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Abstract Septic shock is associated with life-threatening
vasodilation and hypotension. To cause vasodilation,
vascular endothelium may release nitric oxide (NO),
prostacyclin (PGI2), and the elusive endothelium-derived
hyperpolarizing factor (EDHF). Although NO is critical in
controlling vascular tone, inhibiting NO in septic shock
does not improve outcome, on the contrary, precipitating
the search for alternative therapeutic targets. Using a
hyperacute tumor necrosis factor (TNF)-induced shock
model in mice, we found that shock can develop indepen-
dently of the known vasodilators NO, cGMP, PGI2, or
epoxyeicosatrienoic acids. However, the antioxidant tempol
efficiently prevented hypotension, bradycardia, hypother-
mia, and mortality, indicating the decisive involvement of
reactive oxygen species (ROS) in these phenomena. Also,
in classical TNF or lipopolysaccharide-induced shock
models, tempol protected significantly. Experiments with
(cell-permeable) superoxide dismutase or catalase, N-
acetylcysteine and apocynin suggest that the ROS-
dependent shock depends on intracellular �OH radicals.
Potassium channels activated by ATP (KATP) or calcium

(KCa) are important mediators of vascular relaxation. While
NO and PGI2-induced vasodilation involves KATP and
large-conductance BKCa channels, small-conductance SKCa

channels mediate vasodilation induced by EDHF. Interest-
ingly, also SKCa inhibition completely prevented the ROS-
dependent shock. Our data thus indicate that intracellular
�OH and SKCa channels represent interesting new thera-
peutic targets for inflammatory shock. Moreover, they may
also explain why antioxidants other than tempol fail to
provide survival benefit during shock.
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Introduction

Septic shock has become the main cause of death in
intensive care units [1]. In the first week, refractory
hypotension is the leading pathogenic feature underlying
mortality; later deaths are mainly due to multiple organ
failure resulting from hypoxia, cytotoxicity, mitochondrial
dysfunction, and prolonged hypotension. Hypotension is
caused by profound vasodilation due to the endothelial
release of the vasodilators nitric oxide (NO), prostacyclin
(PGI2), and/or endothelium-derived hyperpolarizing factor
(EDHF), as well as decreased production of and refracto-
riness to vasoconstrictors and vasopressors [2, 3]. EDHF
seems to be particularly important in the microcirculation,
where systemic vascular resistance is regulated. Despite the
on-going dispute over its identity, it is generally accepted
that small-conductance Ca2+-activated K+ channels (SKCa)
are critical for EDHF-dependent vasodilation [3–5]. NO
can be produced by three different NO synthases (NOS); of
which the inducible isoform iNOS (NOS2) is responsible
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for excessive and prolonged NO production following
inflammation. Nevertheless, NO derived from the constitu-
tive endothelial NOS isoform (eNOS and NOS3) may also
mediate hypotension in both endotoxin-induced [6] and
anaphylactic shock models [7, 8]. Besides modulating the
contractile apparatus and intracellular calcium flux in
vascular smooth muscle cells, NO also influences mem-
brane potential and vascular tone via activating ATP-
dependent (KATP) and large-conductance Ca2+-activated
K+ channels (BKCa) [8, 9]. In septic shock, NO plays a
critical but controversial role. Although inhibitors of NOS
can improve hemodynamics, they also increase toxicity
[10], and a phase III clinical trial had to be prematurely
terminated because of increased mortality [11]. While part
of this paradox might be explained by protective properties
of NO such as its antioxidative effects [12], there is also
growing evidence that the pathogenesis of inflammation-
associated shock involves oxidative stress next to nitro-
sative stress.

