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IDO expression in the brain: a double-edged sword
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Abstract The tryptophan-catabolizing enzyme indole-
amine-2,3-dioxygenase (IDO) initiates the first and rate-
limiting step of the kynurenine pathway. It is induced by
proinflammatory cytokines such as interferon-f3 and inter-
feron-y and has established effects in the control of
intracellular parasites. The recent detection of its decisive
function in immune tolerance at the maternal—fetal interface
stimulated various studies unraveling its regulatory effect
on T cells in many pathologies. In the brain, IDO can be
induced in microglia by interferon-y-producing T helper
(Th) 1 cells, thereby initiating a negative feedback loop
which downmodulates neuroinflammation in experimental
autoimmune encephalomyelitis (EAE), the animal model of
multiple sclerosis (MS). This protective effect could to be
counteracted by the production of neurotoxic metabolites of
the kynurenine pathway such as quinolinic acid, which are
produced upon IDO induction. Some metabolites of the
kynurenine pathway can pass the blood—brain barrier and
thus could act as neurotoxins, e.g., during systemic
infection. In this paper, we give a brief overview on
established immune regulatory functions of IDO, review
recent data on IDO expression in the brain, and propose
that autoimmune neuroinflammation and the increasingly
appreciated neuronal damage in MS are linked by Thl-
mediated IDO induction through subsequent synthesis of
toxic metabolites of tryptophan.
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Introduction

Mammals have two different oxygenases for the degrada-
tion of the essential amino acid tryptophan (Trp). The
tryptophan dioxygenase (TDO), which is primarily
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expressed within the liver, catabolizes the main part of
dietary Trp for the maintenance of serum levels. The second
enzyme is the indoleamine 2,3-dioxygenase (IDO), which
represents the first and rate-limiting enzyme of the
kynurenine pathway in extrahepatic tissues. This enzyme
was first described by Higuchi et al. [1]. IDO is a heme-
containing enzyme that catalyzes the oxidative cleavage of
the Trp pyrrol ring, thereby producing N-formyl-kynurenine,
which is then further degraded along the kynurenine
pathway (Fig. 1).

IDO expression is inducible by the proinflammatory
cytokine interferon-y (IFN-y) and to a lower extent by
interferon-3 (IFN-{3) in several cell types including macro-
phages, dendritic cells (DC), and fibroblasts [2-5]. In the
brain, murine and human microglia have been shown to
express IDO upon treatment with IFN-y [6, 7]. In
peripheral tissues, IDO expression is a common mechanism
to suppress the proliferation of infectious parasites such as
Chlamydia trachomatis [8] and Toxoplasma gondii [9, 10]
through Trp depletion. Moreover, metabolites of the
kynurenine pathway also exhibit immune modulatory
functions, e.g., during tumor maintenance [11] and allograft
acceptance/rejection [12, 13].

During experimental autoimmune encephalomyelitis
(EAE), IDO induction has been shown to downmodulate
neuroinflammation [14—-16]. However, the induction of

L-Tryptophan

Tryptophan 2,3-Dioxygenase
TDO (hepatic)

Indoleamine 2,3-Dioxygenase
IDO (extrahepatic)

N-formylkynurenine

Formidase

<«

Kynurenine

. L-Kynurenine
aminotransferases
Kynurenine
hydroxylase

Kynurenic acid  3-Hydroxykynurenine

Kynureninase

<«

3-Hydroxyanthranilic acid
3-Hydroxyanthranilate
3,4-dioxygenase

2-Amino-3-carboxzmuconic
semialdehyde

Spontaneously

Quinolinic acid
Fig. 1 The kynurenine pathway. Enzymatic degradation of tryptophan
to kynurenic acid or quinolinic acid via the kynurenine pathway.
Neurotoxic metabolites are labeled in italics
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IDO in the central nervous system (CNS) is delicate
because several metabolites of the kynurenine pathway
have well-established neurotoxic effects [17]. Given that
multiple sclerosis (MS) is characterized by the massive
influx of activated T helper (Th) 1 cells and loss of neurons,
an increasingly appreciated hallmark of this disease [18,
19], we propose that neuroinflammation and neurodegen-
eration are linked by IFN-y-mediated IDO induction and
the accompanying production of toxic Trp metabolites.

