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                    Abstract
The mechanisms that contribute to the development of diabetes complications remain unclear. A defective reaction of tissues to hypoxia has recently emerged as a new pathogenic mechanism and consists of a complex repression of hypoxia-inducible factor (HIF), which is the main regulator of the adaptive response to hypoxia. This paper discusses the mechanisms by which hyperglycaemia contributes to HIF repression in diabetes. Furthermore, a comprehensive analysis of the functional relevance of these new findings to the development of chronic diabetes complications is provided, along with examples from animal models and clinics.
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                                    Introduction
Diabetes is reaching epidemic proportions and is predicted to affect 300 million people worldwide by 2025. Chronic complications of diabetes represent the main concern for modern diabetes therapy, and it has become a priority to further characterise the pathophysiological mechanisms of these complications to ensure the development of novel rational therapeutic strategies. Available therapies focus on blood glucose level improvement but are just partially successful mainly because they are associated with severe hypoglycaemia. Therefore, to improve diabetic patient prognosis, it is essential to identify the additional pathogenic mechanisms that lead to complications.


Hyperglycaemia represses the tissue reaction to hypoxia
Although the prolonged exposure of tissues to hyperglycaemia is the primary causative factor for chronic diabetes complications, it has recently become increasingly evident that hypoxia also plays an important role in all diabetes complications [1–4]. A low tissue concentration of oxygen in diabetes is the consequence of several mechanisms (e.g. deficient blood supply because of micro- [5] and macro-vascular disease [6], or as the result of increased oxygen consumption) [7].
Compelling evidence has accumulated over the last decade, indicating that the cellular reaction to hypoxia is impaired in diabetes, and is a central pathogenic mechanism for diabetes complications. In this paper, we discuss the mechanisms that contribute to impaired oxygen sensing in diabetes and the functional relevance of this defect.


HIF-1 is the main modulator of the cellular reaction to hypoxia
Adaptive responses of cells to hypoxia are mediated by hypoxia-inducible factor 1 (HIF), which is a heterodimeric transcription factor that is composed of α and β subunits. The regulation of HIF activity is critically dependent on α subunit degradation in normoxia (Fig. 1). The molecular basis of its degradation is the O2-dependent hydroxylation of at least one of the two proline residues of HIF-1α by specific Fe2+- and oxoglutarate-dependent prolyl 4-hydroxylases (PHD). In this form, HIF-1α binds to the von Hippel-Lindau (VHL) tumour suppressor protein, which acts as an E3 ubiquitin ligase and targets HIF-1α for proteasomal degradation (recently reviewed by [8]). HIF transactivation is also subjected to oxygen regulation. Two transactivation domains, the amino- (NTAD) and the carboxy-terminal (CTAD) transactivation domain, have been identified. The NTAD’s transcriptional activity is largely coupled to protein stability. However, the CTAD transcriptional activity is independent of protein stability and involves the hydroxylation of a critical asparagine residue through a reaction that is catalysed by factor inhibiting HIF (FIH), which is another Fe2+ and oxoglutarate-dependent oxygenase [8]. Therefore, both α subunit stability and function are regulated via several oxygen-dependent hydroxylation steps that are performed by HIF-hydroxylases (PHD1, PHD2, PHD3, FIH). Three α subunits have been described to date where HIF-1α is the ubiquitous variant. While HIF-3α lacks the CTAD region and in consequence can function as a repressor, HIF-2α has a high similarity in structure and function with HIF-1α but has a restricted tissue distribution [9]. Even though HIF-1α and HIF-2α have, in most of the instances, the same regulation and function, they can have even opposing activities in isolated cases [10].
Fig. 1
Complex regulation and activation of HIF in hypoxia. The canonical (filled lines) and additional mechanisms (dotted lines) involved in regulating HIF-1 stability and activation in hypoxia


Full size image


              In addition to the critical oxygen-dependent regulation of HIF via HIF-hydroxylases, several other mechanisms that modulate its stability and activity were identified [8]. For example, the ING4 tumour suppressor gene inhibits the HIF transactivation independent of PHD hydroxylase activity, while OS-9 increases HIF prolyl-hydroxylation and proteasomal degradation via PHD binding. HSP90 binds to the PAS domain and increases HIF stability through a VHL-independent mechanism while receptor of activated protein kinase C-1 (RACK-1) promotes HIF-1α proteasomal degradation by competing with HSP90. A recent additional mechanism involved in hypoxia-dependent HIF stabilisation is p75NTR cleavage, which stabilises Siah2 (seven in absentia homolog 2), which in its turn stabilises HIF-1α (most likely via PHD) [11]. Sirtuins are NAD-dependent deacetylases that also modulates HIF stability and activity; however, the available data are partially contradictory [12–14]. There is also controversy regarding the role of SUMOylation which is an additional posttranslational mechanism with functional effects on HIF (recently reviewed by [15]). Recently, it has been proposed that microRNAs also mediate some HIF-1 functions (reviewed by [16]).
Under hypoxic conditions, HIF-1α is stabilised, binds to hypoxic responsive elements (HRE), and upregulates a gene series which enables cells to adapt to reduced oxygen availability [8]. It is estimated that more than 800 genes are direct HIF targets [17].