The sequential donation of electrons to oxygen generates
reactive oxygen species (ROS), which may cause oxidative
damage at high concentrations, but whose signaling
capacities and regulatory functions are becoming more
and more evident as well. Donation of one electron to
oxygen results in the formation of superoxide radicals
O2

��ð Þ. Donation of a second electron generates peroxide,
which then undergoes protonation to hydrogen peroxide
(H2O2). Donation of a third electron, such as occurs in the
Fenton reaction mediated by free Fe2+, results in the
production of hydroxyl radicals �OHð Þ. On the whole,
O2

�� is believed to contribute to cardiovascular pathologies
such as hypertension and atherosclerosis because it reduces
the bioavailability and the effects of NO [13, 14]. To the
best of our knowledge, the contribution of various
endogenous ROS O2

��; H2O2;
�OHð Þ to inflammation-

induced hypotension has not been extensively studied yet.
The evaluation of the involvement of ROS in inflammatory
hypotension in vivo is a complicated matter, given the vast
amounts of NO produced following inflammation-induced
iNOS transcription and the highly interactive chemistry of
reactive oxygen and nitrogen species [15].

This study was therefore conducted as a proof-of-
principle, to evaluate whether ROS can cause inflam-
matory hypotension and shock in vivo. For this purpose,
we used a rapid caspase-independent tumor necrosis
factor (TNF)-induced murine shock model that starts to
develop already before systemic NO production occurs,
and that is accompanied by excessive oxidative stress
[16]. Using this model, we found that ROS can indeed
cause hypotension in inflammatory shock, and that Ca2+-
dependent small-conductance SKCa channels are the only
K+ channels that play a prominent role in this ROS-
dependent shock.

Materials and methods

Mice

Female C57BL/6J were from Janvier (France); gp91phox−/−,
15-lipoxygenase−/−, iNOS−/− [17], and eNOS−/− [18] mice on
a C57BL/6J background were from The Jackson Laboratory
(Bar Harbor, ME, USA). To obtain double-deficient
ixeNOS−−/−− animals, we crossed iNOS−/− with eNOS−/− mice
and verified the knockout by polymerase chain reaction.
Mice were housed in temperature-controlled, air-conditioned
facilities with 14–10-h light/dark cycles and food and water ad
libitum, and used at 8–12 weeks. All experiments were
approved by the animal ethics committees of Ghent Univer-
sity, Belgium, and Maastricht University, The Netherlands.

Cytokines, reagents, and injections

Recombinant mouse TNF was produced in and purified from
Escherichia coli; lipopolysaccharide (LPS) content was
<0.02 ng/mg (chromogenic Limulus amoebocyte lysate
assay, Kabivitrium, Sweden). TNF or ultrapure E. coli LPS
(Invivogen, serotype 0111:B4) were injected i.v. in LPS-free
phosphate buffered saline (PBS). The TNF LD100 was
determined before each experiment and ranged from 8 to
18 μg depending on the TNF lot. zVAD-fmk (Bachem,
Switzerland) was suspended in DMSO at 50 mg/ml, further
diluted in PBS, and injected i.p. 15 min before (0.25 mg) and
1 h after TNF (0.1 mg). Mortality was scored up to 7 days.
NG-nitro-L-arginine methyl ester (L-NAME, Novabiochem,
100 mg/kg) was given i.v. either 2 h or 30 min before, or
together with TNF. For the hemodynamic studies, L-NAME
or tempol were injected 45 min before TNF. Indomethacin
(Sigma, 125 μg) was injected i.p. 1 h before challenge. Tempol
(6mg), SOD (7,500U), PEG-SOD (400 U), catalase (7,500U),
and PEG-catalase (7,500 U), all from Sigma, were dissolved in
PBS and injected i.p. 40 min before challenge. ABT (Sigma,
2.5 mg), SKF-525A (Biomol, 1.5 mg), and fluconazole (Pfizer,
1.2 mg) were injected i.p. 2 h before TNF. For K+ channel
inhibition, apamin (ICN, 0.5 mg/kg i.v.), charybdotoxin
(Sigma, 33 μg/kg i.v.), iberiotoxin (Sigma, 33 μg/kg i.v.),
TEA (Sigma, 50 mg/kg i.p.), and glibenclamide (ICN, 25 mg/
kg i.p.) were injected as previously described [19]. All
treatment schedules and doses were based on other rodent
studies in which they had a positive modulatory effect.

