1
cells.

Finally, the effect of miR-26a on autophagic flux was fur-
ther examined using a functional screening approach as pre-
viously reported [11, 28]. In this system, LC3 is fused to a
renilla luciferase reporter forming the RLuc—LC3 fusion pro-
tein. As LC3 itself is specifically degraded by autophagy, the
level of autophagy in the SK-Hep-1 reporter cell line stably
expressing wild-type RLuc—LC3 (RLuc-LC3%™") can be
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Quantification of autolysosomes (denoted by white arrows) per cell (n=30).
e Percentage of red or yellow puncta-positive cells was quantified by
automated image acquisition and analysis using a threshold of more than
five dots per cell. f SK-Hep-1 RLuc—LC3%T and RLuc-LC39"2° cells
were reverse-transfected with miRNAs and siRNAs or treated with 125
nM rapamycin. Luciferase activity was measured at 24 and 48 h after
transfection or rapamycin treatment. Results shown are the mean+SD of
at least three independent experiments. *P<0.05; ** P<0.01

measured in real time using the in vivo renilla luciferase sub-
strate EnduRen™ [28]. As controls, SK-Hep-1 cells express-
ing a mutant fusion protein, RLuc—-LC3%'2** which is unable
to undergo autophagosomal localization and is not degraded
by autophagy, are assayed in parallel. Thus, the autophagic
flux can be evaluated as a change in the relative levels of these
two fusion proteins (LC3VT/LC39'2°%). In this assay, an
siRNA against Beclin-1, which is a key regulator of autopha-
gy formation, was used as a control for autophagy inhibition,
while rapamycin was used as a positive control for autophagy
induction. As expected, the ratio of LC3VT/LC39'2%4 was
increased by the inhibition of Beclin-1 but decreased with
rapamycin treatment. Interestingly, the ratio of LC3W'/
LC39"2%4 was decreased significantly when cells were
transfected with miR-26a for 48 h (Fig. 1f), indicating that
miR-26a accelerates autophagic flux and stimulates the deg-
radation of LC3. Collectively, these results demonstrate that
miR-26a enhances autophagy in liver cells.
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miR-26a promotes autophagy as a protection mechanism
against ethanol-induced acute liver injury

Autophagy plays an important role in alleviating
ethanol-induced hepatic steatosis and liver injury [4].
Therefore, we asked whether increased miR-26a expres-
sion could protect mice against acute alcohol-induced
liver injury. To address this question, we utilized recent-
ly established miR-26a liver-specific overexpression
mice (L-TG), in which the expression of miR-26a is
elevated approximately 30 times compared with WT lit-
termates (supplementary Fig. 3). Mice were gavaged
intragastrically with ethanol, and the sober-up time (time
between loss of righting reflex to recovery) was record-
ed. As shown in Fig. 2a, the sober-up time of L-TG
mice is significantly less than that of WT mice, with
2 h in L-TG mice and 3.5 h in WT mice.
Accordingly, ethanol-induced liver injury, as reflected
by the serum ALT levels, was strongly reduced in L-
TG mice (Fig. 2b). Autophagy likely protects

Fig. 2 Overexpression of miR- A Sober-up time

hepatocytes against the detrimental effects of ethanol
by removing damaged mitochondria and accumulated
lipid droplets [4]. Oil Red O staining showed that
ethanol-induced LDs levels were significantly lower in
L-TG mice than that in WT mice (Fig. 2c). Compared
to the WT livers, the quantification of LDs by TEM
further confirmed a significant decrease in LDs in the
L-TG livers (Fig. 2d, e). Consistently, ethanol-induced
increases of hepatic triglyceride levels were significantly
diminished in L-TG mice compared with WT mice
(Fig. 2f). Hematoxylin and eosin (H&E) staining also
indicated that WT mice exhibit higher grades of
steatosis than L-TG mice when treated with ethanol
(supplementary Fig. 4).