Hyperglycaemia-activated mechanisms with potential effects on HIF-1 function
Several pieces of evidence point to a defective response of diabetic tissues to hypoxia. An impaired hypoxia response is present in all tissues investigated in diabetic animal and diabetic patients. Hyperglycaemia directly represses HIF stability and function at multiple levels, a mechanism that is not completely understood. Several mechanisms, activated by hyperglycaemia, have been proposed to be responsible for cellular damage in diabetes. They will be briefly discussed along with their potential relevance for interaction with the HIF system (Fig. 2).
Fig. 2
Intracellular mechanisms are potentially activated by hyperglycaemia, which represses HIF function. The pathways with stimulatory () or inhibitory () effects on HIF regulation. The mechanisms that have no documented effects on HIF regulation or that have the opposite influence than hyperglycaemia ()
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              Increased polyol pathway flux was historically the first pathogenic pathway proposed to be responsible for diabetes complications. This pathway consists of increased cellular sorbitol levels as a consequence of chronic high glucose levels that are converted by aldose reductase (AR). The reaction consumes nicotinamide adenine dinucleotide phosphate (NADPH), which is needed to regenerate reduced glutathione and decrease the cellular antioxidant capacity contributing by this to development of the diabetic complications [18]. Other intracellular mechanisms supposed to mediate the deleterious effect of accumulated polyol (decreased of myo-inositol with consecutive decrease of Na+/K+ ATPase function [19] or decreased of the NO synthetase activity secondary to NADPH depletion) were not however confirmed. Several AR inhibitors were successful to protect against development of chronic complications of diabetes in animal models but not efficient in clinical trials. This pathway is unlikely to contribute to hyperglycaemia-mediated HIF-1α stabilisation because opposing effects have been reported (i.e. AR inhibition impaired HIF accumulation during hypoxic insults [20]).

                Advanced glycosylated end products (AGE) are produced by a nonenzymatic reaction of glucose and other reactive α-oxoaldehydes, such as methylglyoxal (MGO) and glyoxal, with proteins. AGE alters the activity of different proteins [21], which in turn bind to AGE receptors (RAGE) and stimulate inflammatory cytokine and growth factor production. This pathogenic pathway directly contributes to HIF repression in diabetes at different levels (Fig. 3). MGO increases HIF-1α degradation via carboxyl terminus of Hsp70 interacting protein (CHIP) and HSP70/HSP40-mediated ubiquitination [22]. Moreover, MGO decreases the HIF transactivation by impairing its heterodimerisation with HIF-1β [23] and by repressing the interaction of CTAD with p300 [24].
Fig. 3
Schematic representation of the contribution of the glucose-dependent repression of HIF-1 signalling for the pathogenesis of diabetes complications
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              However, MGO only partially explains the hyperglycaemia-mediated HIF repression because the intracellular MGO levels required for HIF destabilisation are two to three times higher than those attained by hyperglycaemia. Moreover, glyoxalase 1 overexpression normalises intracellular MGO levels and partially rescues hyperglycaemia-dependent HIF destabilisation [22]. Conversely, HIF-1α destabilisation can be observed after a short glucose exposure (6 h), before MGO is produced and after metabolically inactive mannitol exposure [25]. Moreover, MGO alone [22] but not hyperglycaemia [2] destabilises HIF through a VHL-independent mechanism.
AGE is however not restricted to MGO. Thus, in this context, two different AGE have opposing effects in the same cell system; in retinal epithelial cells, MGO [26] diminished while glycated albumin induced [27] HIF accumulation. The relation between HIF and AGE is more complex because HIF increases RAGE expression [28].
While most of the work was concentrated on the regulation of HIF-1α expression and stability, little is known about regulation of HIF-2α in diabetes. Recently, HIF-2α has been proposed to play a central role in hepatic insulin resistance [29], but the glucose-dependent regulation of HIF-2α in other tissues prone to develop complications in diabetes is still unclear. It is to be clarified whether isolated reports on increased levels of HIF-2α in diabetic retina or kidney [30] [31] are specific for a cell/organ since HIF 2α is repressed by glucose in human dermal endothelial cells similar with HIF-1α.

