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Abstract Among secreted phospholipases A2 (sPLA2s),
human group X sPLA2 (hGX sPLA2) is emerging as a
novel attractive therapeutic target due to its implication in
inflammatory diseases. To elucidate whether hGX sPLA2
plays a causative role in coronary artery disease (CAD), we
screened the human PLA2G10 gene to identify polymor-
phisms and possible associations with CAD end-points in a
prospective study, AtheroGene. We identified eight poly-
morphisms, among which, one non-synonymous polymor-
phism R38C in the propeptide region of the sPLA2. The
T-512C polymorphism located in the 5′ untranslated
region was associated with a decreased risk of recurrent
cardiovascular events during follow-up. The functional
analysis of the R38C polymorphism showed that it leads
to a profound change in expression and activity of hGX
sPLA2, although there was no detectable impact on CAD
risk. Due to the potential role of hGX sPLA2 in

inflammatory processes, these polymorphisms should be
investigated in other inflammatory diseases.
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Introduction

Secreted phospholipases A2 (sPLA2) form a growing
family of enzymes that hydrolyze the sn-2 position of
glycerophospholipids to generate proinflammatory lipid
mediators, lysophospholipids, and free fatty acids. Ten
enzymatically active sPLA2s have been identified in
mammals. Increased sPLA2 activity has been shown to be
an independent risk factor for coronary artery disease
(CAD) [1], and group IIA, III, V, and X sPLA2s have
been detected in human atherosclerotic lesions [2–5]. The
tissue-specific expression pattern and the enzymatic prop-
erties of the various sPLA2s suggest that the cellular role of
each of these enzymes is different [6]. Studies with
transgenic and knockout mice for different sPLA2s support
the above hypothesis [4, 7–10].

Among sPLA2s, the role of human group X sPLA2
(hGX sPLA2) is emerging as several studies show its
implication in various inflammatory diseases [8, 9, 11–13].
The gene encoding hGX sPLA2 (PLA2G10) maps to
human chromosome 16p13.1-p12. A 1.5-Kb transcript
was found in the thymus, spleen, and leukocytes, indicating
a possible role for hGX sPLA2 in immunity and/or
inflammation [14]. One of the key features of hGX sPLA2
is its high catalytic activity towards phosphatidylcholine
(PC), the major phospholipid of cell membranes and
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lipoproteins. This substrate preference is due to the
presence of a tryptophan residue on the interfacial binding
surface of the enzyme [15]. On the basis of the structural
similarities between platelet-activating factor (PAF) and
PC, we demonstrated that hGX sPLA2, but not other
sPLA2s, can efficiently hydrolyze PAF when it is incorpo-
rated into large unilamellar PC phospholipid vesicles and
when it is present in PC-rich lipoproteins [16]. This
suggests that hGX sPLA2 may be a novel player in PAF
regulation during inflammatory processes. hGX sPLA2 can
also efficiently hydrolyze lipoproteins (low-density lipo-
protein (LDL) and high-density lipoprotein (HDL)), pref-
erentially releasing arachidonic and linoleic acids [17, 18].
Finally, we have recently shown that hGX sPLA2 is present
in human atherosclerotic lesions and that the hydrolysis of
LDL by hGX sPLA2 results in a modified LDL particle that
induces lipid accumulation in human monocyte-derived
macrophages [2].

Recent studies using PLA2G10-deficient mice in a
model of ischemia reperfusion showed that deficiency in
GX sPLA2 leads to a reduction in myocardial ischemia
reperfusion injury as neutrophil functions were suppressed
[11]. Several studies implicated hGX sPLA2 in the
pathogenesis of inflammatory diseases such as asthma [9],
and recent data support the idea that hGX sPLA2 may be an
important therapeutic target in diseases where inflammation
plays an important role, including atherosclerosis.

The aim of the present study was to examine the
variability of the PLA2G10 gene and to determine whether
it plays a role in CAD and its complications. In addition,
we examined the potential functional impact of the non-
synonymous R38C polymorphism on the expression and
activity of the enzyme.