NOx
− and cGMP measurement

For NOx
− determination, serum was diluted 1:1 with

5.109 CFU/ml Pseudomonas oleovorans suspension (reduc-
ing nitrate to nitrite) and incubated at 37°C for 3–4 h. After
centrifugation, the supernatant was diluted 1:2 with Griess
reagent, and proteins were precipitated with 10% TCA. The
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absorbance of the supernatant was measured at 540 nm.
Total NOx

− was calculated from a nitrate standard curve.
cGMP was determined by EIA (Amersham Pharmacia
Biotech) after acetylation of the samples, according to the
manufacturer's instructions. Plasma was collected by cardiac
puncture using 7.5 mM EDTA and kept on ice until
centrifugation. Dissected organs were immediately immersed
in liquid nitrogen and stored at −20°C before homogeniza-
tion and purification. Kidney cGMP levels were plotted as
picomoles cGMP per milligram of TCA-precipitable protein
solubilized with 1 N NaOH.

Body temperature, mean arterial pressure, and HR
measurements

Rectal body temperature was recorded with an electronic
thermometer (model 2001; Comark Electronics, Littlehamp-
ton, UK). Blood pressure and heart rate were measured
continuously in conscious mice, either in tethetered perma-
nently catheterized mice, as described [16], or via radiote-
lemetry. For the latter, PA-C10 telemetry probes (Data
Sciences International) were surgically implanted. Mice were
anesthetized with 2% isoflurane, and the cervical area skin
was cleaned with povidone-iodine and alcohol. A 1-cm
vertical incision was made in the left neck, and the left
carotid artery was cannulated. The artery was punctured with
a 26-gauge needle, the catheter tip of the transmitter was
advanced to the aortic arch, and the catheter was sutured in
place. A subcutaneous pocket was excavated over the right
flank, the transmitter body was inserted into this, and the
incision was closed with sutures. Ibuprofen was given in the
drinking water from the day before surgery until 4 days after
recovery. At day 10 after surgery, continuous, 24-h data
collection began using the Dataquest ART Acquisition
System (Data Sciences International, version 4.1).

Statistics

Statistics was performed using GraphPad Prism. NOx
− or

cGMP levels and body temperatures are presented as mean±
SEM. They were compared with a one-way analysis of
variance test, with a Bonferroni post-test for comparison of
all pairs. Survival curves and total percent mortality were
compared with a log-rank (Mantel–Cox) test and a Chi-
square test, respectively.

Results

NO or PGI2 do not mediate zVAD+TNF shock

To evaluate the potential of ROS to cause hypotension, we
used a hyperacute inflammatory shock model where

excessive oxidative stress is a key feature [16]. In this
model, TNF is combined with the caspase inhibitor zVAD,
leading to abrupt, hyperacute hypotension and death within
only a few hours after challenge. It is generally believed
that inflammation-induced cardiovascular collapse is pre-
dominantly orchestrated by iNOS-derived NO [10]. How-
ever, the iNOS enzyme needs to be transcriptionally
induced, and its action thus requires several hours [9]. In
agreement with this, we find detectable systemic NOx

− at
the earliest 2–3 h after TNF [20]. Since the abrupt zVAD+
TNF hypotension starts even before that [16], the involve-
ment of iNOS-derived NO seems improbable. Nevertheless,
we have identified eNOS-derived NO as the principal
vasodilator in anaphylactic shock, causing hypotension
within less than half an hour [7], making also this a
potential candidate to mediate hyperacute shock. To
evaluate the possible involvement of NO and its down-
stream mediator cGMP in the zVAD+TNF shock model,
we first determined endogenously induced NOx

− and
cGMP, which were not increased at all but rather reduced
to background levels (Fig. 1a–c). In addition, deficiency for
iNOS, or iNOS and eNOS, could not protect mice from the
abrupt zVAD+TNF toxicity (Fig. 1d), and the NOS
inhibitor L-NAME even aggravated toxicity (Fig. 1e). To
evaluate the effect of NOS inhibition on hypotension, we
measured blood pressure in permanently catheterized
conscious mice. After L-NAME treatment, zVAD+TNF
still induced an acute and steep drop in blood pressure,
which generally developed even more rapidly than without
L-NAME (Fig. 1f). Together, these results imply that the
hyperacute zVAD+TNF shock develops NO-independently.

Next to NO, endothelial cells may also produce vaso-
relaxing PGI2. However, inhibition of PGI2 producing
cyclooxygenases with indomethacin could not prevent
zVAD+TNF shock [16] and even exacerbated it (not
shown).

