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Abstract The Ras signaling pathway controls important
cellular responses to growth factors, and somatic mutations
in RAS genes and other components of the Ras pathway,
such as PTPN11 (encoding the protein-tyrosine phospha-
tase SHP-2) and BRAF, are found in human malignancies.
Ras proteins are guanosine nucleotide-binding proteins that
cycle between active guanosine triphosphate (GTP)-bound
and inactive guanosine diphosphate (GDP)-bound confor-
mations. Neoplasia-associated Ras mutations frequently
affect amino acids G12, G13, or Q61 and decrease the
intrinsic guanosine triphosphatase (GTPase) activity by ten-
to twentyfold. The GTPase activity is crucial for Ras
inactivation by hydrolysis and release of a phosphate group
from Ras·GTP to produce Ras·GDP. We and others have
recently discovered germline mutations in the KRAS gene
in individuals diagnosed with Noonan and cardio–facio–
cutaneous (CFC) syndrome, two clinically overlapping
disorders characterized by short stature, distinct facial
anomalies, heart defects, and other abnormalities. Noonan
syndrome-associated mutations V14I and T58I K-Ras
activate Ras but have milder biochemical effects than
somatic mutations encountered in cancers, offering an
explanation why these K-Ras lesions are tolerated during
embryonic development. Together with recent findings of
BRAF, MEK1, and MEK2 mutations in CFC syndrome and HRAS mutations in Costello syndrome, another clinically

related disorder, it has now become clear that Noonan-like
features (short stature, relative macrocephaly, facial anoma-
lies, learning difficulties) that are found in these three
related disorders are a result of constitutive activation of the
Ras–Raf–extracellular signal-regulated and mitogen-acti-
vated protein kinase pathway.
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Abbreviations
CFC
syndrome

cardio–facio–cutaneous syndrome

CS Costello syndrome
GAP GTPase activating protein
GDP guanosine diphosphate
GEF guanosine nucleotide exchange factor
GTP guanosine triphosphate
JMML juvenile myelomonocytic leukemia
LS LEOPARD syndrome
MPD myeloproliferative disorder
NCFC
syndrome

neuro–cardio–facial–cutaneous
syndrome

NF1 neurofibromatosis type 1
NFNS neurofibromatosis–Noonan syndrome
NS Noonan syndrome
N-SH2 n-terminal src-homology 2 domain
NS/JMML Noonan syndrome in association with JMML
PTPase phosphatase domain

RAS genes

The three human RAS genes, KRAS (isoforms A and B),
NRAS, and HRAS (isoforms 1 and 2), encode small, highly
conserved guanosine triphosphatases (GTPases) that relay
growth signals to a number of effector proteins to control
fundamental cellular pathways (reviewed in [1]). Ras
proteins act as molecular switches by cycling between an

active guanosine triphosphate (GTP)-bound and an inactive
guanosine diphosphate (GDP)-bound state. Stimulated
growth factor receptors recruit a number of adaptor proteins
that activate guanosine nucleotide exchange factors (GEFs)
to remove guanine nucleotides from Ras. Ras is then
activated by binding to GTP, which is present at a tenfold
higher concentration than GDP. In the GTP-bound state, the
two switch regions of Ras (switch I and II) change their
conformation. This conformational switch allows Ras to
bind and activate Ras effector proteins such as Raf-1. The
“on” position is turned “off” by an intrinsic GTPase
activity, which hydrolyses and releases a phosphate group
from Ras·GTP to produce Ras·GDP. The conformational
transition of the switch I and II regions that is associated
with this reaction disrupts the interaction between Ras and
its effectors. The intrinsic GTPase activity of Ras is slow
and accelerated about 105-fold by GTPase activating
proteins (GAPs), such as neurofibromin or p120 GAP.
These GAPs mediate Ras·GTP hydrolysis by inserting an
arginine residue (arginine finger) into the phosphate-
binding pocket of Ras (reviewed in [2, 3]; Fig. 1).

