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Abstract
Continuous and non-invasive analytical methods, such as Fourier transform near-infrared (FT-NIR), are increasingly utilized 
across various industries, generating substantial data with valuable insights. This study explored the prediction of volatile 
organic compound (VOC) emission from Norway spruce (Picea abies) building materials using a chemometric approach 
that combined FT-NIR spectroscopy and gas chromatography-mass spectrometry (GC-MS) analysis. VOC emission from 
various spruce materials (cross-laminated timber, surface-treated interior spruce panel, and untreated interior spruce panel) 
was measured using GC-MS, alongside the collection of FT-NIR data from the wood surface. By employing multivariate 
statistical analysis and predictive modeling techniques, the study found a clear potential of NIR-based models in predicting 
emission of three key VOCs, �-pinene, hexanal, and benzaldehyde, from spruce building materials. However, the suggested 
approach showed prediction uncertainty, largely due to a small data set. Refining and validating this chemometric approach 
necessitate larger data sets and analysis incorporating a broader range of VOCs. For the proposed approach to replace GC-MS 
in routine applications, further analysis is needed due to the requirement of comprehensive VOC quantification.

1  Introduction

Wood is a renewable material and has certain advantages 
that distinguish it from other common construction materi-
als. The ability of trees to sequester carbon through pho-
tosynthesis, the many application areas of wood and the 
fact that wood products can be reused and recycled makes 
it a sustainable and renewable resource, if properly man-
aged (Pajchrowski et al. 2014). However, wood and wood 
building products release VOCs, compounds which primar-
ily arise from resin substances produced during secondary 
metabolism in trees, but are also emitted from anthropogenic 
sources such as substances for surface treatment of wood 
building products (Fineschi et al. 2013; Englund 1999). 
VOCs are defined as organic substances with low boiling 
points (50–100 ◦ C to 240–260 ◦C), present in gaseous form 

at ambient conditions (EPA 2023). Accumulation of VOCs 
in poorly ventilated indoor spaces raises concern about their 
impact on human health (Adamová et al. 2020; Asif et al. 
2022; Alapieti et al. 2020). As a result, the assessment of 
indoor air quality has become increasingly important, con-
sidering that human exposure to VOCs depends on their 
concentration in indoor environments (Kotzias 2021). Two 
trends in the building sector are of particular interest with 
regard to indoor air quality and material VOC emission. The 
building sector faces the challenge of reducing their car-
bon footprint in order to reach global sustainability goals, 
and one of the strategies for reaching these goals is to sub-
stitute building products that have high carbon footprints 
with timber-based products (Ali et al. 2020). In addition to 
this, a large percentage of the carbon footprint of a build-
ing is related to the occupational stage, and strategies for 
reducing energy use in this phase include reducing fresh air 
volume in buildings and utilizing natural ventilation (Peng 
2016). The trend toward more airtight buildings and energy-
efficient heating and ventilation systems can significantly 
influence VOC concentration levels (Persson et al. 2019; 
Ge et al. 2023). Consequently, it is increasingly important 
to examine the impact of wood building materials and their 
VOC emission on indoor air quality to ensure sustainable 
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built environments, both with regard to carbon footprint and 
to indoor air quality.

Coniferous wood species emit a number of different 
VOCs, with volatile terpenes being the most prominent 
group, followed by aldehydes (Englund 1999; Pohleven 
et al. 2019). While indoor environments solely influenced 
by wood-related VOCs typically pose minimal health risks, 
their presence can affect perceived indoor air quality, par-
ticularly when they exceed odor thresholds (Alapieti et al. 
2020). Differentiating between anthropogenic VOCs origi-
nating from human activity and biogenic VOCs originat-
ing from plant metabolism, particularly for in situ environ-
mental samples, remains challenging (Pohleven et al. 2019; 
Asif et al. 2022; Kwon et al. 2007; Guo 2011). A standard 
for assessment of VOC emission in indoor environments, 
NS-EN 16516:2017+A1:2020, published by the European 
Committee for Standardization (CEN), involves the meas-
urement of VOC emissions and is used in many European 
labelling schemes of building materials (Standards Norway 
2020). The use of eco-labeled building materials has dem-
onstrated a reduction in VOC concentration in buildings, as 
shown in a Swedish study of indoor air quality conducted in 
preschools (Persson et al. 2019). As the chamber test dura-
tion in the standard is 28 days, data collection of VOC emis-
sion from building materials is time-consuming and costly. 
Faster and more easily implemented analytical approaches, 
such as NIR technology, could be explored as an alternative 
to the chamber emission test.