IDO in infection

Over the last decades, many studies with human cells
showed that IFN-y-induced IDO expression represents an
important mechanism of antimicrobial resistance to para-
sites [9, 20, 21] and bacteria [8, 22, 23]. In all these cases,
the functional expression of IDO and the subsequent
degradation of Trp were identified as the effector mecha-
nisms of microbial suppression. Induction of the kynurenine
pathway was recently shown to be involved in down-
modulation of a fungal infection of the gastrointestinal tract
with Candida albicans [24]. In vivo, inhibition of IDO
exacerbated the infection and its associated inflammatory
pathology. In extension of previous studies, Montagnoli et al.
[25] demonstrated a reduced number of CD4" CD25 regu-
latory T cells (Tregs) in C. albicans-infected animals after
IDO inhibition. This cell type is capable of downmodulating
inflammatory and antifungal Thl immunity in C. albicans-
infected mice. In fact, the strain of C. albicans used in these
experiments was Trp prototrophic. Therefore, the antifungal
effect of IDO expression is likely to be mediated through the
modification of the host’s T cell.

Recent data demonstrate that IDO also plays a role in
viral infections. The replication of cytomegalovirus and
herpes simplex type I and II has been shown to be restricted
by IFN-y-induced IDO expression [26-28]. Opposite
effects have been observed in the course of CNS infection
with the human immunodeficiency virus (HIV). IDO
activity is also increased in response to this virus [29], but
IDO inhibition by 1-methyl Trp does not increase but rather
decrease the viral burden. Remarkably, IDO inhibition
amplified the number of HIV-specific cytotoxic T cells in
HIV-infected severe combined immunodeficiency mice
[30]. The HIV virus-infected cells seem to protect them-
selves from killer cell-mediated lysis by immunomodula-
tion, thereby providing a niche hiding the virus from the
immune system. Thus, during infection, IDO induction can
exert divergent effects: On the one hand, it limits growth of
infectious agents but also the strength of the immune
response. The latter may be important to limit loss of
infected cells in organs of poor regenerative capacity at the
prize of viral persistence [31, 32].
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Possible mechanisms of IDO-mediated tolerance
induction

In contrast to the liver, Trp degradation is restricted to
pathologic conditions in all other organs. The functional
expression of IDO initiates the kynurenine pathway during
which the degradation progresses along several enzymatic
reactions (Fig. 1). Intermediates such as kynurenic acid
(KA), quinolinic acid (QUIN) and 3-hydroxyanthranilic
acid (3-HAA) have strong effects on many cell types
including lymphocytes and antigen-presenting cells (APC).
Munn et al. [33] were the first to demonstrate that blocking
the IDO during pregnancy in mice causes tolerance
breakdown and fetus rejection. Since then, several studies
have confirmed a major role of IDO in the maintenance of
immune tolerance [16, 34]. Two mechanisms have been
proposed to explain the downmodulatory effect of IDO
activation on T cells:

1) Munn et al. [33] hypothesized that in analogy of its
function during infection, IDO activity creates a Trp-
depleted microenvironment limiting the proliferation of
T cells.

2) Fallarino et al. [4] showed that Trp degradation
products enhance the susceptibility of T cell to
apoptosis.

In fact, IDO activity depletes Trp from the culture
medium of human macrophages and activated T cells
cultured in such medium arrest in a late G1 phase [35].
This Trp starvation-mediated arrest has been shown to be
caused in part by the stress-activated GCN2 kinase [36].
However, T cells not only stop proliferation when they are
kept under Trp-depleted conditions, they also become
highly sensitive to CD95L (FasL)-induced apoptosis [37].
CD95L-mediated deletion of activated T cells is a common
mechanism of self-limitation of inflammation [38] and
important to minimize inflammation-mediated damage in
sensitive tissues such as the brain and the eye [39].