For several decades, it has been well recognized that
RAS genes are frequently mutated in human cancers
(reviewed in [4]). These mutations predominantly lead to
amino acid substitutions at residues G12, G13, or Q61 and
lock Ras in the active GTP-bound state by diminishing the
intrinsic Ras GTPase activity and/or by causing resistance
to GAPs. These mutations were long believed to occur only
as somatic events, and in a mouse model system,
widespread expression of endogenous K-RasG12D leads to

Fig. 1 Ras cycles between an
active GTP-bound and an inac-
tive GDP-bound conformation.
In the active state, the two
switch regions, switch I and II,
change their conformation
allowing Ras to activate effector
proteins. The intrinsic GTPase
hydrolyzes a phosphate group to
produce Ras·GDP. This reaction
is accelerated by GTPase acti-
vating proteins (GAPs). A sim-
ilar version of this figure has
been previously published [61],
republication with permission
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embryonic death [5]. The highest incidence of RAS
mutations are found in adenocarcinomas of the pancreas
(90%), the colon (50%), and the lung (30%), in thyroid
tumors (50%), and in myeloid leukemia (30%) [4].

Noonan syndrome and related disorders

Noonan syndrome (NS; MIM 163950) is an autosomal
dominant disorder characterized by short stature, distinct
facial anomalies (Fig. 2), a typical spectrum of congenital
heart defects, including pulmonic stenosis, hypertrophic
cardiomyopathy, and septal defects, and developmental
delays (reviewed [6]). The disorder occurs in approximate-
ly 1 out of 2,000 individuals and shares many features with
the much less common disorders of Costello syndrome
(CS), cardio–facio–cutaneous (CFC) syndrome, and lenti-
gines, electrocardiographic conduction defects, ocular
hypertelorism, pulmonary stenosis, abnormalities of the
genitals; retarded growth resulting in short stature, and
deafness (LEOPARD) syndrome (LS) [6]. Patients with
these disorders have in common Noonan-like facial
features, a similar spectrum of cardiac anomalies, delayed

growth, and—to a variable degree—developmental retar-
dation, which is stronger in patients with CS or CFC. In
addition, each of these disorders is characterized by unique
phenotypic patterns: (1) CS patients have nasal papilloma-
ta, loose skin, and a strong predisposition to tumors (mainly
rhabdomyosarcoma) [7]; (2) CFC patients have ectodermal
abnormalities with sparse curly hair, sparse, or absent
eyelashes [8]; and (3) LS patients have multiple lentigines
typically emerging during adolescence [6]. NS and LS may
be familial with an autosomal dominant inheritance pattern
(except for rare instances of NS where rare recessive
inheritance has been suspected [9]), but most cases of these
disorders and virtually all of the more severe conditions,
CFC and CS, occur sporadically, suggesting dominant new
mutations. Until recently, the genetic basis for these
disorders was unknown. It was not clear whether they
represented genetically distinct entities or if they were
different (allelic) variants of a common disorder. By linkage
analysis in families with NS, the disorder was mapped to
chromosome 12q24 [10], and subsequently, it has been
shown that approximately 50% of patients with NS carry
germline mutations in PTPN11 [11]. The PTPN11 gene
encodes for tyrosine-protein phosphatase (SHP-2), a phos-

Fig. 2 a Craniofacial phenotype
of young children with NS,
CFC, and CS aged between 10
and 18 months. Their genotypes
are PTPN11 G503R, BRAF
K499E, and HRAS G13C, re-
spectively. Note the similarities
of facial features, including
hypertelorism, broad forehead,
and low-set ears. Coarse facial
features are particularly typical
of CS. b The same disorders in
older children and adolescents
with the mutations PTPN11
N308D, MEK2 F57I, and HRAS
G12S, respectively. Facial fea-
tures become more distinct with
age, although the similarities of
the three syndromes are still
evident. Courtesy of Prof.
Rainer König, Frankfurt (images
of CFC patients) and Prof. Ker-
stin Kutsche, Hamburg (images
of CS patients)
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phatase that relays growth signals from activated growth
factor receptors to other signaling molecules, including Ras
(reviewed in [12]). Most PTPN11 mutations are predicted
to disrupt the auto-inhibition of the catalytic phosphatase
domain (PTPase) by the N-terminal src-homology 2 (N-
SH2) domain thereby promoting the active conformation of
the protein [12]. PTPN11 mutations were not found in
patients with CS or CFC syndromes (reviewed in [6]).
However, specific mutations in the same gene were
uncovered in patients with LS [13]. Surprisingly, in contrast
to NS, LS mutants are catalytically defective and may act as
dominant negative mutations [14, 15]. Molecular modeling
and biochemical studies suggest that LS mutations disrupt
the SHP-2 catalytic domain to result in open, inactive forms
of SHP-2. Thus, the pathogenesis of LS and NS is distinct.
It is unknown why the clinical phenotypes of LS and NS
are similar although the underlying mutations have opposite
biochemical effects. There are several possible explanations
for this paradox. These are discussed in detail by Kontaridis
et al. [14]: (1) The NS and LS phenotypes potentially result
from differential effects of mutant SHP-2 on different
receptor tyrosine kinase pathways at distinct developmental
times. For example, recent work by others suggests that the
main effect of NS mutants is to enhance epithelial–
mesenchymal transformation/mesenchymal cell prolifera-
tion by increasing ErbB2/3 (and/or ErbB3/4) signaling. By
contrast, LS mutants antagonize HB-EGF/ErbB1 signaling
at later times [14]; (2) Other phenotypes common to NS
and LS such as facial abnormalities and short stature might
involve defective migration and/or differentiation, which
might result from increased or decreased signaling involv-
ing the same pathway; (3) Yet, undetermined or poorly
understood functions of SHP-2 might underlie pathogenesis
of one or both of these disorders [14].