                Other metabolic alterations activated by hyperglycaemia as PKC activation or increased hexosamine pathway flux were practically not documented to be involved in HIF-1 regulation.
Mitochondrial ROS overproduction
Excessive mitochondrial reactive oxygen species (ROS) production is a hallmark of diabetes and is due to an increase of the voltage across the mitochondrial membrane secondarily to the increased flux of the electron donors due to excess glucose-derived pyruvate [32]. It has been proposed as an unifying pathogenic mechanism for chronic complications since it can activate each of the four previously mentioned mechanisms [33]. The interplay between ROS and HIF-1 is complex, bidirectional and still not completely explained. Mitochondrial ROS production is acutely increased by hypoxia within minutes, but chronic hypoxia decreases ROS production as a consequence of HIF stabilisation and activation [34].
HIF activates several mechanisms that contribute to the reduced ROS production in chronic hypoxia, which protects the cells from potential ROS-induced damage.
	
                      1.
                      
                        HIF activates pyruvate dehydrogenase (PDH) kinase 1 (PDK1), which phosphorylates and inactivates the catalytic subunit of PDH [34] preventing the pyruvate entry into the tricarboxylic acid (TCA) cycle that secondarily decreases the electron transport flux, which would have produced excessive ROS.

                      
                    
	
                      2.
                      
                        By inducing BNIP3, Beclin-1 is released from the bcl-2 complex. HIF induces autophagy and secondarily decreases the mitochondrial number, which is the main ROS-producing organelle [35].

                      
                    
	
                      3.
                      
                        HIF mediates the switch between COX 4–1 and COX 4–2 and counteracts the potential ROS overproduction from complex IV in hypoxia [36].

                      
                    
	
                      4.
                      
                        ROS production by complex I is also inhibited by HIF-1α via mir210 [37].

                      
                    


                The effect of hypoxia differs at other levels of the electron transport chain because it increases the ROS production at complex III, which plays a direct role in HIF stabilisation via PHD inhibition (recently reviewed by [38]).
The role of mitochondrial ROS production in HIF regulation has been extensively explored. Mitochondrial ROS production stabilises and activates HIF-1α ( reviewed by [39]), making it highly unlikely that the proposed ROS overproduction in diabetes directly mediates the effect of glucose on HIF-1α stability and function.
Other potential modulators of HIF activity in diabetes
Peroxynitrite is a potential mediator that is relevant in the context of ROS overproduction being produced by rapid recombination of O2
                  − with NO; it blocks complex I activity and releases iron/2-OG, which activates PHDs that further degrade and deactivate HIF [40]. Another mediator that has been proposed to modulate the deleterious effect of diabetes on tissues is peroxynitrite-mediated PARP-1 activation as a part of DNA repair system [41]. There is no systematic investigation concerning the effect of PARP-1 on HIF function in diabetes. However, currently available data suggest that PARP-1 is unlikely to mediate hyperglycaemia-mediated HIF repression because hypoxia induces less HIF accumulation in PARP-1 knockout mice [42].
In conclusion, most of the “classical” pathogenic mechanisms that are activated by hyperglycaemia can contribute (at least partially) to the HIF-1 inactivation in diabetes. However, more study is needed to clarify the detailed mechanism by which diabetes exerts its repressive effect on HIF function.
The contribution of HIF signalling for the insulin resistance in diabetes was subject of a recent review [43]. While general activation of HIF signalling in animals treated with deferoxamine is followed by increased insulin sensitivity, the specific genetic manipulation of the HIF in target tissues (fat tissues, liver and muscles) has different effects. In adipocytes, insulin resistance is induced by both overexpression of HIF-1α [44] and by a dominant negative version of HIF-1α [45] while improved insulin sensitivity follows PHD2 silencing [46] but also HIF-1α disruption [47, 48]. The different outcomes may reside on the genetic strategic approaches but also on a different role played by the HIF-α paralogs in adipose tissues since PHD2 knockout is followed by a much stronger HIF-2α, then HIF-1α induction [46]. Loss of HIF-1α in liver increases the peripheral insulin sensitivity [49], while HIF-2α plays a critical role for liver insulin sensitivity [29]. HIF-1α increases insulin sensitivity in muscles as well [50]. Interesting whole body FIH knockout mice exhibits increased insulin sensitivity [51].