While IDO is inducible in many cell types, its regulation
in DC turns out to be decisive for shifting the balance
between tolerance and immunity. DC are professional APC.
The type of DC presenting an antigen determines the T cell-
polarizing signals and thus the T cell differentiation into
Thl, Th2, or Treg. In the case of tolerance induction, the
cytotoxic T lymphocyte-associated antigen 4 (CTLA-4)
plays a crucial role. CTLA-4 blocks the CD28-B7 costimu-
latory signaling, which is essential for functional T cell
activation [40]. CTLA-4 immonoglobulin (CTLA-4-Ig)
induces IFN-y expression in DC and thereby an auto- or
paracrine induction of IDO expression in the local micro-
environment, providing the conditions for long-term sur-
vival of allogeneic islet transplants [41]. In cell cultures, DC

expressing B220 or CD8x upregulate IDO expression when
they are cocultured with CTLA-4-expressing T cells [42].

IDO-expressing DC inhibit T cell proliferation in vitro
even when Trp is still available in the medium [43]. This
effect is caused by kynurenine, 3-hydroxyanthranilin, and
3-HAA, which are all Trp metabolites produced down-
stream of the kynurenine pathway [44]. Moreover, 3-HAA
and QUIN induce CD95L-independent apoptosis via
caspase 8 in activated Thl but not Th2 cells [4]. This
effect can be increased by lowering Trp concentrations in
cell cultures [43]. The restriction of these effects to Thl
cells may represent an IDO-dependent mechanism of
immune deviation during inflammation.

Interestingly, in CD123"DC, IDO expression is induced
by interleukine 10 (IL-10), an anti-inflammatory cytokine
expressed by Treg cells [45]. While in most investigated in
vitro models, IFN-y is the main inducer of IDO in
macrophages, DC, fibroblasts, and microglia [2-5, 46], its
expression can also be triggered by lipopolysaccharide
(LPS) through an IFN-y-independent mechanism [47]. The
induction of IDO expression without IFN-y signaling is not
dependent on signal transducer and activator of transcription
l and interferon regulatory factor-1 but requires p38
mitogen-activated protein kinase and nuclear factor-xB
[48]. Thus, IDO induction is not restricted to Thl cells
secreting INF-y but alternate triggers involving IL-10 and
LPS. This is in line with the observation that Th2-mediated
experimental asthma is also abrogated by functional
expression of IDO [49].

An undesirable case of tolerance induction is the
manifestation of tumors. The first recognition of tumor
antigens by T cells occurs in the tumor draining lymph
nodes. Within such lymph nodes, there is a population of
plasmocytoid DC (PDC) expressing B220, CDllc, and
CD19. These PDC induce T cell anergy and immunosup-
pression in vivo by the constitutive expression of IDO [50].
CDI19"PDC are also found in neighboring lymph nodes and
spleen, but in contrast to the PDC from tumor draining
sentinal lymph nodes, they do not express IDO constitu-
tively. The tumor itself is therefore likely to trigger IDO
expression in draining lymph nodes by an as yet unknown
mechanism. One possible way of induction could be the
binding of CTLA-4 expressed by Tregs, which have been
shown to induce IDO expression in DC in vitro [44, 51].
The adoptive transfer of IDO expressing PDC in vivo
induces not only a systemic unresponsiveness to antigens
[52] but also antigen-specific anergy of T cells within
lymph nodes [50].

Tolerogenic mechanisms are not only active in sentinal
lymph nodes but were also found within the tumor itself,
and IDO expression may represent one of such mechanisms
[34]. In fact, the tumor cell line P815 becomes resistant
against immunological deletion when the cells were trans-
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fected for constitutive IDO expression. In ovarian and
colorectal cancer, IDO expression within the tumors
correlates to malignancy [53]. In support of this concept,
colorectal tumors exhibiting a high IDO activity have a
significantly reduced number of CD3" infiltrating T cells
and show an increased frequency of metastases [54]. Thus,
determining IDO expression in tumors may be used for
clinical prognostic in the future. Moreover, IDO inhibitors
could increase the success of antitumor treatment [11].

The kynurenine-pathway and neurotoxic metabolites
in the brain

Two Trp degradation products, QUIN and 3-HAA,
exhibit neurotoxic properties. QUIN is an endogen N-
methyl-D-aspartate (NMDA) receptor agonist [55]. At
micromolar concentrations, the excitotoxic effect of QUIN
can be mimicked in primary cortical neuronal cell cultures
[56]. The same effect is found in vivo where intracerebral
injection of QUIN induces excitotoxic lesions [17]. The
second neurotoxic Trp metabolite is 3-HAA, which is
unstable under physiological conditions. Upon spontane-
ous auto-oxidation, 3-HAA produces reactive radical
species, which in turn induce oxidative stress and
apoptosis in neurons [57-59].