EDHF candidates do not mediate zVAD+TNF shock

NO- and PGI2-independent vasodilation is especially
significant in resistance vessels, which are particularly
important for blood pressure regulation, and is mediated
via a mechanism collectively labeled EDHF [3]. The
(patho)physiological involvement of EDHF in vivo is hard
to investigate, as there is still no consensus about its nature
and exact mode of action. H2O2 and epoxyeicosatrienoic
acids (EETs) have been proposed as EDHF candidates [3].
To investigate the contribution of H2O2, we treated mice
with catalase or cell-permeable PEG-catalase. However,
they could not protect and rather aggravated the acute
toxicity (Fig. 2a). In addition, also the CYP inhibitors 1-
aminobenzotriazole (ABT), fluconazole, or SKF-525A
could not provide significant protection, excluding a role
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for EETs in zVAD+TNF shock (Fig. 2b). Also a 15-
lipoxygenase derivative has been proposed as a vasorelaxing
arachidonic acid metabolite [3], but 15-lipoxygenase−/− mice
were as sensitive to zVAD+TNF shock as wild-type animals
(not shown).

Antioxidant protection against shock induced
by zVAD+TNF, TNF, or LPS

ROS are thought to contribute to morbidity in sepsis
because of their direct cytotoxic and organ-damaging
capacities. To investigate whether they also might be
involved in causing the hypotension, we measured blood
pressure in conscious radiotelemetred mice pretreated with
tempol, a cell-permeable SOD mimetic, radical scavenger
and inhibitor of the Fenton reaction [21, 22]. Surprisingly,
while NOS inhibition did not prevent the abrupt zVAD+
TNF hypotension at all (Fig. 1f), tempol very efficiently did
(Fig. 2c). Moreover, while the blood pressure of mice
treated with TNF or zVAD+TNF dropped substantially
following TNF challenge, blood pressure did not decrease
at all for at least 2 h if the mice had been pretreated with
tempol (Fig. 2c). In addition, pretreatment with tempol

completely prevented the severe bradycardia that normally
develops shortly after zVAD±TNF challenge (Fig. 2d). The
effect of tempol on blood pressure and heart rate was
mirrored by its effect on peripheral body temperature
(Fig. 2e).

Fig. 1 NO and cGMP in zVAD+TNF shock. a NOx
− (NO2

−+
NO3

−) in serum collected 3 h after PBS or TNF (n above the bars). b
cGMP in plasma collected 3 h after PBS or TNF (n above the bars).
c cGMP in homogenates from kidneys, collected 3 h after PBS or
TNF (n above the bars). ***P<0.001, **P<0.01, compared with
PBS. d WT, iNOS−/−, or double iNOS−/− and eNOS−/− mice
(ixeNOS−−/−−) were injected with TNF (T, open symbols) or zVAD+
TNF (zT, filled symbols; n in the legend). ***P<0.001, *P<0.05,
compared with TNF alone. e WT mice were injected with TNF

(open circles, n=9) or TNF+zVAD (closed circles, n=9), and the
effect of L-NAME 2 h (triangles, n=5) or 30 min (triangles, n=5)
before TNF or together with TNF (diamonds, n=8) was tested. *P<
0.05, compared with zVAD+TNF. f Mean arterial pressure in
conscious free-moving catheterized mice injected through a catheter
with TNF, with or without zVAD i.p. To analyze the role of NO, a
group of zVAD+TNF mice was treated with L-NAME 45 min before
TNF. n=5 for each group, plotted is the median response