The Noonan gene PTPN11 also acts as oncogene

One of the myeloid malignancies that has been found to be
particularly related to perturbed Ras signaling is juvenile
myelomonocytic leukemia (JMML), a myeloproliferative
disorder (MPD) of early childhood [16], in which muta-
tions occur in NRAS or KRAS (∼25%) or in NF1 (clinical
diagnosis of neurofibromatosis type 1 in ∼11%) [17–19].
In a murine model, somatic activation of K-Ras in
hematopoietic cells initiates a rapidly fatal MPD modeling
JMML [20, 21]. Despite a low annual incidence estimated
at 1–2 per million, JMML has attracted many clinical and
basic researchers because of the severe and often lethal
clinical course and the association with NS [22] and
neurofibromatosis type 1 (NF1; MIM 162200; reviewed
in [19]). Shortly after the discovery of PTPN11 mutations
in individuals with NS, specific germline PTPN11 alter-

ations were identified in young children with NS who
developed a JMML-like disorder within the first few weeks
of birth (NS/JMML) [23, 24], and somatic PTPN11
mutations were subsequently uncovered in JMML cells
from 35% of children with non-syndromic JMML [23–25].
Somatic PTPN11 mutations also occur in B-cell precursor
acute lymphoblastic leukemia [26] and rarely other
malignancies [27]. Somatic mutations observed in patients
with JMML differ from those mutations found in patients
with NS/JMML and from those detected in patients with
NS alone. In sporadic JMML, the most common
mutation predicts an E76K substitution. This mutation
has never been found in patients with NS (N308D most
common) or NS/JMML (T73I most common) [6, 25]. In
elegant functional experiments, several groups have shown
that somatic PTPN11 mutations associated with sporadic
JMML exhibit stronger biochemical and biological effects
than germline PTPN11 mutations, leading to the concept
that only milder SHP-2 activation may be tolerated during
embryonic development [28–30]. The situation is too
complex however to be explained by a simple model of
strong activating somatic vs less activating germline
mutations alone. Enzymatic, structural, and mathematical
modeling analyses show that these mutants can affect basal
activation, SH2 domain-phosphopeptide affinity, and/or
substrate specificity to varying degrees, and there is no
absolute correlation between the mutants’ extents of basal
activation and the diseases they induce [31]. A murine
knock-in Ptpn11D61G/+ model of NS has been constructed,
revealing that endocardial cushions of these mice have
increased activation of extracellular signal-regulated kinase
[32]. This finding suggests that the phenotype exhibited
by PTPN11 mutations is mediated through hyperactive Ras
signaling.

