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The response of the host microcirculation to bacterial sepsis:
does the pathogen matter?
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Abstract Sepsis results from the interaction between a host
and an invading pathogen. The microcirculatory dysfunc-
tion is now considered central in the development of the
often deadly multiple organ dysfunction syndrome in septic
shock patients. The microcirculatory flow shutdown and
flow shunting leading to oxygen demand and supply
mismatch at the cellular level and the local activation of
inflammatory pathways resulting from the leukocyte–
endothelium interactions are both features of the sepsis-
induced microcirculatory dysfunction. Although the host
response through the inflammatory and immunologic
response appears to be critical, there are also evidences
that Gram-positive and Gram-negative bacteria can exert
different effects at the microcirculatory level. In this review
we discuss available data on the potential bacterial-specific
microcirculatory alterations observed during sepsis.
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Introduction

Septic shock occurs with an increasing incidence over years
with a mortality rate remaining unacceptably high when

multiple organ dysfunction develops. Clinical research has
brought attention to the association of microcirculatory
dysfunction and sepsis. Back in 1922, Freedlander and
Lenhart already observed the microcirculation from fingers
of septic patients, using a standard microscope, and
described “capillary stasis without evidence of cardiac
decompensation” [1]. Subsequently, these authors and
others used the term “endothelium intoxication” which
was associated with “capillary stasis and increased perme-
ability due to some products of traumatized or poorly
metabolized tissue.” Since that time, the pathophysiology
of the microcirculatory dysfunction in septic shock has
gained major insights. The sepsis is seen as a homogeneous
entity resulting from a host inflammatory response to an
invading pathogen [2], with an international definition,
rarely referring to the nature of the infecting organism.
However, the appreciation that the causative microorgan-
isms in sepsis can have varying clinical consequences
suggests that substantial differences in the pathophysiology
of sepsis may be part of the syndrome. The epidemiology
of sepsis is changing with an increasing proportion of cases
due to Gram-positive bacteria which appear to yield a
worse outcome compared to patients infected with Gram-
negative microorganisms [3, 4]. The purpose of this brief
review is to discuss potential implications of the nature of
the microorganism in the microcirculatory dysfunction
observed in sepsis focusing on the differences observed
between Gram-negative and Gram-positive bacteria.

Microcirculatory disorders in sepsis: implications
for disease

The systemic and pulmonary microcirculations are targets
of injury in the course of septic shock. There is over-
whelming evidence that microcirculatory disorders occur in
the course of septic shock with a decrease of density of

M. Legrand (*) : E. Klijn :C. Ince
Department of Intensive Care, Erasmus Medical Center,
Erasmus University of Rotterdam,
s Gravendijkwal 230,
3015 CE Rotterdam, The Netherlands
e-mail: m.legrand@libertysurf.fr

M. Legrand :D. Payen
Department of Anesthesiology and Critical Care,
Lariboisière Hospital, Assistance Publique-Hopitaux de Paris,
University of Paris 7 Denis Diderot,
2 rue Ambroise-Paré,
75475 Paris Cedex 10, France

J Mol Med (2010) 88:127–133
DOI 10.1007/s00109-009-0585-6



perfused capillaries with sluggish or stop-flow perfusion
patterns [5, 6]. The functional consequence is that some
local regions of tissue will be undersupplied with oxygen
while others are being oversupplied due to microcirculatory
blood flow shunting [7]. Oxygen diffusion distances will
increase, and convective oxygen delivery to the cells will
be impaired causing initially a mismatch between cell
oxygen demand and supply. Tissue hypoxia can then trigger
inflammatory pathways which potentially further cause
tissue damage. These microcirculatory alterations have
been associated with worse outcome and seem to be, at
least partially, independent of the macrohemodynamic
variables [8, 9]. Red blood cells (RBCs) and platelets
aggregation, endothelial cell swelling, arteriole vasocon-
striction, endothelium injury, and increased microvascular
permeability with interstitial edema are all factors proposed
to be responsible for capillary flow shutdown [10].
Coagulation activation is another hallmark of sepsis with
the inflammatory response activating tissue factor on
endothelial cells and monocytes, intravascular thrombin
generation, depletion of anticoagulant factors, and alter-
ations of the fibrinolytic system [11]. Analysis of the
Recombinant Human Activated Protein C Worldwide
Evaluation in Severe Sepsis trial revealed that almost all
patients with severe sepsis had stigma of coagulation
activation. Markers of coagulation activation such as
prothrombin time, level of D-dimer, or protein C were
found to be profoundly abnormal [12]. This appeared to be
slightly more pronounced in patients with Gram-negative
sepsis and bacteremia although the greatest reduction in the
mortality rate in patients treated with human drotrecogin
alfa (activated), an antithrombotic-targeted therapy, was
observed in Streptococcus pneumoniae-related sepsis [12].