Materials and methods

Study populations

The SIPLAC study The SIPLAC study was specifically
designed to investigate the variability of candidate genes
for myocardial infarction (MI) in groups highly contrasted
for disease risk and to further characterize the structure of
linkage disequilibrium (LD) within these genes in order to
select the polymorphisms that will be genotyped in larger
studies. It is derived from Etude Cas-Témoins de l’Infarctus
du Myocarde (ECTIM), a case–control study of MI based
on the multinational monitoring of trends and determinants
in cardiovascular disease project registers in the UK and
France [19]. The entire ECTIM study comprised 1,332 MI
patients and 1,490 controls (62% from UK, 21% female).
For the SIPLAC sub-study, cases with MI and a parental
history of MI (n=312, 35% females, mean age: 56±

16 years) and controls without CAD and without parental
history of MI (n=317, 42% females, mean age: 59±
15 years) were selected from the samples recruited in
Belfast and Glasgow. All participants were of European
descent and gave an informed consent.

The AtheroGene study Baseline characteristics are provided
in Table 1; whereas, detailed description of the study has been
provided elsewhere [20, 21]. Briefly, between November
1996 and June 2000, 1,303 CAD patients (75% males,
mean age: 61.7±0.3 years) were recruited at the Depart-
ment of Medicine II of the Johannes Gutenberg University
Mainz and the Bundeswehrzentralkrankenhaus Koblenz at
the occasion of a diagnostic coronary angiography. A
priori inclusion criterion was the presence of a diameter
stenosis >30% in at least one major coronary artery.
Exclusion criteria were evidence of significant concomitant
diseases, in particular, hemodynamically significant valvu-
lar heart disease, known cardiomyopathy, and malignant
diseases, as well as febrile conditions. Patients were
followed-up during a median period of 6.2 years.
Follow-up information was obtained about death from
cardiovascular causes and non-fatal MI (n=235). Informa-

Table 1 Baseline characteristics of patients with coronary artery
disease in the AtheroGene study according to occurrence of
cardiovascular event (cardiovascular death or non-fatal myocardial
infarction) during follow-up

Cardiovascular event

No
(n=1,039)

Yes
(n=235)

p value

Age, years 61.0 (0.3) 63.8 (0.6) <0.0001

Females, % 25.1 25.5 0.90

Body mass index 27.2 (0.1) 27.3 (0.2) 0.68

Current smoker, % 12.3 16.6 0.08

Diabetes, % 14.6 22.1 0.005

Hypertension, % 72.6 74.0 0.65

Statin, % 36.5 29.4 0.04

Beta-blocker, % 59.9 54.5 0.13

Angiotensin-converting
enzyme inhibitors, %

45.9 53.2 0.04

Total cholesterol, mg/dL 220.9 (1.4) 214.5 (2.9) 0.05

LDL cholesterol, mg/dL 141.6 (1.2) 138.3 (2.6) 0.27

HDL cholesterol, mg/dL 49.0 (0.4) 45.1 (0.9) 0.0002

Triglyceride, mg/dLa 167.8 (3.2) 172.7 (6.9) 0.15

Fibrinogen, mg/dLa 354.2 (3.8) 386.1 (8.0) 0.0002

hs-CRP, mg/La 13.8 (1.0) 19.5 (2.1) 0.01

Categorical variables are presented as percentages; continuous
variables are presented as age- and sex-adjusted mean (SEM)
a Test performed on log-transformed variable
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tion about the cause of death or clinical events was obtained
by hospital or general practitioner. Healthy control subjects
(n=484, 73% males, mean age 60.0±0.4 years) were
recruited either from general practitioners’ offices in the
course of a routine check-up or by newspaper announce-
ment. Study participants had German nationality, were
inhabitants of the Rhein-Main area, and were of Caucasian
origin. The study was approved by the ethics committee of
the University of Mainz. Each participant gave written
informed consent.

Molecular screening of the PLA2G10 gene and genotyping
of the polymorphisms

We screened the PLA2G10 gene using the genomic
sequences retrieved from public depositories. The screening
of the gene was performed using genomic DNA from 62
unrelated MI patients selected from the ECTIM study
(http://www.genecanvas.org). Using polymerase chain re-
action (PCR) and direct sequencing, we explored 1 kb of
the promoter, the entire exonic sequences with their
corresponding flanking intronic sequences, and 1 kb of
the 3′ region after the codon stop. The sequences were
aligned and analyzed with the SeqScape software (Applied
Biosystems) to determine the potential polymorphisms. The
genotyping of the polymorphisms was performed using a
modified PCR-restriction fragment length polymorphism
method or the TaqMan (5′ nuclease assay) technology. The
description of polymorphisms and genotyping conditions
can be found at our web site (http://www.genecanvas.org,
genes: PLA2G10).