In a dead end side branch of the kynurenine pathway,
KA is synthesized by kynurenine aminotransferases
(KATs). KA is known as a noncompetitive NMDA receptor
antagonist [60]. Therefore, KA might counteract the
neurotoxic effect of QUIN. Indeed, blocking of the
kynurenine pathway at the kynurenine hydroxylase stage
reduced the neuronal damage after cerebral ischemia in vivo
[61] and postischemic neuronal death in slice cultures [62].

As anticipated, such treatment forced Trp degradation to
the KA branch [59, 63]. To analyze the biological role of
KA, Yu et al. [64] created a knockout mouse deficient for
KAT?2 expression. KAT?2 is the aminotransferase substan-
tially contributing to the KA formation in the CNS [65].
These mice exhibit a decreased KA formation within the
CNS for the first 3 weeks of life, which afterward returns
to control levels as seen in wild-type mice. No significant
differences in the production of QUIN or 3-HAA were
observed at any age [64]. The delayed compensation was
assumed to be caused by the alternative KAT1 enzyme or
by other enzymes that exhibit KAT activity. To analyze a
neuroprotective effect of endogenous KA in vivo, Sapko et al.
[66] induced excitotoxic lesions by the injection of QUIN in
14-day-old KAT2™~ mice. In comparison to wild-type mice,
the lesion volumes were significantly increased in the
knockout. If the same experiment was performed in 2-
month-old mice, the lesion volumes were similar in
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knockout and wild-type animals. This suggests that the
CNS-specific synthesis of KA by KATs represents a neuro-
protective mechanism, which at least in part counteracts the
neurotoxic effects of QUIN.

The neurotoxic effects caused by chronical induction of
the kynurenine pathway have been analyzed in several
diseases. Mackay et al. [67] reported an increased Trp
katabolism to kynurenine but not to QUIN in the serum
from patients with brain injuries even several years after
injury. They proposed that this might be a result of
increased activity of IDO and/or TDO. QUIN accumulates
within the cerebrospinal fluid (CSF) of humans after
traumatic brain injuries [68] and is increased in the CNS
but not in the blood of gerbils after cerebral ischemia [69].
It is therefore tempting to speculate that trauma-induced
IDO activation induces secondary neuronal damage via
accumulation of neurotoxic metabolites. First evidence for
this hypothesis derives from studies of spinal cord injury.
Inhibition of 3-HAA oxygenase attenuated QUIN accu-
mulation after spinal cord injury and reduced the severity
of injury-related functional deficits [70, 71]. A similar
mechanism may also be active in HIV encephalopathy.
HIV-infected macrophages within the CNS express IDO.
The way of its induction by the virus is currently not clear,
but it is plausible that IFN-y or even virus particles them-
selves trigger it [72]. However, HIV-1 is known to persist
within the CNS [73], and as discussed above, its persistence
seems to involve IDO-mediated immune deviation [30].
Thus, the chronic production of neurotoxic substances such
as QUIN may cause part of the damage leading to HIV
dementia [74].

Increasing data show the involvement of the kynurenine
pathway in several neurodegenerative diseases such as
Parkinson’s, Huntington’s, and Alzheimer’s disease, epi-
lepsy, and amyotrophic lateral sclerosis and in mental
disorders such as schizophrenia and depression [75]. It is
remarkable that even an acute injury of the brain induces
long-lasting alterations in Trp degradation with a shift
toward detrimental metabolites [67]. The respective
enzymes thus are promising therapeutic targets for the
future. However, it is noteworthy that many human cells
respond to stimulation with IFN-y, Tumor necrosis factor-o
(TNF-«), and LPS by much higher IDO activities than their
murine counterparts. On the other hand, only the latter
synthesize high amounts of reactive nitrogen species via
inducible nitric oxide synthase induction in response to
stimulation [76] rendering it difficult to transfer results from
animal models to the human situation.

