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Abstract We are increasingly aware that cellular metabo-
lism plays a vital role in diseases such as cancer, and that
p53 is an important regulator of metabolic pathways. By
transcriptional activation and other means, p53 is able to
contribute to the regulation of glycolysis, oxidative phos-
phorylation, glutaminolysis, insulin sensitivity, nucleotide
biosynthesis, mitochondrial integrity, fatty acid oxidation,
antioxidant response, autophagy and mTOR signalling. The
ability to positively and negatively regulate many of these
pathways, combined with feedback signalling from these
pathways to p53, demonstrates the reciprocal and flexible
nature of the regulation, facilitating a diverse range of
responses to metabolic stress. Intriguingly, metabolic stress
triggers primarily an adaptive (rather than pro-apoptotic)
p53 response, and p53 is emerging as an important
regulator of metabolic homeostasis. A better understanding
of how p53 coordinates metabolic adaptation will facilitate
the identification of novel therapeutic targets and will also
illuminate the wider role of p53 in human biology.
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The emerging role of p53 in cellular metabolism
Control of cellular metabolism is a key requirement of

normal cell behaviour, and the role that aberrant cellular
metabolism plays in disease—particularly cancer—is be-
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coming increasingly apparent. It is, therefore, not surprising
that the tumour suppressor p53—a key player in the cellular
response to stress—is emerging as an important regulator of
cellular metabolism. p53 is a transcription factor that
responds to numerous extrinsic and intrinsic challenges to
the cell, including DNA damage, oncogene activation and
hypoxia, to promote a variety of responses depending on
the type, severity and persistence of the stress [1]. By
facilitating DNA repair and the activation of apoptosis or
senescence, p53 activation represents an efficient mechanism
to prevent the accumulation of abnormal cells, particularly
those with heritable DNA damage and so protect from
tumour formation. Indeed, p53 function is lost in most
cancers, underscoring the importance of p53 as a tumour
suppressor. However, the diversity of cellular processes
influenced by p53 is becoming more evident and the
traditional view of p53 as simply a tumour suppressor is
being challenged, as roles for p53 in normal cellular
homeostasis and cancer cell homeostasis are revealed.

The ability of p53 to respond to nutrient deficiencies is
consistent with the established function of p53 as a mediator of
stress. However, it is likely that the requirements for the p53-
dependent response to metabolic stress are quite different
compared to other p53-activating signals. While damage that
is likely to promote heritable genetic changes signals to p53 to
eliminate the affected cell, metabolic stress more likely requires
an adaptive response. DNA damage is unlikely to spontane-
ously resolve if left unchecked, whereas the simple restoration
of nutrients can rapidly restore a starved cell to full health,
permitting a more subtle response to nutrient deficiency. p53 is
emerging as an important component in a cell's ability to deal
with metabolic fluctuations, both by helping to balance
proliferation and growth with nutrient availability, and by
limiting the accumulation of further damage—ultimately
promoting cell survival.
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Control of metabolic pathways by p53

The pathways underlying control of metabolism are well
established, but the complexities of how they are regulated are
still being revealed. p53 has been shown to contribute to the
control of many of these pathways, with an emerging theme
that p53 can promote the use of catabolic pathways that would
maintain energy production under periods of limiting
nutrients, thereby maintaining cell viability. These activities
of p53 interdigitate well with p53 functions that ameliorate
oxidative stress while inhibiting cell growth and cell cycle
progression—thereby establishing a coordinated and multi-
faceted response to transient periods of starvation.

Glucose metabolism

Glucose is the major source of energy for most cells, providing
for both the generation of energy (ATP) and the metabolites for
various anabolic pathways [2, 3]. Glycolysis produces two
molecules of ATP per glucose, along with pyruvate that can
be transferred to the tricarboxylic acid (TCA) cycle for further
energy production. Alternatively, glycolytic intermediates can
be diverted away from energy production into anabolic
pathways. The oxidative arm of the pentose phosphate pathway
(PPP) is an important source of NADPH for antioxidant
functions and lipid synthesis, as well as providing precursors
for de novo nucleotide biosynthesis, while the hexosamine
pathway provides substrates to allow protein and lipid
glycosylation. An elevated rate of glycolysis under aerobic
conditions drives anabolism and increased cell proliferation,
and is a characteristic of stem cells [4] and many cancers [5].
p53 plays an important role in regulating glucose metabolism.