Statistical analysis

Differences in genotype frequencies between cases and
controls were tested by a Chi2 test with 2 degrees of
freedom (df), adjusted for center in the SIPLAC study
(Mantel–Haenszel test). Allele frequencies were deduced
from genotype frequencies. Departure from Hardy–
Weinberg equilibrium was tested for each polymorphism
in controls by Chi2 testing with 1 df. P values<0.05 were
taken as significant.

LD and haplotype analyses were performed using the
Testing Haplotype EffectS In Association Studies (THESIAS)
program available online (http://www.genecanvas.org) [22].
Differences in haplotypic frequency distributions between
cases and controls in the AtheroGene study were tested by
means of the likelihood ratio test. Associations between
polymorphisms and cardiovascular risk factors (lipids and
inflammatory markers) were tested by a general linear model
adjusted for age and sex. Association of genotypes with
prospective cardiovascular outcome was tested by a Cox

proportional hazards regression analysis adjusted for age and
sex.

Functional analysis of the PLA2G10/R38C polymorphism

DNA construct

Active human GX sPLA2 complementary DNA (cDNA)
starting at the second methionine initiator site, containing
additional nucleotide sequences for expressing the hemag-
glutinin epitope tag (HA tag, nine amino acids YPYDVP-
DYA) at the C terminus of human GX sPLA2 protein, were
generated by PCR, using the forward oligonucleotide (5′_
TGTCGAATTCTGCAGATATCCCGCCATGCT
GCTCCTGCTACTGCC_3′) with EcoRI and EcoRV sites
(italics), and reverse oligonucleotide (5′_ CTTAGCGGCC
GCTCAAGCGTAATCTGGAACATCGTATGGGTA
GATATCGTCACACTTGGGCGAGTC_3′) with EcoRI and
NotI sites (italics), stop codon (underlined), and additional
nucleotide sequences (bold) coding for the HA tag sequence.
The amplified fragments were purified, digested with EcoRI
and NotI, and inserted into the EcoRI and NotI sites of
pcDNA3 vector to generate the expression plasmid pcDNA-
hGX-HA. All constructs were confirmed by sequencing.
Inserting the HA tag at the C terminus of hGX sPLA2 protein
has no effect on hGX sPLA2 activity (data not shown).

Site-directed mutagenesis

The pcDNA-hGX-HA construct was used as a template in
the Quick-change site-directed mutagenesis procedure
according to manufacturer’s instructions. Forward muta-
genic primer used to create the R38C point mutation was
5 ′_GGCGAGGCCTCCAGGATATTAtGTGTGCAC
CGGCGTGGGATCC -3′. Text in bolded lowercase repre-
sents the mismatch base introduced to obtain the desired
mutation. Reverse mutagenic primer was of the same length
and complementary to the forward mutagenic primer.
Following amplification, the reaction mixture was treated
with DpnI to eliminate the template DNA. Each of the
mutated amplification products were transformed into max
efficiency DH5α Escherichia coli strain (Invitrogen), and
mutations were confirmed by DNA sequencing of the
resulting constructs.

Constructs containing the R38 or the C38 allele

COS-7 cells were cultured in Dulbecco’s modified essential
medium containing 10% fetal calf serum, 100 units/ml
penicillin, and 0.1 mg/ml streptomycin. Confluent cells
(75%) were harvested with trypsin and transfected with the
above-described constructs containing the R38 or C38
harboring cDNA and pmax green fluorescent protein
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(GFP; Amaxa) using the Cell line nucleofector kit V and
Amaxa nucleofector (Amaxa Inc.) according to the manu-
facturer’s instructions. Transfection efficiency was estimat-
ed 24 h after electroporation by fluorescence activated cell
sorter analysis. The number of GFP positive cells in a sample
of pmaxGFP (Amaxa)-transfected cells varied between 75%
and 79%. After transfection, cells were cultured in 6-well
plates for 24 h additionally at 37°C. Selected experiments
were performed at both 37°C and 30°C.

Time-resolved fluoroimmunoassay (TR-FIA)
and phospholipase A2 activity

Cell lysates extracted in radio immunoprecipitation assay
(RIPA) buffer and cell supernatants were directly used for
time-resolved fluoroimmunoassays (TR-FIA) to detect hGX
sPLA2 protein concentration as described [23]. hGX
sPLA2 enzymatic activity was determined using radio-
labeled E. coli membranes as previously described [24].