Since the 1990s the pulp industry has been using NIR to 
optimize the pulping process (Meder 2016). In some cases 
in-line NIR instrumentation is also used to investigate the 
untreated surface of wood. However, a recent study using 
in-line instruments in sawmills identified limitations of time 
and varying spectral responses because of transverse flow 
of timber and different orientation of the wood surfaces 
(radial and tangential) (Meder 2016). NIR spectroscopy 
offers advantages such as high speed and minimal sample 
preparation, making it an excellent tool for rapid screening 
and qualitative analysis (Lavine and Kwofie 2021). How-
ever, its low specificity when dealing with complex matrix 
samples renders it unsuitable for quantitative analysis when 
used alone (Beć et al. 2020). Nevertheless, when combined 
with other analytical techniques, the strengths of different 
methods can be utilized, and the spectral data of organic 
materials can provide a general fingerprint for various char-
acteristics. Previous studies have explored the use of spectral 
data from wood surfaces in combination with multivariate 
statistical methods for the identification and characterization 
of wood samples (Hwang et al. 2016; Lande et al. 2010; 
Flæte and Haartveit 2004; Abe et al. 2022; Cozzolino 2014; 
Schimleck and Tsuchikawa 2021). For example, Flæte and 
Haartveit (2004) demonstrated that NIR spectroscopic 
data, in conjunction with multivariate analysis, adequately 

predicted decay resistance in Scots pine (Pinus sylvestris) 
exposed to the brown rot fungus Poria placenta. This study 
successfully utilized data mining techniques to predict 
specific characteristics of wood samples, achieving high 
correlations between measured and predicted data using 
partial least squares regression (PLSR). Abe et al. (2022) 
could distinguish heartwood from sapwood within a single 
species, suggesting a relationship between NIR spectra of 
conifer species and their characteristic chemical composi-
tion of secondary metabolites. This hypothesis indicates a 
relationship between the NIR spectra of conifer species and 
their signature chemical composition of resin compounds 
such as VOCs. In addition to the aforementioned considera-
tions, machine-learning techniques have shown promise in 
predicting VOC emissions from wood building products and 
estimating human-related VOC emissions (Liu et al. 2023).

The objective of this study was to investigate predict-
ability of VOC emission from Norway spruce (Picea abies) 
building materials using NIR spectroscopic data and multi-
variate regression methods.

2 � Materials and methods

In this study, absorbance data from FT-NIR and VOC 
emission data from TD-GC-MS were collected for Nor-
way spruce (Picea abies) surfaces, to evaluate the predic-
tive power of absorbance data concerning VOC emission. 
Wood samples of 20 mm × 20 mm × 14 mm were analyzed 
in order to fit the optics window of the NIR instrument and 
micro chamber emission tests were performed to fit the small 
wood samples and simultaneously reduce experiment time 
compared to a large scale chamber test.

2.1 � Wood sample collection

Three types of Norway spruce (Picea abies) building mate-
rials were collected from two different production facilities 
located in eastern Norway (as shown in Fig. 1) between 
March 27th and March 29th 2023. All samples were suit-
able for indoor paneling, with a moisture content of approxi-
mately 12%. The sample types collected were cross-lam-
inated timber (CLT), surface treated spruce interior panel 
(SSP) and untreated spruce interior panel (USP). SSP was 
treated with a light colored and waterborne lacquer. The 
spruce wood in all three products originated from plots in 
the eastern part of Norway, from sawmill facilities within 
a radius of 100 km (see Fig. 1). Samples were collected 
from production facilities shortly after production as this 
was advised in the European standard for determination 
of emissions to indoor air, NS-EN 16516:2017+A1:2020 
(Standards Norway 2020).
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The latest surface cutting of the materials was January 
2023 for the SSP and March 2023 for USP and CLT. Test 
specimens for NIR and GC-MS analysis were prepared 
by sawing wood samples into cubes of 20 mm × 20 mm × 
14 mm, maintaining the surface which would be exposed to 
the indoor environment. The appearance of the three spruce 
building materials are shown in Fig. 2. Test specimens were 
covered by aluminium foil and plastic wrapping to reduce 

volatilization during transportation and between experi-
ments. Efforts were made to include extremes of faults such 
as small knots and adhesive joints in the wood surface, but 
samples with large knots or resin pockets were excluded. 
This was because of the small sample surface and as an 
effort to study realistic samples with regard to interior wall 
panel. Both radial and tangential oriented samples were 
included in the study to represent realistic absorbance and 
VOC emission data with regard to in-line production.