Neurofibromatosis type 1

JMML is also associated with NF1 (MIM 162200), an
autosomal dominant disorder that occurs in 1 of 4,000
births and is characterized by pigmentary anomalies
(multiple café-au-lait spots) and a predisposition to benign
and malignant tumors of mainly neurogenic origin. The
disorder is caused by mutations in the NF1 tumor
suppressor gene, which encodes the RasGAP neurofibro-
min. The incidence of JMML is increased approximately
200-fold in children with NF1 (reviewed in [33]). Loss of
the normal NF1 allele (LOH, loss of heterozygosity) is
common in JMML cells from children with NF1 [34, 35],
and this results in severely deregulated Ras signaling and
causes aberrant growth of hematopoietic progenitor colo-
nies in vitro [36]. In addition, adoptive transfer of
homozygous Nf1 mutant fetal liver cells or somatic
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inactivation of a conditional mutant Nf1 allele in hemato-
poietic cells induces a JMML-like MPD in mice [37, 38].
Remarkably, many NF1 patients have mild features
reminiscent of NS [39], and some may even develop a
mixed phenotype, which has prompted the definition of
neurofibromatosis–NS (NFNS; MIM 601321) as a separate
entity. Most patients who are diagnosed with this condition
harbor NF1 mutations without an obvious genotype–
phenotype correlation [40].

Additional genes mutated in Noonan syndrome

To date, the identification of additional NS genes was
hampered by the fact that the vast majority of PTPN11
mutation-negative NS-patients represent sporadic cases
[41], rendering genetic linkage studies impossible. How-
ever, recent findings by our group and others identified
germline mutations in components of the Ras signaling
pathway in individuals with NS or related syndromes [42–
46]. We systematically screened patients with NS and CFC
for RAS mutations after having discovered a novel de novo
germline KRAS mutation in a patient with NS/JMML [42].
The mutation c.173C>T (p.T58I) detected in the index
patient affects a highly conserved amino acid residue of K-
Ras flanking the switch II region (amino acids 59–67) of
the protein. De novo KRAS mutations were identified in 4
of 174 sporadic cases with NS previously excluded for
PTPN11 mutations. All germline KRAS mutations were
novel and not known to occur in human cancer. NS-
associated KRAS alleles included recurrent mutations, V14I
and D153V. The latter was confirmed in patients with more
severe phenotypes [44, 46]. Analogous to the dual role of
PTPN11 as both oncogene and developmental gene, this
discovery led to the hypothesis that activating KRAS
mutations do not only act as oncogenes; aberrant K-Ras
can also cause developmental disorders when mutations—
probably conferring relatively mild effects—emerge in the
germline. To prove our hypothesis, we studied the
functional properties of V14I and T58I K-Ras [42] and
found both NS-associated mutants V14I and T58I to have
intermediate biochemical (e.g., ability to hydrolyze
Ras·GTP) and biological properties (e.g., growth behavior
in response to growth factors after retroviral transfection)
when compared with wild-type K-Ras and the oncogenic
mutant K-Ras G12D [42].

The two aforementioned mutations, V14I and T58I, are
located adjacent to amino acid residues that are typically
altered in cancer (G12, G13, or Q61). They locate to
regions of Ras that are known to be involved in GTP
binding. By contrast, in a subset of NS patients, KRAS
mutations lead to substitutions in protein regions not
obviously involved in GTP binding (e.g., D153V K-Ras),

indicating the existence of previously unappreciated mech-
anisms of Ras activation. Carta et al. [46] performed a
structural analysis on the two K-Ras mutants, V152G and
D153V, that these investigators identified in two patients
with severe NS. Their computer-based analysis indicated
that both mutations disturb the conformation of the guanine
ring-binding pocket favoring the active GTP-bound confor-
mation by increasing the guanine nucleotide dissociation
rate. Additionally, these residues are predicted to be
important for binding the RasGEF son of sevenless (SOS)
[47]. In the meantime, we have detected a number of
additional KRAS mutations associated with NS (Q22R,
P34L, P34Q, I36M), all of which affect highly conserved
amino acid residues and are assumed to confer (mild) gain
of function [48]. In this study on additional 236 PTPN11-
negative NS patients, we detected KRAS mutations in seven
individuals [48], thus confirming that KRAS accounts for
less than 5% of NS cases.