Fluorescence immunocytochemistry and confocal
microscopy

COS-7 cells were transiently transfected with HA-tagged
either wild-type or mutant hGX sPLA2 as described below.
24 h after transfection, the phosphate buffer solution (PBS)-
washed cells were fixed in 4% paraformaldehyde. Cells were
permeabilized with methanol for 10 min. Washed cells were
incubated in PBS containing 1% bovine serum albumin
(BSA; PBS/BSA) for 1 h. Incubation with primary anti-
bodies (rabbit polyclonal hGX sPLA2, mouse monoclonal
protein disulphide isomerase (PDI; Stressgen) for endoplas-
mic reticulum (ER) staining, and mouse monoclonal Golgi
58 K protein (Sigma) for Golgi apparatus) were carried out
in PBS/BSA for 1 h at reverse transcription (RT). Cover slips
were subsequently washed four times in PBS/BSA and
incubated with secondary antibodies (fluorescein isothiocya-
nate-conjugated anti-mouse, Cy5-conjugated anti-rabbit
(Dako)) and 4′-6-diamidino-2-phenylindole (DAPI; 0.5 mg/
ml) for 1 h at RT. Cover slips were washed in PBS and
mounted in Moviol. Confocal analysis was performed on a
Leica SP2-AOBS confocal microscope, and the images were
taken using alternating mode to minimize the channel
interference (Leica confocal software).

Results

Screening of the gene

The organization of the PLA2G10 gene is shown in
Fig. 1. It consists of four exons (537, 151, 107, and
143 bp, respectively) and three introns (3,488, 2,223, and

15,414 bp, respectively). We screened all exonic sequen-
ces with their corresponding flanking intronic sequences,
as well as 1 kb in the putative promoter region and 1 kb
after the stop codon. From our molecular screening in 124
chromosomes from 62 unrelated subjects, we identified
eight polymorphisms (Table 2) which were first genotyped
in the SIPLAC study in order to determine their allelic and
haplotypic frequencies. Their description can be found at our
web site (http://www.genecanvas.org, genes: PLA2G10).

PLA2G10 polymorphisms in the SIPLAC study

Seven polymorphisms were investigated in SIPLAC. C-85/
in1T was not typed because of technical difficulties. The
T+659C substitution, which had been found in a single
chromosome among the 124 chromosomes screened, was
not observed among the SIPLAC subjects. Accordingly,
pairwise LD coefficients were estimated among the six
remaining polymorphisms. All polymorphisms exhibited
strong LD one with each other, and the six polymorphisms
generated eight common haplotypes (frequency>0.01).
Genotype frequencies did not significantly differ between
cases and controls for any polymorphism in the SIPLAC
study (Table 3). The LD coefficients and haplotypic
frequencies estimated in the SIPLAC study are accessible
at (http://www.genecanvas.org, genes: PLA2G10).

Association of the PLA2G10 polymorphisms with CAD
risk in the AtheroGene study

The AtheroGene study was genotyped for five polymor-
phisms: T-512C, T-123/in1C, R38C, C+264A, and G+303C.
There was no significant departure from Hardy–Weinberg
equilibrium in controls. In single-locus analysis, none of the
polymorphisms was significantly associated with CAD risk
(Table 4). Haplotype frequencies did not differ between cases
and controls (Table 5). Further subdivision of CAD cases into
patients with stable angina pectoris and those with an acute
coronary syndrome did not provide significant associations.
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Fig. 1 Schematic representation of the human PLA2G10 gene and the
position of SNPs. Exons are shown as vertical bars. Intron size is
indicated. Exons 1–4 encode for the 123 amino acid hGX sPLA2
protein. The polymorphism that resulted in arginine to cysteine
substitution is shown in bold
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Association of polymorphisms with cardiovascular risk
factors and prospective cardiovascular outcome
in the AtheroGene study

No significant association was found with baseline lipids or
inflammatory markers (data not shown). In CAD patients,
the minor allele of T-512C was associated with a decreased
risk of death from cardiovascular causes and non-fatal MI
during the follow-up (hazard ratio [95% CI] for one copy of

the C allele assuming an additive allele effect: 0.76 [0.62–
0.94] p<0.01) and Table 6.