Several studies have found that p53 can limit glycolytic
flux through a number of mechanisms. p53 lowers the
expression of glucose transporters through direct repression
of gene expression [6] or more indirectly, through the
inhibition of NF-kB [7, 8]. The ability of p53 to repress
the insulin receptor promoter provides another mechanism
by which p53 can limit the transport of glucose into cells [9].
The negative regulation of phosphoglycerate mutase (PGM)
by p53 (through the control of protein stability, rather than a
direct effect on transcription) also reduces glycolytic rate and
suppresses transformation [4]. TP53-induced glycolysis and
apoptosis regulator (TIGAR) functions as a fructose-2,6-
bisphosphatase, limiting the activity of phosphofiructokinase
1 (PFK1) and so lowering the rate of glycolysis, and
promoting the diversion of glycolytic intermediates into the
PPP [10] (Fig. 1). Basal expression of carbohydrate
responsive element-binding protein (ChREBP) promotes
aerobic glycolysis, supporting cell proliferation by stimulat-
ing lipid and nucleotide biogenesis. ChREBP levels are
elevated in p53-deficient cells, demonstrating that basal p53
levels suppress ChREBP [11].
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Overall, there is convincing evidence that pS3 can be a
negative regulator of glycolysis, although there is also evidence
to suggest that pS3 can enhance some steps in this pathway. p53
activates the transcription of the muscle isoform of PGM
(PGM-M) in cardiac myocytes [12] and hexokinase 1T (HK2),
which catalyses the first step in glycolysis, is under the control
of a p53-responsive promoter [13]. The effects of p53 on
glycolytic pathways are likely to be very cell and context
dependent, but it is of interest to note that the combined effect
of TIGAR and HK2 activity could further enhance the supply
of glycolytic intermediates to the PPP—the consequences of
which are discussed below. Cytoplasmic malate dehydroge-
nase 1 (MDH1) links glycolysis to OXPHOS by facilitating
the transport of NADH equivalents (generated from glycoly-
sis) into mitochondria where they can be used to generate
ATP [14, 15]. During glucose starvation MDH1 physically
interacts with p53 to modulate its transcriptional response
[16]. This interaction provides a direct signal from glucose
metabolism to p53 and completes a reciprocal signalling loop
between energy metabolism and p53.

Mitochondrial respiration

Under normal, aerobic conditions, the pyruvate generated by
glycolysis can be fed into the mitochondrial TCA cycle as an
efficient mechanism of ATP generation via oxidative phos-
phorylation (OXPHOS). However, as with glycolysis, inter-
mediates of the TCA cycle can also be diverted into anabolic
pathways to facilitate cell growth and proliferation, a process
enhanced in many cancers [3, 17]. In coordination with the
inhibition of glycolysis, p53 has been shown to promote
OXPHOS through mechanisms that include the transcrip-
tional activation of synthesis of cytochrome ¢ oxidase 2
(SCO2), a regulator of complex IV [18], subunit 1 of
complex IV itself [19] and the mitochondrial apoptosis-
inducing factor protein (AIF), which is essential for
mitochondrial complex I function [20, 21] (Fig. 2). p53,
therefore, seems to favour the use of the TCA cycle for
energy production, while limiting glycolytic flux. These
functions would maximise energy production under con-
ditions of nutrient deprivation while opposing the metabolic
switch to aerobic glycolysis (the Warburg effect) that
underpins the growth of most cancer cells. In addition, p53
plays a role in mitochondrial homeostasis by protecting
mitochondrial DNA integrity and maintaining mitochondrial
mass [22, 23], through mechanisms that include the
activation of ribonucleotide reductase p5S3R2 [22, 24] and
direct effects of p53 localised to the mitochondria [25].