Fig. 2 ROS and EETs in zVAD+TNF toxicity. a Effect of catalase,
PEG-catalase, or tempol on mortality induced by zVAD±TNF. Plotted
is the percent survival of all mice used in three independent
experiments; the total number is indicated between brackets in the
legend. Sensitization by zVAD corresponds to mortality within 6 h.
Mice injected with TNF alone are also plotted for comparison. ***P<
0.0001 compared with zVAD+TNF (black bar). b Effect of the CYP
inhibitors ABT, fluconazole, and SKF-525A. Plotted is the percent
survival of all mice used in up to four independent experiments; the
total number is indicated between brackets in the legend. Differences
between zVAD+TNF and SKF-525A+zVAD+TNF are not signifi-
cant (P>0.07). c Blood pressure and (d) heart rate were monitored in
conscious radiotelemetred mice injected with zVAD±TNF. Two mice
were treated with tempol 45 min before TNF. e, f Effect of tempol,
SOD, or PEG-SOD on hypothermia (e) and mortality (f) induced by
zVAD+TNF (n=5), ***P<0.001 compared with zVAD+TNF. g
Tempol protects against TNF shock. Mice were injected i.v. with a
lethal dose of TNF alone (n=6), **P=0.0012. h Tempol protects
against LPS shock. Mice were injected i.v. with a lethal dose of LPS
(n=6), ***P=0.0006

�
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To investigate the involvement of ROS in other models,
we used tempol in shock induced by a high dose of TNF or
LPS. Also in these models, tempol completely prevented
mortality (Fig. 2g, h).

To better understand the exact mechanism of tempol's
protective action, we compared its effect on ROS-
dependent zVAD+TNF shock with SOD and cell-
permeable PEG-SOD. Surprisingly, only tempol fully
protected against acute hypothermia (Fig. 2e) and pre-
vented both early and late mortality (Fig. 2a, f). As tempol
is also an efficient scavenger of �OH radicals and reduces
the formation of �OH [21, 22], these results suggest that
not O2

�� but �OH radicals are crucial. Apocynin, an
NADPH oxidase (NOX) inhibitor and �OH scavenger
[23], also prevented hyperacute zVAD+TNF shock, but
could not offer long-term protection (Fig. 3a, b). In
combination with tempol, apocynin also conferred some
additional protection against both hypothermia (Fig. 3c)
and mortality (Fig. 3d).

SKCa channels are essential for ROS-mediated zVAD+TNF
shock

NO and PGI2 activate large-conductance BKCa and KATP

channels [2, 8, 9]. Vascular smooth muscle BKCa channels
may also be activated by EETs or H2O2, which have been
suggested as EDHFs in certain systems [3]. In contrast,
EDHF-dependent hyperpolarization specifically depends on
endothelial SKCa channels, and not on BKCa or KATP

channels [3, 4]. To study K+ channels, we used apamin
(SKCa inhibitor), iberiotoxin (BKCa inhibitor), charybdo-
toxin (inhibits BKCa, IKCa, and certain voltage-gated Kv),
glibenclamide (KATP inhibitor), and TEA (inhibits BKCa,
KATP, and some Kv). Only apamin completely prevented
hyperacute (within 6 h) zVAD+TNF-induced hypothermia
and mortality (Fig. 4a–c). Furthermore, apamin also
significantly protected against long-term TNF-induced
mortality (Fig. 4a, c). To evaluate the cardiovascular effects
of SKCa inhibition, blood pressure and heart rate were

Fig. 3 Apocynin protects against acute zVAD+TNF shock. a Effect
of apocynin on hypothermia induced by zVAD+TNF, *P<0.05, **P<
0.01, ***P<0.001 compared with zVAD±TNF. b Effect of apocynin

on zVAD±TNF mortality, **P=0.0013 compared with zVAD±TNF.
c, d Effect of apocynin on protection by tempol. *P<0.05, **P<0.01,
***P<0.001 compared with zVAD±TNF
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Fig. 4 The role of K+ channels and H2O2 in ROS-dependent zVAD+
TNF shock. a Effect of different K+ channel inhibitors. Plotted is the
percent survival of all mice used in up to five independent experi-
ments; total numbers are indicated between brackets in the legend.
***P<0.0001 compared with zVAD+TNF (black bar). b, c Effect of
apamin on hypothermia (b) and mortality (c) induced by zVAD±TNF
in a representative experiment (n in the legend), *P<0.05, **P=