Functional study of the R38C polymorphism

Because of the potential role of hGX sPLA2 in inflamma-
tory processes, we investigated whether the non-
synonymous R38C polymorphism might have a functional
impact on the protein. The R38C polymorphism, by
substituting an arginine to a cysteine at codon 38
(Fig. 2a), leads to an odd number of cysteines in the hGX
sPLA2 protein, which may result in misfolding and/or
mistargeting and subsequent protein degradation. To ana-
lyze the effect of the mutation, we prepared plasmid
constructs for HA-tagged hGX sPLA2 with R38 or C38

Table 2 Polymorphisms identified in the PLA2G10 gene (chromo-
some 16)

Polymorphism SNP ID Base
substitution
on reverse
strand

Gene
location

Chromosomal
position

T-512C ss#115456686 T/c 5′ 14696099

T-123/in1C rs#4003232 T/c Intron 1 14692126

C-85/in1Ta rs#35822154 C/t Intron 1 14692088

G-80/in1A rs#34782548 G/a Intron 1 14692083

R38C rs#4003228 C/t Exon 2 14691989

C+264A ss#105111473 C/a 3′ 14673705

G+303C ss#105111474 G/c 3′ 14673666

T+659C ss#105111475 T/c 3′ 14673310

a Not genotyped owing to technical difficulties

Table 3 Genotype and minor allele frequencies in myocardial
infarction cases (n=312) and controls (n=317) of the SIPLAC study
(Belfast and Glasgow pooled, UK)

Genotype frequency (%) p value
adjusted
for center

Minor
allele
frequency

11 12 22

T-512C Cases 36.2% 48.3% 15.5% 0.40

Controls 41.8% 46.6% 11.6% 0.31 0.35

T-123/in1C Cases 61.0% 34.2% 4.8% 0.22

Controls 57.6% 35.5% 6.9% 0.55 0.25

G-80/in1Aa Cases 54.9% 38.5% 6.6% 0.26

Controls 49.3% 41.5% 9.2% 0.40 0.30

R38C Cases 97.0% 3.0% 0.0% 0.02

Controls 95.2% 4.8% 0.0% 0.30 0.02

C+264A Cases 87.5% 12.1% 0.4% 0.06

Controls 89.3% 10.3% 0.4% 0.82 0.06

G+303C Cases 92.1% 7.9% 0.0% 0.04

Controls 92.3% 7.7% 0.0% 0.97 0.04

11 homozygotes for the major allele, 12 heterozygotes, 22 homo-
zygotes for the minor allele
a Nearly complete concordance with T-123/in1C (85% of subjects
concordant for the 2 polymorphisms)

Table 4 Genotype and minor allele frequencies in coronary artery
disease cases (n=1,299) and controls (n=484) of the AtheroGene
study (Mainz, Germany)

Genotype frequency (%) p value Minor allele
frequency

11 12 22

T-512C Cases 46.6% 43.6% 9.8% 0.32

Controls 46.0% 43.4% 10.6% 0.88 0.32

T-123/in1C Cases 60.4% 33.9% 5.7% 0.23

Controls 57.7% 36.9% 5.4% 0.50 0.24

R38C Cases 96.4% 3.5% 0.1% 0.02

Controls 95.4% 4.6% 0.0% 0.50 0.02

C+264A Cases 90.0% 9.8% 0.2% 0.05

Controls 90.4% 9.6% 0.0% 0.68 0.05

G+303C Cases 96.0% 4.0% 0.0% 0.02

Controls 94.8% 5.2% 0.0% 0.29 0.03

11 homozygotes for the major allele, 12 heterozygotes, 22 homo-
zygotes for the minor allele

Table 5 Main haplotypic frequencies estimated in coronary artery
disease cases and controls of the AtheroGene study

Haplotypes Frequency

T-512C T-123/in1C R38C C+264A G+303C Cases
(2,426
alleles)

Controls
(940
alleles)

T T R C G 0.399 0.390

c T R C G 0.297 0.293

T c R C G 0.208 0.217

T T R a G 0.054 0.048

c T R C c 0.018 0.026

T c C C G 0.014 0.017

Global difference between cases and controls: p=0.72
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in the propeptide segment by site-directed mutagenesis and
analyzed their expression after transient transfection into
COS-7 cells. Fluorescence immunocytochemistry per-
formed 24 h after transfection showed that both R38 and

C38 proteins are present intracellularly (Fig. 2b). To
determine the subcellular location of the C38 protein, cells
were fixed and immunostained with antibodies to PDI and
58 K Golgi proteins, which are well established markers of
the ER and the Golgi apparatus, respectively. No difference
was observed in their subcellular localization as both R38
and C38 proteins colocalized with ER and Golgi apparatus
(Fig. 3a, b).