Glutaminolysis

An alternative to glucose as the fuel for bioenergetic
pathways is glutamine, which feeds the TCA cycle by
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Fig. 1 p53 signalling in glucose metabolism. p53 can suppress the
transcription of glucose transporters GLUT1 and GLUT4 (and via
NFkB inhibits GLUT3) along with the insulin receptor to inhibit
cellular glucose uptake. By transcriptional activation of TIGAR, p53
can suppress the rate of glycolysis and increase diversion of glycolytic
intermediates into the PPP. p53 can also suppress glycolysis by

providing «-ketoglutarate from glutamate (Fig. 2). This
pathway has recently been shown to be important in cancer
cells, with one isoform of the enzyme glutaminase (GLS1/
KGA)—which converts glutamine to glutamate—showing
the characteristics of an oncogene. Indeed, compounds
inhibiting GLS1/KGA suppresses tumour growth and
oncogenic transformation [26, 27]. It is intriguing, then,

Mitochondrial TCA cycle < \

promoting the degradation of phosphoglycerate mutase (PGM). By
activating the transcription of hexokinase II (HK II) p53 can stimulate
glycolysis. Malate dehydrogenase (MDH1) forms part of the malate/
aspartate shuttle that links glycolysis to mitochondrial respiration;
MDHI binds to and modulates the activity of p53

that p53 plays a role in the regulation of glutaminolysis by
activating the expression of another isoform of glutamin-
sase (GLS2/LGA) [28, 29]. This activity of p53 may be
important to help cells deal with periods of glucose
deprivation, and GLS2 has been shown to function as a
tumour suppressor, found to be down-regulated in hepatic
tumours and malignant gliomas [28-30]. Why the expres-
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Fig. 2 p53 and mitochondrial respiration. Basal p53 levels transcrip-
tionally activate synthesis of cytochrome oxidase 2 (SCO2) and
apoptosis-inducing factor (AIF), which support the function of
mitochondrial respiratory chain complexes I, III & IV and acts directly

sion of these two isoforms of GLS should have such
different consequences is not quite clear, but may be related
to the observation that the activation of glutaminolysis by
GLS1 drives use of TCA cycle intermediates for anabolic
pathways, while activation of GLS2 in response to p53
promotes ATP production and antioxidant functions [31].
This is perhaps because in addition to driving GLS2
expression p53 promotes OXPHOS, thus facilitating the
conversion of TCA cycle activity into energy.

Fatty acid oxidation

When available glucose levels are low, mitochondrial fatty
acid oxidation (FAO) is used to drive the TCA cycle and
generate the ATP needed to meet cellular energy demands
[32]. Consistent with a role for p53 in promoting the use of
alternative energy sources when glucose is lacking, p53 can
promote FAO in cultured cells during glucose starvation
[33]. Evidence for the general role of p53 in facilitating FAO
as an alternative energy source is provided by in vivo studies
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on complex IV subunit 1. p53 transcriptionally activates glutaminase 2
(GLS2), which catalyses the conversion of glutamine to glutamate.
p53 regulates FAO via transcriptional activation of guanidinoacetate
aminotransferase (GAMT), and possibly by other mechanisms

where starvation of mice expressing wild-type p53 led to
increased FAO, whereas p53-null animals had lower basal
FAO that was not elevated in response to starvation [34].
The p53-dependent regulation of FAO occurs in part through
the activation of guanidinoacetate methyltransferase
(GAMT) activity, although in this context, p53-dependent
activation of GAMT provides energy to facilitate apoptosis
(an energy-dependent process) rather than cell survival.