We then investigated whether the protective effect of
L-TG mice is associated with autophagy. To this end,
we pretreated L-TG and WT mice with the lysosome
inhibitor CQ, a well-known late-phase autophagy inhib-
itor. CQ pretreatment significantly increased the sober-
up time of both genotypes after ethanol binge (Fig. 2a).

26a alleviates ethanol-induced
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liver-specific miR-26a transgenic WT-CQ + Ethanol 323 + 33
mice (L-TG) were treated with L-TG-Ctrl 0

ethanol (£th) or control vehicle L-TG-Ethanol 122 + 39
(Ctrl). a Sober-up time of mice L-TG-CQ + Ethanol 318 +36
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compared with the L-TG-ethanol
group; #P<0.05 compared with
the WT-CQ+-ethanol group. b
Blood ALT level. ¢ Cryosections
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Red O. d, e Liver samples were
examined by TEM, and the
number of lipid droplets (denoted
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Strikingly, similar to WT mice, L-TG mice pretreated
with CQ could not sober up until 5 h after the ethanol
binge (Fig. 2a). Blockage of lysosomal function with
CQ significantly increased the number of LDs in hepa-
tocytes. Importantly, hepatocytes from both L-TG and
WT mice pretreated with CQ exhibited no difference
in LDs (Fig. 2d, e). H&E staining also revealed that
ethanol-induced liver steatosis or injury in mice of both
genotypes was further exacerbated by CQ combine
treatment (supplementary Fig. 4). All of these findings
suggest that the protective function of miR-26a on he-
patocytes depends on autophagy.

To further verify the protective role of miR-26a in
ethanol-induced liver injury, we used locked nucleic
acid-modified anti-miR-26a (LNA-anti-miR-26a) to in-
hibit endogenous miR-26a expression. As shown in

Fig. 3 Inhibition of endogenous
miR-26a-enhanced ethanol-
induced liver injury. Mice were
gavaged with ethanol (Eth) or
water (Ctrl) in the presence or
absence of anti-miR-26a (miR-
26al). a Expression of miR-26a in
the mouse liver was analyzed by
qRT-PCR. b Liver lysate was
subjected to immunoblotting for
p62. Each lane represents lysate
from five mice. The relative
quantity was calculated by
Image] densitometric analysis
and normalized using GAPDH. ¢
Blood ALT level was analyzed. d,
e. Liver samples were examined
by TEM, and the number of LDs
(denoted by white arrows) per cell
was quantified by counting the
number of LDs per cross-
sectioned cell. Scale bar 2 um. f
The total hepatic triglyceride
levels of mice were determined;
n=5 mice per group. Results
shown are the mean+SD.
*P<0.05; **P<0.01
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Fig. 3a, the ethanol binge induced an approximately
three- to fourfold increase of miR-26a expression in
the liver, and the expression of miR-26a was success-
fully inhibited by LNA-anti-miR-26a. Pretreatment of
mice with a miR-26a inhibitor reduced the ethanol
binge-induced autophagy flux in the liver as shown by
the increased levels of p62 (Fig. 3b) and significantly
enhanced ethanol-induced liver injury as shown by the
increased blood ALT levels (Fig. 3c). Furthermore, the
miR-26a inhibitor-treated mice exhibited a significantly
increased number of LDs (Fig. 3d, ¢) and the levels of
hepatic triglycerides (Fig. 3f).