We next determined the level of expression of hGX
sPLA2 in cell lysates and cell supernatants by measuring
catalytic activity with the sensitive E. coli assay [25] and
total protein amount by TR-FIA [23]. In both cell lysate
and supernatant, the level of sPLA2 catalytic activity
measured for the C38 protein was dramatically lower than
that measured for the R38 protein (Fig. 4a). TR-FIA
analyses confirmed the lower expression of the C38 sPLA2
protein as compared to R38 (Fig. 4b). Together, our results
indicate that the R38C polymorphism has a profound
impact on protein activity and expression. In order to test
whether the mutation has an impact on the expression of
hGX sPLA2 at the messenger RNA (mRNA) level, we
performed real-time quantitative PCR (RT-QPCR) analysis

Table 6 Hazard ratio for cardiovascular event at follow-up associated
with the -512C allele

Cardiovascular event T-512C genotype

TT TC CC

No Number 469 461 109

Percent 45.1% 44.4% 10.5%

Yes Number 125 94 16

Percent 53.2% 40.0% 6.8%

Hazard ratio (95% CI) 0.76 [0.62–0.94] p<0.01

Cardiovascular event: cardiovascular death or non-fatal myocardial
infarction

Median time at follow-up: 6.2 years

Hazard ratio for one copy of the C allele, assuming an additive allele
effect adjusted on age and sex
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N ter
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hGX sPLA2 DAPI overlay

Prepeptide

Fig. 2 a Schematic representa-
tion of the hGX sPLA2 protein
containing the R38C
polymorphism in the propeptide
region. The arginine doublet
preceding the mature protein
sequence is indicated in bold.
The arrow indicates the allelic
substitution, and the amino acid
change (arginine R to cysteine
C) is indicated in red. b
Immunofluorescence localiza-
tion of hGX sPLA2 in COS-7
cells transfected with vectors
encoding the R38 and the C38
proteins. The hGX sPLA2
protein is labeled with red.
Nucleus is labeled in blue with
DAPI. Confocal analysis was
performed on a Leica
SP2-AOBS confocal microscope
as described in “Materials and
methods”. Magnification: 50
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of COS-7 transfected cells with either the mutant or the
wild type protein. The expression of hGX sPLA2 mRNA in
cells transfected with the two expression plasmids was
similar (data not shown), suggesting that the polymorphism
has no effect on the mRNA production and stability.

Reduction of cell growth temperature to 30°C has been
shown to rescue protein expression and folding of different
proteins [26]. To validate our hypothesis that the mutation
affects the folding of the hGX sPLA2, we performed
parallel transfections of COS-7 cells with the C38 and R38

A

B
C38 ER

R38 ER

Golgi

Golgi

Overlay

Overlay

R38

C38

Fig. 3 Subcellular immunofluo-
rescence localization of hGX
sPLA2 in COS-7 cells tran-
siently transfected with vectors
encoding either (a) R38 or (b)
C38 hGX sPLA2. Twenty hours
after transfection cells were
fixed and stained with rabbit
polyclonal against hGX sPLA2
(red) and either a mouse
monoclonal against the ER
marker PDI (green), or a mouse
monoclonal against the Golgi
apparatus marker 58 K protein
(green). Nucleus is labelled in
blue with DAPIConfocal analy-
sis was performed on a Leica
SP2-AOBS confocal microscope
as described in “Materials and
methods”. Magnification 50 for
ER and 100 for Golgi

J Mol Med (2009) 87:723–733 729



expression constructs and then incubated the cells at either
30°C or 37°C. Results of TRF-IA assays showed that
incubation of cells at 30°C dramatically increased the
amount of the C38 protein in both cell lysate and
supernatant when compared to cells incubated at 37°C
(Fig. 5a, b). As expected, no major effect was observed for
the R38 construct (Fig. 5a, b). However, the increased
amount of C38 protein was not accompanied by an
increased level of sPLA2 activity in the cell supernatant
(Fig. 5c), indicating that the overexpressed protein pro-
duced at 30°C is not catalytically active. Together, these
results suggest that the C38 mutation results in the
production of a defective enzyme, which is likely to be
misfolded and rapidly degraded.
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Discussion