Autophagy

In the absence of an adequate exogenous nutrient supply,
autophagy (i.e. macroautophagy)—which is a process of
controlled lysosomal degradation of organelles and proteins—
can be engaged to replenish metabolic reserves and promote
cell survival [35]. Interestingly, pS3 has been shown to both
promote and inhibit autophagy [33, 36-38]. Recent evidence
suggests that the ability to enhance or suppress autophagy (by
regulating autophagy protein LC3) allows p53 signalling to
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provide the most appropriate cell survival strategy during
nutrient starvation [39]. Thus, cells with low autophagic rates
show a p53-dependent increase in autophagy in response to
starvation, whereas cells with high autophagic rate show a
p53-dependent decrease in autophagy in response to the same
conditions—the end result in both cases is the promotion of
cell survival [39].

Oxidative stress & antioxidant response

Reactive oxygen species (ROS) are constantly produced
during normal metabolism (especially OXPHOS), and
while low levels of ROS can be pro-proliferative, excess
ROS can damage DNA and proteins with potential to
contribute to aging, cardiac disease, cancer and other
pathologies [40]. Cells engage a range of pathways to
eliminate ROS, or modulate ROS levels to facilitate
essential cellular tasks such as apoptosis. While the
apoptotic response to p53 is linked to p53-dependent
elevation of ROS, basal p53 expression drives a number
of antioxidant responses that can limit oxidative stress. p53
induces a range of antioxidant targets such as GPXI,
MnSOD, ALDH4 and TPP53INP1 [41, 42]. The diversion
of glucose-6-phosphate into the oxidative PPP by TIGAR
produces NADPH, which acts as a co-factor in the
production of the antioxidant, reduced glutathione (GSH)
[10]. pS3-dependent induction of GLS2 expression upre-
gulates the production of the GSH precursor glutamate,
again contributing to antioxidant activity [28, 29]. The
Sestrins, a family of stress-responsive proteins involved in
the regulation of ROS [43], are also induced by p53.

It is likely that under normal conditions (which can be
considered to provide basal levels oxidative stress), or mild
stress that pS3 augments the antioxidant response, protect-
ing cells from potential oxidative damage, including that
generated by p53-dependent activation of OXPHOS.
However, under severe stress, p53 utilises its ability to
promote ROS to facilitate apoptosis [44].

Regulation of cell growth

The ability of p53 to inhibit cell cycle progression was one
of the first p53-driven responses to be identified [45, 46],
and the activation of this response has been shown to play
an important role in allowing cell survival under conditions
of glucose deprivation [47]. Recent evidence indicates that
p53 can also prevent cell growth, illustrating another facet
of the ability of p53 to coordinate an orderly response to
nutrient stress. The functions of p53 in the regulation of cell
growth reflect a substantial interaction with the mTOR
pathway, which coordinates cell growth by sensing nutrient

availability and growth factor signalling and balancing
anabolic and catabolic processes [48].

AMP-activated protein kinase (AMPK) is a key cellular
fuel sensor. Detection of low energy through the ability of
falling ATP:AMP ratios to activate AMPK is a pivotal step in
mounting a metabolic stress response, which includes
inhibition of mTOR and activation of p53. AMPK can induce
p53 by promoting phosphorylation on serine-15, a site known
to be important for the activation of p53 (although p53 is not
necessarily a direct target of AMPK) [47, 49, 50]. Mice
expressing p53 with a serine-phosphorylation site mutation
display increased metabolic stress and severely defective
glucose metabolism [51]. Prolonged culture of p53-
proficient cells in the complete absence of glucose leads to
p53 serine-46 phosphorylation and p53-dependent apoptosis
[52]. This suggests that p53 establishes a cut-off point at
which metabolic stress becomes too extreme to warrant pro-
survival responses, perhaps associated with serine-46 phos-
phorylation. Further signals downstream of mTOR can also
modulate p53 through the signalling of ribosomal S6K to
MDM2, the major ubiquitin ligase that controls p53 stability
[53] (Fig. 3). The ability of other ribosomal proteins to
control p53 through this route [54] is also likely to play a
key role in the response to metabolic stress. Other
mechanisms by which p53 is activated in response to
metabolic stress have been described, including nucleotide
deficiency triggered by inhibition of dihydroorotate dehy-
drogenase, which catalyses mitochondrial respiratory chain-
linked pyrimidine synthesis [55].