Taken together, these findings indicate that miR-26a con-
tributes to ethanol-induced autophagy, thereby playing a role
in alleviating ethanol-induced hepatic steatosis and liver

injury.
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Fig. 4 miR-26a increases the expression of Beclin-1 by the activation of
MAPKs. a Expression levels of Beclin-1 and LC3 were measured by
gqRT-PCR in cells transfected with miR-26a for 24 h. b Cells were
transfected with miR-26a or scramble miRNA (miR-NC) for 48 h.
Lysates of treated cells were subjected to immunoblotting. Beclin-1 was

miR-26a targets several genes involved in autophagy

To understand the mechanism by which miR-26a en-
hances autophagy, we evaluated the effect of miR-26a
on the expression of the main autophagy-related genes,
including Beclin-1 and LC3. As shown in Fig. 4a, the
mRNA levels of Beclin-1 and LC3 were significantly
increased in cells transfected with miR-26a. Beclin-1
plays a central role in autophagy and moderately elevat-
ed Beclin-1 results in cytoprotective autophagy [29].
Beclin-1 is regulated by many factors, including
MAPKSs [30]. We therefore measured MAPK signaling
in miR-26a transfected cells. The results demonstrated
that miR-26a enhanced the phosphorylation of ERK1/2,
p38, and JNK (Fig. 4b). To better understand the under-
lying mechanisms by which miR-26a activates MAPKs,
potential miR-26a target genes were searched with
TargetScan 6.2. We found that miR-26a can potentially
target DUSP4 and DUSPS5, two negative regulators of
the phosphorylation of ERK1/2, JNK, and p38 [31, 32].

To validate the predicted binding sites of miR-26a in
the 3-UTR of DUSP4 and DUSP5 (Fig. 5a), we exam-
ined miR-26a’s interaction with this domain by lucifer-
ase reporter assay in Hela cells using a psicheck2.2
vector containing the 3'-UTR of the target genes or a
control psicheck2.2 vector containing the same 3'-UTR
with mutated miR-26a seed nucleotides. miR-26a pre-
cursors repressed the luciferase activities of the vector
containing the wild-type 3’-UTR of DUSP4 by more
than 23 % and the wild-type 3'-UTR of DUSPS by
more than 52 %. By contrast, mutation of the seed
sequence abolished this repression (Fig. 5b).
Furthermore, we also found that the transfection of
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quantified by Imagel densitometric analysis and normalized using
GAPDH. Results shown are the mean+SD of at least three independent
experiments. *P<0.05; **P<0.01 compared with cells transfected with
scramble miRNA

miR-26a precursors resulted in a significant decrease
in both the mRNA and protein levels of these two tar-
get genes in Huh7 cells (Fig. 5c, d). To further confirm
the functional roles of DUSP4 and DUSPS5 in autopha-
gy, siRNAs against DUSP4 and DUSP5 were used to
knock down these genes in SK-Hep-1 cells. As shown
in supplementary Fig. 5, knockdown of DUSP4 or
DUSPS5 increased the phosphorylation of ERK1/2, p38,
and JNK and resulted in the accumulation of LC3-II or
LC3 puncta in SK-Hep-1/tf-LC3 cells (supplementary
Figs. 5 and 6). These results strongly suggest the func-
tional importance of DUSP4 and DUSP5 as miR-26a
targets.

miRNAs usually repress the expression of multiple genes
involved in the same pathway. Therefore, we evaluated other
predicted miR-26a target genes that are potentially involved in
autophagy regulation, including MCL1 [33], TAB2, and
TAB3 [34]. Recently, Lipinski et al. identified a number of
genes that negatively regulate autophagy using a siRNA
screen [35]. Among these negative regulators of autophagy,
we identified several potential targets of miR-26a. A luciferase
reporter assay demonstrated that COX5A, MCL1, POLR3G,
UBE2D1, PLXNA2, TAB2, and TAB3 can be targeted by
miR-26a directly (Fig. 5e). As a result, transfection of miR-
26a precursors led to a significant decrease in the endogenous
mRNA levels of COX5A, MCL1, POLR3G, UBE2DI, and
TAB3 in Huh7 cells (Fig. 5f).