Genes mutated in cardio–facio–cutaneous syndrome

In our initial study, we also discovered a novel K-Ras
mutation, K-Ras P34R, in 1 of 12 patients with CFC
syndrome [42]. This mutation is now known to be located
in another mutational hotspot associated with NS [48]. A
P34R H-Ras lesion has been previously characterized by
Stone et al. [49]. These investigators employed a mutagen-
esis strategy during which they found that H-Ras P34R
binds to GTP in vivo. In vitro, H-Ras P34R is not
stimulated by GAPs [49]. Considering the highly conserved
G-domain structure of Ras proteins, the P34R K-Ras
mutation presumably has very similar (if not identical)
biochemical properties. The presence of K-Ras mutations in
CFC syndrome was confirmed by Niihori et al. [44] who
analyzed DNA specimens from 43 individuals with CFC
syndrome and found two KRAS germline mutations (G60R
and D153V) in three patients. Notably, the D153V K-Ras
mutation also has been described in patients with NS [42,
46, 48]. In a more recent study, we identified additional K-
Ras mutations in individuals with CFC or NS/CFC
including Q22E and F156I. The observations that muta-
tions, such as K-Ras F156I, may be associated with an
overlap of NS and CFC suggest that there is not a very
strict genotype–phenotype correlation [48]. Simultaneous
to the finding of mutated K-Ras in CFC, Niihori et al.
identified BRAF germline mutations in 16 of 43 CFC
patients [36]. At the same time, another group found BRAF
germline mutations in 18 of 23 CFC patients and MEK1 or
MEK2 germline mutations in 3 of the remaining 5 CFC
patients studied [45]. Like PTPN11 and RAS, BRAF is a
known oncogene, and somatic mutations are frequently
found in cancer [50].
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The molecular basis of Costello syndrome

Shortly before germline KRAS mutations were described in
patients with NS and CFC, HRAS germline mutations were
reported to cause CS [43]. Later, other investigators also
detected these mutations in the majority (∼90%) of CS
patients studied [51–53]. Surprisingly, these germline
lesions affect the same amino acid residues of H-Ras that
are also mutated in cancer. The observation that activating
oncogenic H-Ras mutations affecting codons G12 or G13
are tolerated in the germline, whereas oncogenic K-Ras
mutations affecting these residues are not, underscores the
notion that although H-Ras and K-Ras are structurally
highly similar, they play different roles during embryonic
development. Knockout studies have shown that only K-
Ras is essential for embryonic development, whereas N-Ras
and H-Ras are not [54]. Different phenotypes exhibited by
mutations in various Ras isoforms may be due to
heterogenous expression patterns of these proteins. Addi-
tionally, various Ras isoforms undergo different processing,
e.g., de/repalmitoylation kinetics that regulate subcellular
localization and activity of Ras isoforms [55, 56]. Although
the vast majority of patients with CS harbor HRAS
mutations, very recent studies have indicated that a CS
phenotype may occasionally be associated with specific
mutations of BRAF [57] or KRAS [48]. It remains to be
determined if these patients also have the increased risk of
neoplasia, which is typical of CS. Therefore, we doubt it is
useful to classify these patients with mutations in Ras
pathway genes other that HRAS as CS.

Neuro–cardio–facial–cutaneous syndrome

The molecular explanation of how different germline K-Ras
or H-Ras mutations cause a wide spectrum of different
phenotypes is still largely unknown. Activating germline K-
Ras mutations may be associated with the broadest
spectrum of clinical manifestations [42, 44, 46]. However,
these syndromes are not just a less or more severe
expression of essentially the same disorder. Therefore, it
is conceivable that the different RAS mutations associated
with divergent phenotypes do not only vary quantitatively
in their degree of constitutive activation. Unique lesions
may also have different qualitative effects on downstream
signaling pathways. Additionally, modifier loci may play a
role. Recently, the term ‘neuro–cardio–facial–cutaneous’
(NCFC) syndrome [58] was coined to illustrate that
clinically overlapping disorders of the NS spectrum,
including NF1, NS, CS, LS, and CFC syndrome, are
caused by mutations in components of the Ras signaling
pathway (Fig. 3). We speculate that the phenotypic
variability between these disorder results from (1)

different expression patterns of affected genes/isoforms
and (2) variable mechanisms by which certain mutants
interact with downstream effectors or regulatory proteins;
these mutants therefore perturb Ras signaling in varying
degrees. Further research is required to determine the
basis of genotype–phenotype correlations in NS and
related disorders.