0.0049, ***P<0.001 compared with zVAD±TNF. d, e Mean arterial
pressure and HR were monitored in conscious radiotelemetred mice
injected with zVAD±TNF. Three mice were treated with apamin 2 h
before TNF, plotted are the non-survivor and one of the two survivors.
f Effect of catalase and PEG-catalase on protection by tempol, ***P<
0.001 compared with tempol+zVAD+TNF (diamonds); data shown
are from one individual representative experiment
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measured in radiotelemetred mice. In two of the three animals
pretreated with apamin, hypotension and bradycardia were
efficiently prevented (one representative mouse is shown in
Fig. 4d, e), resulting in survival. In one mouse, apamin
could not prevent but delayed hypotension, bradycardia,
and mortality (Fig. 4d, e, dotted line)

H2O2 antagonizes TNF-induced shock

As shown in Fig. 2a, catalase could not improve but rather
worsened zVAD+TNF shock. When catalase was com-
bined with a protective tempol treatment, it even reversed
the long-term protection provided by tempol (Fig. 4f).
PEG-catalase, accumulating intracellularly, did not revert
tempol protection (Fig. 4f), suggesting that extracellularly
produced H2O2 may counteract shock.

Discussion

Our results indicate a key role for ROS and SKCa channels
in inflammatory hypotension and shock. To prove the
involvement of ROS in inflammation-induced shock is not
easy, as ROS and their production systems are efficiently
antagonized by NO, which is massively produced as soon
as iNOS is transcribed. Therefore, we used this specific
TNF-induced caspase-independent hyperacute shock model
as a proof-of-principle, because it develops even before NO
metabolites can be detected in circulation [16]. In this
shock model, we found that NOS inhibition or deficiency
did not prevent hypotension and shock, while the antiox-
idants N-acetylcysteine (NAC), butylated hydroxyanisole
(BHA), or tempol completely precluded the fast hyperacute
mortality induced by zVAD±TNF [16]. In general, anti-
oxidants are thought to protect against morbidity and
mortality in sepsis because they prevent the cytotoxic and
tissue-damaging effects of ROS. Our cardiovascular studies
now reveal that tempol not just protects against oxidative
toxicity and injury but also prevents the dramatic drop in
mean arterial pressure and HR that normally develops
abruptly after zVAD±TNF. The possible involvement of
ROS in hypotension creates an intriguing paradox, since
vascular ROS (particularly superoxide) have traditionally
been associated with hypertension. A possible answer to
this paradox could be that different ROS have different
specific properties [24]. Therefore, we tried to pinpoint
which ROS exactly could be the hypotensive culprit in the
ROS-dependent zVAD+TNF shock. Tempol, which was
clearly very proficient to prevent hypotension and mortal-
ity, is generally referred to as a “cell-permeable SOD
mimetic.” However, since cell-permeable SOD could not
protect, the ROS-dependent shock is most probably not
directly triggered by O2

��. Tempol is also an efficient radical

scavenger, as well as an inhibitor of Fenton-type reactions
that occur between peroxide and transition metals and result
in the formation of �OH radicals, and it has already been
suggested that many of tempol's effects are probably due to
its ability to scavenge �OH radicals [21, 22]. Also, the
NOX inhibitor apocynin significantly delayed the hyper-
acute shock, in contrast to NOX2-deficiency [16]. This may
indicate the involvement of NOX1 or NOX4, but the
protective effect of apocynin may also be due to its �OH
scavenging potential [23]. Interestingly, endothelial NOX
was recently identified as a functionally relevant mediator
of vasodilation in human coronary microcirculation [25].
We have previously shown that the hyperacute shock
induced by zVAD+TNF may also be prevented by NAC
[16], a scavenger of �OH radicals and precursor for
cytoplasmic glutathione essential to prevent intracellular
�OH production [26, 27]. Together, the protective effects of
tempol, apocynin, and NAC, compared with the failure of
(cell-permeable) SOD or catalase to protect, thus suggest
the possibility that intracellular �OH radicals are the shock-
causing ROS. The fact that NOS inhibition significantly
exacerbated hypotension and toxicity may further corrobo-
rate this hypothesis, since NO can not only scavenge �OH
radicals at near diffusion control but also prevent �OH
formation from H2O2 by scavenging superoxide radicals at
diffusion control (thus inhibiting Fe3+ reduction in ferritin
and Fe-S clusters) and by reacting directly with free Fe2+ to
form dinitrosyliron complexes [15, 28]. The vasorelaxing
and maybe even hypotensive potential of �OH radicals had
already been suggested in the past [29, 30] but has not been
given much attention since.