Discussion

miRNAs such as miR-30a, 101, 375, 204, 130a, and 376b
have recently been determined to modulate autophagy by
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Fig. 5 miR-26a targets several genes involved in the induction of
autophagy. a Diagram of the 3'-UTRs of DUSP4 and DUSPS in
different species. b Luciferase reporter assay of psicheck2.2 with 3'-
UTR fragments of DUSP4 and DUSPS. ¢, d mRNA and protein levels
of DUSP4 and DUSPS5 in Huh7 cells transfected with miR-26a. e

targeting some members of ATGs and their regulators at dif-
ferent autophagic stages. Eventually, all these miRNAs inhibit
the autophagic process [10, 13, 36-38]. Meanwhile, some
reports have shown that miRNAs could promote autophagy
by targeting negative regulators of autophagy. For example,
microRNA-155 promotes autophagy to eliminate intracellular
mycobacteria by targeting Rheb [14], and hypoxia-induced
miR 155 is a potent autophagy inducer by targeting multiple
players in the MTOR pathway [39]. microRNA-18a
upregulates autophagy and ataxia telangiectasia mutated gene
expression in HCT116 colon cancer cells [40]. microRNA-
100 promotes the autophagy of hepatocellular carcinoma cells
by inhibiting the expression of mMTOR and IGF-1R [41]. In the
present study, we show that miR-26a promotes autophagy and
that overexpression of miR-26a in mouse liver alleviates
ethanol-induced hepatic steatosis and liver injury. To the best
of our knowledge, this is the first study to demonstrate that
miR-26a can promote cytoprotective autophagy.
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Luciferase reporter assay of psicheck2.2 with 3’-UTR fragments of
potential targets. f Real-time PCR analysis of miR-26a target genes
after transfection with the miR-26a precursors. Results shown are the
mean+SD. *P<0.05; **P<0.01 compared with cells transfected with
scramble miRNA

Most of the cells in the human body have a basal
level of autophagy. Autophagy is an important physio-
logical mechanism that may serve as a temporary sur-
vival mechanism during periods of metabolic stress.
Beclin-1 has been well characterized as playing a piv-
otal role in autophagy, and its dysfunction has been
implicated in many disorders, including embryonic de-
velopment, cancer, and neurodegeneration. Previous
studies revealed that mammalian species fail to survive
in the absence of Beclin-1 and develop cancers with the
low expression of Beclin-1. Moderately elevated Beclin-
1 expression induces cytoprotective autophagy, while
overexpression activates destructive autophagy and cell
death [29]. In our studies, Beclin-1 expression in miR-
26a transfected cells is moderately increased (less than
threefold in Fig. 4); thus, we expect that miR-26a-
mediated autophagy is cytoprotective. This hypothesis
was confirmed by the in vivo ethanol binge model.
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Overexpression of miR-26a in the liver alleviates
ethanol-induced hepatic steatosis and liver injury, and
this cytoprotective effect was abolished by the autopha-
gy inhibitor CQ (Fig. 2). To date, a few studies have
reported the use of rapamycin to induce autophagy as a
potential therapeutic approach [4, 42]. However,
rapamycin has strong immunosuppression activity. Our
study proposes a potential usage for miR-26a as an
autophagy inducer for the treatment of autophagy-
related diseases, such as ethanol-induced hepatic
steatosis and liver injury.

The sober-up time (i.e., time to restore the righting reflex)
of L-TG and WT mice after ethanol binge was approximately
2 and 3.5 h, respectively. This difference in Fig. 2a is fascinat-
ing and statistically significant. The sober-up time likely de-
pends on the rate of ethanol metabolism. It is well known that
ethanol is almost completely absorbed from the gastrointesti-
nal tract and eliminated mainly in hepatocytes [43]. The eth-
anol binge leads to the accumulation of lipid droplets in hepa-
tocytes that results in the development of liver steatosis and
subsequent hepatocyte dysfunction, which impairs the metab-
olism of alcohol. Ding et al. reported that autophagy consti-
tutes an effective defense mechanism against ethanol-induced
hepatotoxicity by removing damaged mitochondria and accu-
mulated fatty acids [4]. Our results also show that miR-26a
could significantly reduce hepatic steatosis via the autophagic
degradation of LDs, thereby indirectly promoting ethanol me-
tabolism and shortening the ethanol binge-induced sober-up
time. Moreover, this reduction in sober-up time by miR-26a
could be autophagy-dependent because CQ, a widely used
autophagy inhibitor, abolished the protective effect of miR-
26a (Fig. 2a).