Fig. 3 The Ras signaling pathway relays growth signals from
activated growth factor receptors to the nucleus. Somatic mutations
in several molecules of the pathway have been implicated in cancer. It
is now recognized that germline mutations of identical molecules may
cause disorders of the Noonan spectrum. A similar version of this
figure has been previously published [61], republication with
permission

Fig. 4 Model illustrating the molecular basis of how Ras signaling
may be increased in patients with neurofibromatosis type 1 leading to
Noonan-like feature in these patients. Although only one NF1 allele is
inactive in the germline, tumors of patients with neurofibromatosis
type 1 somatically lose the second, wild-type NF1 allele
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Neurofibromatosis Noonan syndrome and NS-like
features in neurofibromatosis

The rapidly increasing knowledge of the Ras signaling
pathway and its relation to developmental disorders of the
NS spectrum suggests that Noonan-like features are the
clinical correlate of any genetic abnormality occurring in
the germline and leading to a generalized mild deregulation
of the Ras signaling cascade(s) during embryonic develop-
ment. The new insights gained by recent research in this
field may explain the phenotypic similarities between
individuals with NF1 and NS. In addition to the well-
known symptoms defining NF1, namely multiple café-au-
lait spots and cutaneous neurofibromas, patients with NF1
are known to exhibit NS features, including relative short
stature, relative macrocephaly, mild facial anomalies, thorax
deformities, and learning difficulties. NFNS probably just
represents the extreme end of a highly variable expression
of these features [59]. Although the association of NF1 and
NS was described in one family with independently
segregating mutations in NF1 and PTPN11 [60], this
double chance event is not the causative mechanism in
many other patients with NF1 and NS-like features. The
majority of patients with the NFNS phenotype have been
found to harbor NF1 mutations, some of which also occur
in patients with “pure” NF1 [40, 59]. We propose that the
NS-like features that are often present in patients with NF1
are potentially due to NF1 haploinsufficiency leading to
decreased inactivation of Ras·GTP. This might cause mild
constitutional deregulation of Ras signaling, which may
occasionally reach a level that leads to a NF1-NS
phenotype. Frequently, patients with NF1 have mild
features of NS. These may be explained by a mild
activation of Ras, which is due to loss-of-function of one
NF1 allele. Unknown genetic modifiers may play a role.
Malignant cells arising in patients with NF1 somatically
loose the wild-type NF1 allele. This second somatic hit
ablates the GAP function of neurofibromin resulting in
strongly enhanced Ras signaling (Fig. 4).

Work in progress

Although the vast majority of cases with CFC and CS are
explained by mutations in KRAS, BRAF, MEK1, MEK2,
and HRAS, the underlying genetic defect in 50% of NS and
10–30% of CFC cases remains unknown. Based on the
assumption that the NS phenotype results from hyperactive
Ras signaling, we and others are currently screening DNA
specimens from patients for mutations in genes encoding
for other components, including negative regulators, of the
Ras pathway. Analogous to PTPN11 and KRAS, currently
unknown genes of the Ras pathway mutated in NS are

presumably playing double roles in both development and
oncogenesis. Mutations in BRAF and MEK1/2 have been
excluded as major NS genes (M.Z., unpublished data).

It will be of interest to study how the different expression
patterns of various RAS genes and isoforms influence
clinical phenotypes when these genes/isoforms are mutated
in the germline. It will be crucial to elucidate the structural
mechanisms to understand how these new lesions perturb
signaling on a molecular level. Characterization of the
biological consequences of these mutations will be largely
improved by the construction of murine knock-in models.

Note added in proof After this paper was accepted we uncovered
mutations in SOS1 encoding for the homonymous RasGEF in patients
with NS. Meanwhile, however, two other groups have published
elegant reports on activating SOS1 mutations in approximately 10% of
cases with NS: Roberts AE, Araki T, Swanson KD, Montgomery KT,
Schiripo TA, Joshi VA, Li L, Yassin Y, Tamburino AM, Neel BG,
Kucherlapati RS. Germline gain-of-function mutations in SOS1 cause
Noonan syndrome. Nat Genet. 2006 Dec 3; [Epub ahead of print]
Tartaglia M, Pennacchio LA, Zhao C, Yadav KK, Fodale V, Sarkozy
A, Pandit B, Oishi K, Martinelli S, Schackwitz W, Ustaszewska A,
Martin J, Bristow J, Carta C, Lepri F, Neri C, Vasta I, Gibson K, Curry
CJ, Siguero JP, Digilio MC, Zampino G, Dallapiccola B, Bar-Sagi D,
Gelb BD. Gain-of-function SOS1 mutations cause a distinctive form
of Noonan syndrome. Nat Genet. 2006 Dec 3; [Epub ahead of print]”.
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