Besides promoting leukocytes recruitment on the site of
infection for bacterial clearance, endothelium activation
will subsequently trigger local inflammation and contribute
to tissue injury, including vascular injury [13]. Despite large
amount of NO being produced by inducible nitric oxide
synthase during sepsis, generation of superoxide by
adhesive leukocytes can decrease endothelium-derived NO
bioavailability and compromise microcirculatory blood
flow by inducing vasoconstriction or lost of vasodilation
[14].

Nonspecific microcirculatory phenomena in bacterial
sepsis

Most of our current understanding of the molecular
pathogenesis of sepsis-induced microvascular dysfunction
has been derived from experimental animal models (Fig. 1).
Downstream the bacterial signal, local and systemic
inflammatory pathways activation are a hallmark of sepsis

[2]. The microvasculature will respond to inflammatory
stimuli mainly through activation of the endothelium. On
the front line is the expression of adhesion molecules which
will enhance endothelial–leukocyte interaction [15]. P-
selectin, which is preformed and stored in Weibel–Palade
bodies in the endothelial cells, is exposed within minutes on
the endothelial cell surface after proinflammatory stimula-
tion while E-selectin, intercellular adhesion molecule-1, or
vascular cellular adhesion molecule-1 are upregulated
within hours by gene-transcription under regulation of
transcription factors such as nuclear factor-κβ (NF-κβ)
[16, 17].

Other NF-κβ-regulated genes in endothelial cells include
plasminogen activator inhibitor-1, cyclooxygenase-2, and
inducible nitric oxide synthase [17], all involved in the
microcirculatory blood flow regulation. Liaison of endo-
thelial adhesion molecules to the neutrophil ligand E-
selectin ligand-1 (ESL-1), P-selectin glycoprotein ligand-1,
and CD44 will subsequently allow leukocyte adhesion and
transmigration through the endothelial layer. Nonbacterial
inflammatory stimulation such as tumor necrosis factor-α
(TNF-α) can disrupt the microvasculature, increase the
vascular permeability [18], and promote leukocytes and
bacterial recruitment [19]. Hidalgo et al. have recently
shown how administration of TNF-α triggers interaction of
leukocytes with circulating RBCs and platelets [20].
Interaction of the endothelial adhesion molecules E-
selectin with its ligand ESL-1 on leukocytes initiated a
second wave of activation after it upregulated the alphaM
beta2 integrin on neutrophils, allowing interaction with
RBCs and platelets. These interactions will in turn induce
the formation of reactive oxygen species (ROS) by
neutrophils and lead to impairment of capillary blood flow
and vascular damage [21]. Decrease of endothelial cells’
antioxidant defense mechanisms in sepsis can then further
expose cells to ROS-induced damage [22]. The interactions
of RBCs with leukocytes take place mainly in inflamed
venules. The high shear stress may prevent leukocyte–
endothelium interaction in arterioles. The prevention of
increased permeability of venules in platelet-depleted mice
underlined the role of platelets in inflammation-induced
vascular damage [23]. Angiotensin II is a another mediator
which has been found to stimulate NF-κβ expression
through induction of oxidative stress in endothelial cells,
which in turn promote the expression of adhesion mole-
cules [24]. Interestingly, Laschke et al. reported that
stimulation of the endothelium with TNF-α does not
necessarily translate into changes of microcirculatory blood
flow. They found no difference in microhemodynamics
after applying topically TNF-α on skinfold chamber of
hamsters infected with Staphylococcus aureus [25]. Finally,
it has been hypothesized that severe endothelial injury
could impair bacterial clearance due to the inability of
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endothelial cells to undergo the active cytoskeletal rear-
rangements necessary to allow leukocyte transmigration
[26]. We also have to bear in mind that the response of the
endothelium to inflammatory stimuli may differ among
different sites of the microvasculature and between organs.
To conclude, microcirculatory perfusion abnormalities are
often associated with sepsis and are thought to result from
hemodynamic determinants, inflammation, and host-
immune response interactions. This ultimately leads to
endothelial adhesion molecule expression with tissue
recruitment of inflammatory cells and microcirculation
perfusion alterations.