We observed that miR-26a transfection led to the activation
of ERK1/2, p38, and INK (Fig. 4b), which are the best-studied
MAP kinases in eukaryotic cells. MAPKs are a widely con-
served family of serine/threonine protein kinases implicated in
many cellular programs, such as cell proliferation, differenti-
ation, and apoptosis. An increasing number of studies have
suggested that MAPKs also play important roles in modulat-
ing autophagy. One crucial mechanism by which MAPKs
contribute to autophagy is the increase of Beclin-1 expression
[29, 44, 45]. The present study demonstrated that miR-26a
suppressed DUSP4 and DUSPS, two negative regulators of
MAPKs [31], by directly interacting with their 3’-UTRs,
which resulted in activated MAPKs and moderately enhanced
the expression of Beclin-1 (Fig. 4b). As mentioned above, a
moderate increase in Beclin-1 expression results in
cytoprotective autophagy. Therefore, it is likely that miR-
26a regulates a network of targets that influence autophagy
through mechanisms and pathways converging at the level of
Beclin-1. Transcription factor EB (TFEB) is an important tran-
scription factor that promotes autophagy by regulating coor-
dinated lysosomal expression and regulation gene expression.

[ miR-26a ]

L [ ethanol metabolism ]
1

DUSP4/5 [ hepatocyte dysfunction ]

MAPKs:
JNK, p38, ERK1/2

negative
regulators of
autophagy:
MCL1, TAB2,
COXS5A,

[ hepatocyte steatosis ]

beclin-1 lipid droplets

accumulation

ethanol binge

Fig. 6 Summary diagram: hepatic overexpression of miR-26a in mice
alleviates ethanol-induced hepatic steatosis and liver injury by
augmenting autophagic degradation of lipid droplets. Overexpression of
miR-26a increases the expression of the autophagy mediator Beclin-1,
which is regulated by mitogen-activated protein kinases. DUSP4 and
DUSPS, two MAPK inhibitors, were identified as direct targets of miR-
26a. Several other negative regulators of autophagy, such as MCLI,
TAB2, COXS5A, and POLR3G, were also identified as potential targets
of miR-26a. Forced expression of miR-26a in the liver can alleviate
ethanol-induced hepatic steatosis and liver injury by augmenting the
autophagic degradation of lipid droplets in hepatocytes

[ autophagy in hepatocyte

Previous studies suggest that TFEB transcriptional activity
can be downregulated by phosphorylation via ERK1/2 [46].
However, when we checked the TFEB changes in cells
transfected with miR-26a (supplementary Fig. 7), miR-26a
overexpression did not induce TFEB nuclear translocation,
which indicates that TFEB may not be essential in miR-26a-
mediated autophagy. We also identified several other autoph-
agy negative regulators as miR-26a targets, including
COXS5A, POLR3G, UBE2D1, and PLXNA2 (Fig. 5e).
Further investigation is required to determine how these target
genes are involved in miR-26a’s regulation of autophagy.

In summary, our findings demonstrated that miR-26a could
enhance autophagy through the inhibition of some negative
regulators of autophagy. Forced expression of miR-26a in the
liver can alleviate ethanol-induced hepatic steatosis and liver
injury by augmenting the autophagic degradation of lipid
droplets in hepatocytes (Fig. 6). Therefore, enhancement of
autophagy by miR-26a may provide a potential therapeutic
strategy to protect the liver from ethanol and other agent-
induced liver injuries.
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