Importantly, the relationship between p53 and AMPK is
reciprocal. Genotoxic stress causes p53-dependent suppres-
sion of mTOR activity via AMPK and TSC1/TSC2, leading
to the suggestion that AMPK is phosphorylated in response
to p53 activation, potentially via the interaction of p53 with
the AMPK-activating protein LKB1 [50]. A more recent
study demonstrates that pS3 transcriptionally activates the
mTOR suppressing proteins AMPK 3, TSC2, IGF-BP3 and
PTEN in response to genotoxic stress [56]. The antioxidant
response of p53 also inhibits the mTOR pathway via the
Sestrins, which are induced by p53 and can interact with
mTOR pathway suppressors AMPK, TSC1 and TSC2 [43].
However, p53 does not always inhibit mTOR in response to
metabolic stress [47], suggesting that protein synthesis may
aid in metabolic remodelling. Overall, the interaction
between p53 signalling and the mTOR pathway is
substantial [57], indicating the capacity of these pathways
to cooperate (Fig. 3).

Cancer

While the Warburg effect, defined as a high rate of aerobic
glycolysis, is a frequent characteristic of cancer cells, it is
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Fig. 3 Signalling between p53 and the IGF-AKT-mTORC1 pathway.
p53 is activated by metabolic stress signals via AMPK, ATM and
mTORC1-S6K-MDM2 signalling, and modulates energy metabolism,
cell cycle and autophagy. p53 can inhibit mTORCI signalling via
transcriptional activation of PTEN, IGF-BP3, Sestrinl & Sestrin2

becomingly increasingly apparent that cancers have a
diverse range of metabolic profiles with many relying
primarily on OXPHOS for ATP production [58]. Despite
this diversity, it is fair to say that rapidly proliferating
cancer cells are likely to utilise large amounts of glucose to
fuel anabolism and are more likely to display the Warburg
effect than not [58, 59]. Inactivation of p53 occurs in over
half of all cancers and from a metabolic perspective, loss
of p53 signalling represents a double-edged sword. As
p53 suppresses glycolysis and promotes OXPHOS, its
inactivation serves to promote the Warburg effect. On the
other hand, cancer cells must also undergo metabolic
adaptation, and loss of p53 would impede this process.
Therefore, loss of p53 may initially serve to drive
metabolism in support of tumourigenesis via the Warburg
effect, but once a tumour is established, p53-deficiency
may sensitise tumour cells to metabolic stress. Although
studies on cell lines and animal models support these
conclusions, more direct evidence from p53-deficient
tumours will be needed to qualify these predictions. We
anticipate that while loss of p53 would generally favour
aerobic glycolysis, the overall metabolic profile of
tumours is likely to reflect the combination of many
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(SES1/2), TSC2 and AMPKQf. Direct interaction of p53 with LKB1
may directly lead to AMPK activation. Dotted lines indicate
transcriptional regulation, unbroken lines indicate a direct protein
level effect, arrowheads indicate an activating signal, blunt-ended
lines indicate an inhibitory signal

factors, including the contribution of other mutations,
tissue of origin and microenvironment.

Clinically, the inability of p53-deficient cells to survive
metabolic stress may have already been inadvertently
exploited by the use of anti-diabetic drugs such as
metformin. Diabetics treated with metformin have reduced
risk of cancer compared to those who have not received the
drug [60, 61]. In mice, metformin suppresses the growth of
p53-deficient xenografts, but does not inhibit the growth of
pS3-proficent tumours [33]. In the quest for new anti-cancer
agents, anti-diabetic drugs are clearly a good starting point
for generating compounds active against p53-deficient
tumours. It also seems prudent to perform additional
retrospective studies of cancer rates in patients treated with
anti-diabetic drugs and other established drugs that modu-
late cellular metabolism.