The pathogen-specific microvascular alterations
in bacterial sepsis: Gram-negative versus Gram-positive
bacteria

The outcome of a bacterial infection depends upon the
molecular interactions between the invading microorganism
and the human host. Although the mediators of inflamma-
tion appear to be central in the development of organ
dysfunction, it is now appreciated that pathogens and
pathogen-derived products from Gram-negative and
Gram-positive bacteria called pathogen-associated molecu-
lar patterns (PAMPs) can activate different specific inflam-
matory pathways leading to microvascular injury (Table 1).
Endotoxin is a lipopolysaccharide (LPS) from which most
of the toxicity resides in the lipid A in the innermost core
region. Even extremely debated, the presence of endotox-
emia is thought to be a major component of the pathophys-
iology of Gram-negative bacterial sepsis and seems to
correlate with severity of the disease [27]. Recently, the use

of polymyxin B-immobilized hemoperfusion, to remove
circulating endotoxin by adsorption, has been reported to
improve hemodynamic variables during the course of
abdominal sepsis [28]. Such a concept of circulating LPS
as a risk factor fits, of course, well with Gram-negative
infection but can also fit with Gram-positive infection. In
this particular situation as in many other severe acute
inflammations, LPS alone or Gram-negative bacteria may
cross the tissue–vascular barrier, especially in the gut.
Although LPS induces microcirculatory alterations, other
bacterial factors can be involved in the leukocyte–endothe-
lium interaction in the course of Gram-negative bacterial
sepsis. This is illustrated by the study of Moreland et al.
who found that intact Escherichia coli bacteria elicited
much more PMN migration than purified E. coli LPS at
corresponding LPS concentrations [19].

Endotoxemia is not a feature of Gram-positive bacterial
sepsis. Indeed, the plasma membrane of gram-positive
bacteria is surrounded by a thick layer of peptidoglycan,
which embeds molecules of lipoteichoic acid (LTA). Yipp
et al., using intravital microscopy to visualize muscle
microvasculature in mice, have provided evidence that
pathogen-derived products can exert different microvascu-
lar effects [29]. While local administration of LPS from E.
coli induced leukocyte rolling, adhesion, and migration in
postcapillary venules with increased expression of endo-
thelial adhesion molecules, administration of LTA from S.
aureus, had a minor effect on leukocyte–endothelial
interaction or expression of these adhesion molecules. On
the other hand, systemic injection of live S. aureus induced
responses similar to LPS, probably partially mediated by
peptidoglycan [30]. In the same line, Klintman et al.
examined the liver microvascular effects of staphylococcal
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enterotoxin A and LPS in mice. They found that entero-
toxin A-induced liver injury was FasL-mediated but was
independent of leukocyte recruitment while LPS provoked
a TNF-α-dependent liver injury and enhanced leukocyte
adhesion in the postsinusoidal venules [31].

These observations may arise from difference in expres-
sion of the Toll-like receptors (TLRs). TLRs have been
identified as receptors able to recognize molecular struc-
tures of microorganisms termed PAMPs [32]. PAMPs
include double-stranded RNA from bacteria products (LPS
and LTA, respectively) and flagellin, a component of motile
microorganisms. After binding to their ligands, TLRs
activate transcription factors (namely intranuclear NF-κβ,
activator protein-1, and interferon response factor-3) which
result in the transcription of many proinflammatory genes,
including inducible nitric oxide synthase, TNF-α, and of
interferon-β. TLR2, involved in the recognition of LTA, is
not expressed on the endothelium, in contrast with the TLR4,
which is involved in the recognition of LPS and found highly
expressed on endothelial cells [33]. Activation of TLR2 or
TLR4 can then result in different cytokine and chemokine
gene transcription. This is coherent with some observations
that patients with Gram-negative sepsis can have higher
levels of the cytokine TNF-α and interleukin (IL)-6 than
Gram-positive patients do [34]. Finally, TLR5 has been
identified as the specific receptor for the bacterial structural
protein flagellin which is expressed on intestinal microvas-
cular endothelial cells with a role in the intestinal innate
immune response [35]. The pattern of this inflammatory
response has been proposed to be informative of the nature
of the pathogen involved.

The pathogenicity of microorganisms can also depend
upon different membrane molecules expressions which
determine their ability to interact with the endothelium.
For instance, neutrophil migration in response to S.
pneumoniae and S. aureus requires endothelial cell expres-
sion of CD18, whereas E. coli-induced migration seems
independent of CD18 [19]. On the other hand, the pattern
recognition molecule CD14 seems to be to LPS and of the
Gram-positive bacterial components peptidoglycan and
LTA. The ability of Neisseria meningitidis to cross the
blood–brain barrier leading has been found to depend upon
signals triggered by their type IV pili. Coureuil et al. found
that after adhering and dividing onto brain endothelial cells,
the bacteria will spread on the surface of the cells and
mimic the signal of adherens junction’s cell–cell formation
which will disorganize the intercellular junctions and allow
meningeal invasion [36].