While the detrimental effects of QUIN and 3-HAA to
neurons are well described, the cell types producing
these metabolites under pathologic conditions are ill
defined. In primary cell cultures, microglia, astrocytes,
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and neurons have been shown to express IDO upon
IFN-y stimulation. Mass spectrometry of QUIN in these
cultures revealed its degradation by astrocytes and
neurons, suggesting that they do not contribute to
neurotoxicity but to neuroprotection. On the other hand,
stimulated microglia synthesize high amounts of QUIN
[46]. This in vitro observation is in line with the immune
histological identification of IDO-positive microglia/mac-
rophages in EAE and viral encephalitis [15, 72].
Unfortunately, no marker exists to differentiate between
intrinsic microglia and recruited macrophages. In activated
macrophages, the kynurenine pathway is much more
effective than in activated microglia [6, 46], and therefore,
macrophages may provide significantly more harm for
neurons.

Under physiological conditions, most Trp metabolites of
the brain are primarily produced outside of the CNS. The
first substrate for the kynurenine pathway, Trp, is trans-
ported into the CNS by large neutral amino acid trans-
porters [77]. However, in the absence of local inflammatory
signals, the vast majority of Trp is not degradative to
neurotoxic substances [78]. L-Kynurenine is also imported
into the CNS by large neutral amino acid transporters and
subsequently taken up by astrocytes and maybe microglia
[79]. 3-Hydroxykynurenine is incorporated in the same way
as L-kynurenine. Both substrates are then degradative
depending on the distribution of downstream enzymes and
the glial subtype.

Activated microglia secrete high amounts of neurotoxic
3-HAA and QUIN, while astrocytes synthesize but do not
release significant quantities of QUIN [46]. In cell culture of
human astrocytes, IFN-y induces not only the degradation of
neurotoxic 3-HAA and QUIN but also enhances the
production of neuroprotective KA. [46]. Thus, astrocytes
might counteract the production of neurotoxins by microglia.

In the CNS of gerbils, 85% of extracellular QUIN is
imported from the blood into the brain under normal
conditions, while almost all (96%) QUIN is produced
within the CNS after intracerebral LPS stimulation. After
systemic immune activation, almost all QUIN within the
CNS is imported from the blood raising the intriguing
question of whether peripheral QUIN production, e.g.,
during infection, may provide harm to the brain [78].

In summary, kynurenines produced in the periphery can
enter the CNS through the blood—brain barrier, where they
can be taken up and degraded by glial cells in an IDO-
independent way. It is currently unclear whether this
capacity of glial cells can fully protect neurons under all
conditions of peripheral pathology. In case of local damage,
astrocytes seem to eliminate neurotoxins produced by
microglia. If this delicate balance is deranged by infiltrating
macrophages remains to be evaluated.

The kynurenine pathway in EAE and MS

Like many autoimmune diseases, MS is characterized by
waxing and waning inflammation in the target organ. What
initiates the onset of individual attacks is poorly under-
stood, but there is some insight from animal models into
what drives their termination and what cause tissue damage.
In EAE, the animal model for MS, autoimmunity to myelin
epitopes is induced by immunization with myelin epitopes
or transfer of myelin-specific Thl cells. Subsequently,
leukocytes accumulate in perivascular cuffs around brain
blood vessels. Many of these cells are Thl lymphocytes,
but there is also a high percentage (depending on the
model, approx. 50%) of macrophages [80]. As a result of
this inflammation, myelin is phagocytosed by macrophages
and activated microglia. In addition, there is a significant
degeneration of axons and neurons, which for long has
been neglected [18, 19].

During the acute phase of EAE, tissue levels of the
neurotoxin QUIN are increased in the lumbar and sacral
parts of the spinal cord. Interestingly, the clinical disease
severity and the QUIN concentration in the cervicolumbar
spinal cord correlate well [81]. Immunohistochemical
studies have shown that enzymes of the kynurenine
pathway such as the IDO and kynurenine 3-mono-xygenase
are mainly expressed by infiltrating macrophages/activated
microglia in the perivascular/juxtavascular area during the
acute phase of EAE [15, 56]. IDO expression and activity is
increased in the acute and remission phase of EAE. The
main inducer of IDO, the proinflammatory cytokine IFN-y,
is the key cytokine of encephalitogenic Th1 cells. TNF-« is
also secreted by these Thl cells and acts synergistically