Functional relevance of HIF repression in diabetes
Relative hypoxia is present in all of the tissues that are prone to develop complications in diabetes. Therefore, it is not unexpected that the repressed function of HIF in diabetes plays an important pathogenic role (Fig. 3). Moreover, HIF signalling is involved in β-cell function in diabetes.
Pancreas
Hypoxia or chemical HIF activation inhibits β-cell differentiation in vitro [52], but genetic manipulation of the VHL/HIF-1 system in vivo has no effect on β-cell mass [53–55]. However, HIF signalling plays a clear role in insulin secretion as suggested by different knockout mouse models. β-Cell-specific VHL knockdown cells exhibit deficient insulin secretion, which is HIF-1α-dependent [54]. A similar glucose handling disturbance was observed in other knockout models [55, 53], which suggests a deleterious effect of excessive HIF-1α activation on glucose-dependent insulin secretion [53]. Conversely, glucose-stimulated insulin release is decreased when HIF-1β is silenced [56] or when HIF-1α is specifically deleted in the β cells [57]. Moreover, HIF-1 activation by deferoxamine (iron chelator) [57] improves metabolic control in diabetic rats. To accommodate these opposing data on HIF-1 and β-cell function, a bell-shaped influence of HIF-1α on insulin secretion was proposed where both complete loss of function or strong HIF induction are deleterious for insulin secretion, while medium HIF activation is optimal [57].
Hypoxia plays an important role in the survival of transplanted islets that are used to treat type 1 diabetes patients. Recent data suggest that unfold protein response and C/EBP homologous protein (CHOP) activation but not HIF-1 system activation is responsible for the hypoxia-induced apoptosis in Min 6 cells (insulin-secreting cell line) [58]. However, HIF-1 activation in transplanted islets has positive effects on transplant survival [59].


Kidney
Hypoxia has a central pathogenic mechanism for diabetic nephropathy. Hypoxia can be detected by magnetic resonance imaging (MRI) in the outer medulla of diabetic kidneys early in disease development, which illustrates its primary pathogenic role [3]. Hypoxia is the consequence of both decreased oxygen delivery and increased oxygen consumption, at least partially caused by increased uncoupling secondary to high UCP-2 levels [60].
While a drop in oxygen tension in diabetic kidneys is not disputed, the appropriateness of the HIF reaction is still unclear. An inappropriate reaction to hypoxia, as is observed in most other tissues, is suggested by incomplete overlap between pimonidazole staining for hypoxia [61] and HIF-1α and HIF-2α staining in kidneys of STZ-induced diabetic rats [30] and db/db mice [62]. Moreover, HIF immunoreactivity is improved independent of the preserved low oxygen concentration (as documented by an unchanged pimonidazole staining) after the tempol treatment, which functions as a soluble SOD [30], suggesting a similar functional repression of HIF in diabetic kidneys as is observed in all of the other tissues.
HIF-1α is uniquely induced in isolated glomerular cells, mesangial cells [63] or podocytes [64] by different mechanisms (i.e. induction at the RNA level [65] or via carbohydrate-responsive element-binding protein (ChREBP)) [63]. The latest mechanism can explain why HIF is differentially regulated in mesangial cells or in hepatocytes [66] because ChREBP is absent in other cells, such as fibroblasts. The paradoxical induction of HIF is indeed limited to isolated renal cells because the general suppression of HIF is observed in tubular cells or in the whole cortex of diabetic animals [67]. The functional relevance of this “paradoxical” increase of HIF-1α expression in mesangial cells of diabetic kidneys is likely minor compared with HIF repression throughout the rest of the diabetic kidney because HIF induction with CoCl2 treatment reduced the diabetic nephropathy progression [68].
The repressed HIF system in diabetic kidneys also has relevance for DN progression to end-stage renal disease (ESRD) because hypoxia is a common final pathogenic pathway for most renal diseases. Renal HIF overexpression has a protective effect against progression to ESRD, as demonstrated by genetic manipulation [69] or chemical induction [70].
A Pro582Ser polymorphism that confers relative resistance of HIF-1 to the repressive effect of hyperglycaemia is associated with nephropathy protection in diabetic patients [62]. Taken together, the improvement of the HIF reaction in kidney might be a potential therapeutic approach for diabetic nephropathy. Data about safety in patients with kidney disease will be soon available from a clinical trial with a prolyl hydroxylase inhibitor in patients with ESR [71].