Gram-positive bacteria can also exert endothelial toxicity
through the release of various exotoxins. Pneumolysin is
such an example common to all serotypes of S. pneumo-
niae. The endothelium is a major target of pore-forming
bacterial exotoxins. Pneumolysin appeared to be required

for the passage of pneumococci through the endothelial
barrier by inducing endothelial cell apoptosis [37]. This
makes pneumolysin an essential actor in the pathophysiol-
ogy of bacterial meningitis allowing invasion of the
cerebrospinal fluid from the blood compartment. Microvas-
cular effects of pneumolysin have also been associated with
pneumococcal-related acute lung injury. Intravascular ad-
ministration of pneumolysin has been reported to result in
an increase of pulmonary vascular resistance and perme-
ability in a dose-dependent manner through platelet-
activating factor-mediated release of thromboxane [38,
39]. S. aureus α-toxin and E. coli hemolysin A are other
examples of such toxin which can create an inner
hydrophilic cavity in cell membrane leading to endothelial
cell damage and subsequent vascular hyperpermeability
[40]. For instance, S. aureus α-toxin has been shown to
increase vascular permeability by producing discontinuation
of vascular junctional proteins (i.e., vascular-endothelial-
cadherin and occluding) [41]. Interestingly, although both S.
aureus α-toxin and E. coli hemolysin A can affect the
myocardial circulation with increased coronary vascular
resistance and loss in contractile function, the two exotoxins
can exert different effects on myocardial perfusion. In a
model of rat isolated hearts, Grandel et al. reported
subendocardial perfusion impairment with hemolysin while
α-toxin rather impaired the epicardial microcirculatory flow
[42]. Release of hemolysin A can then stimulate vasodilation
through the stimulation of constitutive nitric oxide synthase-
dependant NO release [43].

Streptococcal toxic shock syndrome (STSS) arises from
invasive Streptococcus pyogenes infections and is associat-
ed with a massive vascular leakage. Previous work has
shown that secreted S. pyogenes streptolysin-O, a soluble
extracellular toxin, plays an important role in the vascular
dysfunction of STSS by inducing coaggregation of platelets
and neutrophils mediated by platelet P-selectin [44]. Then,
M protein contributes to the vascular leakage in STSS in
activating neutrophils to secrete heparin-binding protein, a
powerful inducer of increased vascular permeability [45].
Clostridium perfringens, a Gram-positive strict anaerobic
bacteria, has also been reported to impair muscle micro-
vascular blood flow. This effect is linked to the generation
of intravascular platelet–leukocyte aggregates via activation
of platelet adhesion glycoproteins GPIIb/IIIa and P-selectin
by α-toxin and h-toxin (also named perfringolysin O) [26].
Finally, the staphylococcal superantigen-like protein 5 has
been found to inhibit the leukocyte activation induced by
chemokines and anaphylatoxins and can therefore prevent
leukocyte recruitment on the site of infection. This illustrates
the highly complex regulation of cellular response to the
invading pathogen [46]. Therefore, there are evidences that
pathogens can activate different pathways which will affect
the microcirculation. The interaction of some pathogens or
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their products with the endothelium will be central in their
pathogenicity (e.g., meningeal invasion and N. meningitidis
and vascular leakage in STSS). On the other hand, although
experimental data suggest specific signaling pathways, the
microcirculatory alterations witnessed in sepsis appear to be
mainly dependant on nonspecific host inflammatory and
immune response. The paucity of clinical data on this issue
appeals for well-designed clinical trials to better appreciate
the respective role of the host response and pathogens in the
microcirculatory alterations in sepsis.

Conclusion

Sepsis results from the interaction between a host and an
invading pathogen associated with microcirculatory alter-
ations. First, leukocytes and circulating inflammatory cells
will be recruited on the site of infection by adhering to the
endothelium and be activated for bacterial clearance with
potential tissue damage as a consequence. Second, the
systemic inflammatory and immune response to the
pathogen will damage the endothelium in remote organs,
increase the microcirculatory permeability, and induce
production of reactive oxygen species which will compro-
mise tissue oxygen supply. Some pathogens and their
products can activate different pathways which are essential
in their pathogenicity. However, the downstream host
response in sepsis appears to be central in the development
of microcirculatory dysfunction. Well-designed clinical
trials are now required to determine whether targeting the
microcirculatory compartment can prevent organ failure in
sepsis.

Open Access This article is distributed under the terms of the
Creative Commons Attribution Noncommercial License which per-
mits any noncommercial use, distribution, and reproduction in any
medium, provided the original author(s) and source are credited.
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