Growing evidence suggests that sPLA2s IIA, III, V, and X are
involved in various inflammatory diseases including CAD
and cancer [6, 27]. Circulating levels of sPLA2 activity is an
independent predictor of death and new or recurrent MI in
patients with acute coronary syndrome [28]. Serum levels of
sPLA2 GIIA are linked to variations in the PLA2G2A gene
while tagging single nucleotide haplotypes reveal a strong
association of the PLA2G5 gene with lipid levels (LDL and
oxidized LDL) [29, 30]. Considering the simultaneous
expression of IIA, III, V, and X enzymes in the atheroscle-
rotic plaque, it becomes challenging to elucidate the
pathophysiological roles of each enzyme in the arterial wall.
Using a genetic approach, we identified polymorphisms in
the gene coding for hGX sPLA2 and examined whether
these polymorphisms play an etiological role in CAD. Our
study identified eight polymorphisms, one of which results in
the substitution of arginine 38 to cysteine (R38C) in the
propeptide sequence of the sPLA2. The full open-reading
frame of the hGX cDNA encodes for a signal peptide of 21
amino acids followed by a propeptide sequence of 11 amino
acids ending with an arginine doublet and a mature acidic
protein of 123 amino acids [14]. The R38C polymorphism is
located in the propeptide region of the protein near the
putative arginine doublet cleavage site. Overexpression of
GX sPLA2 in transgenic mice showed that the zymogen
form of the enzyme predominates in most tissues, and that
certain inflammation-associated proteases may play a role in
activating the enzyme [10]. Conversely, recombinant expres-
sion of hGX sPLA2 in various eukaryotic cells leads to the
predominant release of the active enzyme, making unclear
whether the enzyme is secreted in an active form after
propeptide removal before secretion or whether the enzyme
is secreted as a proenzyme and then matured extracellularly
[8, 31]. The fact that R38C mutation may alter the formation
of disulfide bonds and thus the folding of hGX sPLA2, led
us to examine its impact on sPLA2 protein expression.
Fluorescence immunocytochemistry experiments in COS-7
cells transiently transfected with wild-type and mutant hGX
sPLA2 cDNAs showed that both proteins are present in ER
and Golgi compartments. Analysis of protein expression and
enzymatic activity to reveal an active secretion clearly
showed that the mutation lowered the total amount of
protein produced by COS-7 cells, prevented its efficient
secretion, and resulted in low or no detectable enzymatic
activity. When transfected cells were grown at 30°C, a
temperature that rescue the folding of various mutated
proteins [26], we observed an increased production of the
C38 protein in cell lysate and supernatant of transfected

cells, but no increase in sPLA2 enzymatic activity. Together,
these results support our hypothesis that the R38C mutation
produces a misfolded protein that is catalytically inactive and
rapidly degraded.

Despite the functional effects observed for the R38C
polymorphism at the protein level, no association was
observed between this polymorphism and CAD risk or
cardiovascular risk factors in the AtheroGene study and the
SIPLAC study. This lack of association might be explained
by the low frequency of the C38 allele (approximately 3%)
and, consequently, the low power of the present studies to
detect an association. Furthermore, due to the unavailability
of suitable substrates to distinguish between different
sPLA2s, the circulating level of GX sPLA2 could not be
investigated as an intermediate phenotype in the Athero-
Gene study. In addition to the R38C polymorphism, we
identified other polymorphisms in the putative regulatory
region of the PLA2G10 gene. The T-512C was associated
with the risk of future cardiovascular event during the
prospective follow-up of the AtheroGene cohort. However,
this polymorphism was not associated with CAD or MI risk
in a case/control setting and did not correlate with any
cardiovascular risk factor. This result has thus to be taken
with caution and requires further replication in other
cohorts. As this polymorphism is located in the putative
promoter region of the gene, it might influence the
expression level of the enzyme; however, the promoter of
the PLA2G10 is still unknown, and thus will be interesting
to explore.

Recent studies implicate GX sPLA2 in myocardial
ischemia reperfusion injury [11], in allergen-induced airway
inflammation [9], and in lung diseases [8]. A possible role
of hGX sPLA2 was also suggested in lung and colon
carcinogenesis [12, 13]. In this context, functional genetic
mutations leading to an alteration of protein expression and/
or enzymatic activity may have a profound impact on the
pathophysiological role of the enzyme, in particular, by
modulating the concentration of lipid mediators produced
locally and thus modifying the inflammatory process in
diseases like atherosclerosis and cancer.
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