Heart
Most available data demonstrate a protective effect of HIF in cardiovascular pathology even if the chronic activation might have deleterious effects (recently reviewed by [72]). Diabetes profoundly influences the risk for cardiovascular complications. Diabetic patients not only have a higher incidence of cardiovascular pathology but also a worse prognosis after acute cardiac events compared with non-diabetic patients [73]. Even in non-diabetic patients, the blood glucose levels at admission are a strong prognostic factor after an acute coronary event [74].
Therefore, it is not unexpected that the machinery that adapts the heart to hypoxic injury is disturbed in diabetes. The HIF and VEGF levels are lower in diabetic patients with unstable angina compared with non-diabetic patients [75] or in diabetic models of cardiac ischaemia [76]. A glucose-dependent repression on HIF might however have a protective effect since HIF-1α induction in cardiac hypertrophy is followed by peroxisome proliferator-activated receptor gamma (PPARγ) activation with consequent shift to lipid accumulation, apoptosis and contractile dysfunction [77]. It can also explain the increased heart failure rate observed after treatment with PPARγ agonists [78, 79] since this treatment will not only simultaneously activate PPARγ receptors but also diminish the repression on HIF-1 by their effect on blood glucose levels. Interestingly, diabetic patients with heart failure have higher expression of HIF-1α mRNA and an increased HIF-dependent signature as higher levels of mir210 compared with patients without diabetes [80].
Sufficient transgenic HIF overexpression in cardiac muscle to restore diabetes-dependent HIF repression normalises capillary density and prevents cardiac remodelling, which is characteristic of diabetes cardiomyopathy [81]. The same positive effect on myocardial function after ischaemic insults has been reported using other strategies to induce HIF [82].


Muscles
HIF-1 levels are repressed in ischaemic type 2 [83] or type 1 [84] diabetic mouse muscles. Direct adenoviral-mediated overexpression of constitutively active HIF constructs in diabetic muscles improves recovery after critical limb ischaemia in db/db mice [85]. Interestingly, HIF-1α overexpression in muscle also has other positive effects for diabetic animals, such as increased insulin sensitivity [86]. Taking in account the different roles of HIF-1α [87] and HIF-2α [88] for muscle fibre-type switching and oxidative capacity, it is expected that they contribute differently to the positive effect of exercise on glucose metabolism.


Wounds
The first observation of HIF repression in diabetes was made in diabetic wounds [25]. Acute hypoxia via local HIF-1α induction is an essential stimulus for wound healing because it is expressed in the multistage process of normal wound healing [89]. HIF-1 is central for expression of multiple angiogenic growth factors, cell motility and endothelial progenitor cells recruitment [2]. HIF-1 is suppressed in the diabetic wounds despite a profound hypoxic environment [25, 2]. HIF-1 repression in diabetic wounds has a central pathogenic role because different approaches used to locally induce HIF are followed by improved wound healing despite chronic hyperglycaemia [2, 90, 91, 92].


Retina
There is compelling evidence for an early decrease in oxygen tension in diabetic retinopathy (DR). The retina is physiologically exposed to hypoxia and becomes more hypoxic even early in the evolution of diabetes (i.e. 3 weeks after experimental diabetes induction) [4]. Decreased retinal flow has also been observed in patients with diabetes before any retinal changes could be recorded [93], and it becomes more profound in patients with severe DR. Therefore, it is unsurprising that high VEGF levels (i.e. the classical hypoxia-driven gene) were reported in proliferative diabetic retinopathy more than 20 years ago [94]. The profound hypoxic environment present in DR also induces HIF-1α in both humans [95] and in animal models of diabetes [96]. The modulation of HIF-1α and HIF-2α in DR is posttranslational because both mRNA levels are stable [97]. In such a hypoxic environment, it is therefore difficult to appreciate whether the general repressive effect of diabetes on HIF is present in DR as well. Other factors with pathogenic relevance in diabetes may modulate HIF-1 in the retina, i.e. AGE (in vitro) [98] or insulin [99].
The repressive effect of glucose is not restricted to the tissues that classically develop diabetes complications, but it is a general process that likely affects all tissues. For example, low HIF-1 levels were recorded in embryos that were cultured in high glucose levels with critical pathogenic relevance for embryonic vasculopathy because HIF-1α overexpression reverses the reduced vasculature morphological scores in hyperglycaemia [100].
In conclusion, the adaptive cellular reaction to low oxygen levels is impaired by hyperglycaemia and contributes to the development of complications. It will be necessary to further investigate the detailed mechanisms that are involved in this repression to suggest new therapeutic approaches. The contribution of both canonical and non-canonical regulatory mechanisms for HIF stability and function has to be explored to tailor specific tools for improvement of the HIF reaction in diabetes. This is especially important since even an unspecific HIF activation is potentially safe when used for relatively short time (ex. acute coronary syndrome, wound healing, prophylaxis for contrast-induced nephropathy); it is not clear what are the risks of long-time continuous non-specific HIF activation taking in account the role played by HIF signalling in tumour biology.
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