o apoptosis

\3

Interferon-y fisuio-

" degeneration
metabolites

Fig. 2 The dual role of IDO: immune regulation and bystander
damage. Immune regulation (left side): Infiltrating Thl cells (7)
secrete high amounts of interferon-y inducing IDO expression in
microglia (MG). Through the subsequent Trp depletion and production
of toxic metabolites, T cell growth is inhibited, and apoptosis is
supported. This negative feedback loop may underlie the self-
limitation of inflammation not only in MS. Bystander damage (right
side): IDO induction causes enhanced production of neurotoxins such
as QUIN and 3-HAA. Excessive production during neuroinflamma-
tion is likely to contribute to neurodegeneration
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with IFN-y on the induction of IDO in macrophages and
microglia [2, 6].

In analogy to the experiments by Munn et al. [33] in the
placenta, the net effect of IDO induction during neuro-
inflammation has been tested by in vivo inhibition experi-
ments. Daily application of the IDO inhibitor 1-methyl-Trp
clearly exacerbated disease development and reduced the
clinical recovery [14, 15]. The effects of IDO inhibition
were similar when the treatment started in the preclinical
phase [14] or at the onset of the acute phase of disease [15].
This observation suggests that the inhibition of IDO in the
periphery is not crucial for disease development. Conse-
quently, the local induction of the kynurenine pathway and
the accompanying synthesis of Trp metabolites appear to
downmodulate autoimmune CNS inflammation.

Recently, the anti-inflammatory effect of the kynurenine
pathway reaction products was shown by intraperitoneally
injection of 3-HAA and oral administration of its synthesized
derivate N-3,4-dimethoxycinnamoyl anthranilic acid (DAA).
Both substances significantly reduced the relapse phase in
immunized SJL mice [16]. Splenocytes from animals that
had been treated with 3-HAA or 2,4-DAA showed decreased
proliferation of T cells and expression of IFN-y and TNF-ox.
Moreover, treatment of immunized mice with 3-HAA or 3,
4-DAA also shifted inflammatory lymph node cells to a
potentially regulatory cell type with a decreased IFN-y
secretion and an increased production of IL-10 [16].

From all these studies in EAE, one can interpret IDO
induction by IFN-y-secreting Thl cells as a protective
negative feedback loop eventually terminating neuroin-
flammation [15]. However, this interpretation by no means
excludes significant bystander damage through toxic Trp
metabolites as the downside of such self-limitation (Fig. 2).
Conversely, the apparent tight control over IDO expression
in the brain supports this view. Currently, little is known as to
the induction of IDO and the subsequent synthesis of
bioactive kynurenines within the CNS during MS. Kepplinger
et al. [82] described an increase in KA in the CSF of MS
patients during relapse, and Barans et al. [83] described low
activities of the KA synthesizing enzymes KAT I and KAT II
in postmortem MS brains. The latter results were supported
by the analysis of CSF probes from MS patients where a
decrease in KA was found in the relapse phases [84].
However, changes in the synthesis of KA do not necessarily
lead to an alteration in the synthesis of QUIN or 3-HAA.
Consequently, modulation of the kynurenine pathway in
human MS remains to be further investigated.

The overall beneficial effects of IFN-f3 treatment in
MS are poorly understood but often explained by a shift
from Thl to Th2-mediated immune responses. Interest-
ingly, IFN-f3 induces the kynurenine pathway and the
synthesis of QUIN in human macrophages, although to a
lesser extent than IFN-y [5]. This is in line with the
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observation that treatment with IFN- increased the
relative IDO activity in blood serum samples (Kyn/Trp)
from MS patients [85]. However, increased IDO activity
was not found in specimens deriving from patients who
received long-term treatment with IFN-f3. This is of note, as
QUIN and 3-HAA induce secondary degeneration of neurons
and potentially of oligodendrocytes [86]. This must be taken
into account when testing therapeutical strategies targeting the
kynurenine pathway in MS. Moreover, the contribution of
Trp metabolites to the increasingly appreciated axonal and
neuronal damage in MS [19] must be further explored.
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