Induction of wild-type p53 by compounds such as the
Nutlins has been used to inhibit tumour growth in cancer
models [62]. However, this approach may run the risk of
enhancing the pro-survival metabolic adaptation functions of
p53 in some tumours. Indeed, the presence of wild-type p53
in breast cancers has been associated with reduced therapeutic
response and poor prognosis in at least one study [63].
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Elucidating the pathways by which p53 coordinates metabolic
adaptation could establish new therapeutic targets in cancers
that express wild-type p53. In simple terms, understanding what
p53-proficent cells can do (in terms of metabolic adaptation)
and what p53-deficient cells cannot do, could provide
therapeutic opportunities in each type of tumour. It is also
possible that p53 isoforms have specific metabolic functions
that promote metabolic adaptation or tumour suppression, a
possibility that warrants further investigation. Further complex-
ity is added by the observation that loss of wild-type p53
function in many cancers is the result of a point mutation within
the 7P53 gene, leading to the expression of a mutant p53
protein. While these tumour-derived p53 mutants fail to
exhibit wild-type p53 activity, they have also been shown to
gain functions that can contribute to tumour invasion and
metastasis [64]. Although not fully explored, it seems possible
that these mutant p53s may also show new activities in the
control of metabolism, or the response to metabolic stress.

Aging

p53 is thought to have an important but ill defined role in
the aging process, with evidence that p53 expression can
oppose aging and promote longevity [65]. The ability to
promote the anti-oxidant response and inhibit the mTOR
pathway are clear mechanisms through which p53 could
suppress processes thought to promote aging [40, 41]. A
more responsive p53 pathway has been shown to extend the
lifespan of mice [66]. Therefore, it has been suggested that
enhancing p53 expression via MDM2 modulation could
combat aging [65]. Although this must be balanced with
clear evidence showing slightly enhanced levels of p53 in
normal tissues strongly promotes aging [67]. The ability of
p53 to control autophagy and senescence may also play a
role in the regulation of aging, and interestingly, mTOR
activity has been shown to cooperate with p53 to switch the
response to p53-activation from quiescence to senescence
[68-70]. While still in speculation, it is interesting to
consider how p53 expression and mTOR inhibition (a result
of caloric restriction) could cooperate to promote longevity.

Other diseases

A number of recent studies link p53 to a diverse range of
physiological processes and diseases, including diabetes,
central nervous system disorders, obesity and alcoholic
liver disease. A role for p53 in the central nervous system is
demonstrated by its ability to transcriptionally activate
brain-expressed ring finger protein (BERP), which interacts
with GABA receptors to modulate seizure susceptibility
[71]. With the ability to regulate apoB and apobecl, p53

has the potential to modulate lipid transport from the
intestine to the liver [72]. Mice expressing a p53 mutant
that cannot be activated by serine-15 phosphorylation have
increased metabolic stress and severe defects in glucose
homeostasis. Animals develop glucose intolerance and
insulin resistance that correlates with reduced antioxidant
gene expression and reduced insulin signalling [51]. p53
also has a role in adipogenesis and protection of adipocytes
from lipotoxicity, leading to the description of p53 as
‘guardian of corpulence’ [73]. In a rat model of chronic
alcohol consumption, modulation of TIGAR expression and
apoptosis by p53 contributes to the metabolic abnormalities
associated with hepatic steatosis [74].

Conclusions

Reviewing the role of p53 in cellular metabolism provides
crucial insights into p53 biology. p53 is emerging as a key
regulator of metabolic homeostasis, an observation that
throws up a wider conceptual issue: Which is the primary
function of p53? We now know that p53 has many
activities, including tumour suppression, metabolic control,
maintenance of fecundity and the regulation of stem cells. It
seems likely that each of the roles of p53 is intertwined in a
way that will make it difficult to untangle them—and
indeed, part of the confusion may be caused by a semantic
rather than a biological conflict. However, the fact that p53
is mutated in roughly 50% of cancers, but is retained as
wild type in the other 50%, makes understanding how the
presence or absence of p53 might affect tumour develop-
ment and therapeutic response an enticing and ever-more
achievable goal. Furthermore, the role of p53 in cellular
homeostasis explains its involvement in such a wide range
of physiological processes and diseases.
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