Surprisingly, catalase, but not PEG-catalase, aggravated
zVAD+TNF toxicity and even reverted tempol's protection,
demonstrating the detrimental effect of extracellular H2O2

removal. Tempol is known to increase H2O2 formation,
vasoconstriction, and hypertension in vivo, effects that are
abolished by catalase coinfusion [31]. Together, this
suggests that extracellular H2O2 may exert a protective
role in shock, and that part of the protective capacity of
tempol may reside in its ability to allow H2O2 accumulation
while efficiently interfering with intracellular �OH forma-
tion and accumulation at the same time. In this way, our
results may explain why antioxidants other than tempol fail
to provide survival benefit during shock [32], because they
inhibit the accumulation of not only the detrimental �OH
but also of the protective H2O2. Despite the fact that H2O2

has been put forward as a potential EDHF [3, 33], due to
the capability of catalase to diminish NO- and PGI2-
independent vasorelaxation in isolated arteries, H2O2 has
also been demonstrated to antagonize vascular relaxation
through various mechanisms [33–35] and was even
identified as an important endogenous vasoconstrictor
contributing to blood pressure regulation in vivo [36].
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In addition to the effect of tempol on blood pressure,
whose decline was prevented the first hours after TNF
injection, there was also a remarkable effect on HR.
Following injection with zVAD±TNF, mice respond with
a transient compensatory tachycardia and a severe loss of
HR variability, followed shortly afterwards by severe and
abrupt bradycardia. Although the loss of HR variability was
not affected by tempol, the initial tachycardia was not
followed by bradycardia, indicating that ROS are involved
in cardiac dysfunction during shock as well.

The opening of potassium (K+) channels is the main
determinant of cell membrane potential, and thus the
activation of vascular K+ channels is critical for the
regulation of vascular tone. The vasodilators NO, PGI2,
and EDHF may all activate various K+ channels in either
endothelial or smooth muscle membranes, allowing K+

efflux out of the cell, causing hyperpolarization and
vasodilation. More specifically, NO and PGI2 are known
to hyperpolarize vascular smooth muscle cells by activating
Ca2+-dependent large-conductance BKCa channels or ATP-
sensitive KATP channels [2]. Although the exact molecular
identity and mechanism of EDHF is still a matter of debate,
it is generally agreed that EDHF-dependent hyperpolariza-
tion depends on endothelial SKCa, and not on BKCa or KATP

channels [3, 4]. Using different inhibitors, we could clearly
demonstrate the decisive contribution of SKCa channels to
ROS-dependent shock, as apamin efficiently prevented
hypotension, bradycardia, hypothermia, and mortality.
Interestingly, both SK2 and SK3 channel conductances
have been demonstrated to be increased by intracellular
oxidative stress [37].

In conclusion, our data suggest that in an early phase of
inflammation, important ROS-dependent cardiovascular
effects are taking place. Interfering with these ROS-
dependent effects efficiently antagonizes the progressive
hypotension and bradycardia that normally ensues, result-
ing in fast recovery and survival. In general models of
(septic) shock, the ROS-dependent effects may be easily
overlooked, because of concomitant iNOS induction and
massive NO production, which scavenges ROS and
prevents further ROS production [15]. By acutely exacer-
bating oxidative stress (for example, by inhibiting caspases
via the application of zVAD-fmk) and/or inhibiting NO
production, the ROS-induced hypotension is amplified and
results in lethal shock that is entirely ROS-dependent and
efficiently prevented with the antioxidant tempol. In
addition, ROS-dependent shock specifically relies on SKCa

channels only. Importantly, ROS and SKCa-dependent
events are also critical in the progression of shock in the
absence of zVAD-fmk, as tempol (shown in this report) and
apamin [19] also significantly improve survival in normal
TNF- or LPS-induced shock models. Thus, specific
inhibitors of vascular/endothelial SKCa channels and/or

scavengers of intracellular �OH radicals and inhibitors of
their formation (which may include vascular NOX1 or
NOX4 enzymes) could represent interesting new therapeu-
tics for the treatment of hypotension, cardiac dysfunction,
and shock associated with inflammation.
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