The number of wood samples analyzed on FT-NIR and 
GC-MS can be seen in Table 1. Density and moisture con-
tent of the wood samples was also measured, and is pre-
sented in Table 1 as mean values for each product type (the 
complete data set is available in supplement 1 Table S3). 
Moisture content was measured after drying at 103 ◦ C until 
constant weight (maximum ±0.5% of previous weight). 

2.2 � VOC emission measurement

Quantitative analysis of the VOC emission was performed 
by GC-MS (7890B gas chromatograph 5977B mass spec-
trometer, Agilent, Santa Clara, CA, USA) with thermal des-
orption injection (TD 3.5+, Gerstel, Mülheim an der Ruhr, 
Germany). Wood specimens were placed in micro chambers 
( �-CTE250, Markes, Offenbach am Main, Germany) with a 
loading factor of 3.5 m 2/m3 and a flow rate of inert gas (N

2
 

5.0, Istrabenz plini, Koper, Slovenia) through the chambers 
of 50 mL/min, which corresponded to a ventilation rate of 
26 air exchanges per hour. All edges and backside surfaces 
of the wood specimens were covered by low-emitting alu-
minium tape. Emission chambers were kept at 23 ◦ C and 
approximately 50% relative humidity, by introducing ionized 

Fig. 1   Location of sawmill facilities (red) and production facilities 
(black) where Norway spruce building materials were produced and 
collected

Fig. 2   Example surface of 
CLT (a), SSP (b) and USP (c) 
without faults and with faults 
such as adhesive finger joint in 
CLT (d) and knots in SSP (e) 
and USP (f)
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water ahead of the chambers. After 20 min of equilibration, 
air samples of 4 L were collected at the chamber outlet, onto 
conditioned sorbent tubes with 300 mg Tenax TA. Blank 
samples were collected from empty chambers.

Sorbent tubes were subsequently desorbed in the thermal 
desorption GC inlet by heating from 30 to 250 ◦ C at a rate 
of 150 ◦C/min and holding for 10 min. The desorbed sam-
ple was further trapped on the cooled injection inlet (CIS4, 
Gerstel, Mülheim an der Ruhr, Germany), which was kept in 
split mode with a split ratio of 10:1 for 0.5 min. The sample 
was further injected onto the GC column by heating from 10 
to 280 ◦ C at 10 ◦C/s and holding for 1 min.

The GC was run with a flow rate of 1.2 mL/min and an 
HP5-MS column (60 m, 0.25 mm, 0.25 μ m, Agilent, Santa 
Clara, CA, USA). The temperature program used in the GC 
oven is shown in Table 2. The MS transfer line was kept at 
300 ◦ C and the ion source temperature at 230 ◦ C, in electron 
ionization (EI) mode with an electron beam energy of 70 
eV. The mass range scanned was 35–300 m/z, and the gain 
factor for signal amplification was set to 1. The acquisition 
type was performed in scan mode, allowing for the detection 
of a range of mass-to-charge ratios (m/z).

Eleven analytical standards were used for calibration (tol-
uene, hexanal, furfural, ethylbenzene, m-xylene, o-xylene, �
-pinene, benzaldehyde, �-pinene, �-myrcene and 3-carene), 
as well as D8-toluene for internal standard calibration. All 
analytical standards were diluted in dichloromethane, and 
after inspection, the solvent delay was set to 6 min. GC-MS 
data was processed using the Masshunter Qualitative Agile 
2 method performed on total ion chromatograms. Com-
pound identification was performed by search in the NIST17 
database with 10 hits and minimum score of 60. An alkane 
standard was used to calculate the Kovats retention indices 

of both target and non-targeted compounds. See supplement 
1 (Tables S1 and S2) for more information about equipment 
and analytical standards. 

2.3 � NIR data collection

Spectroscopic measurements were performed on an FT-NIR 
spectrometer (MPA II, Bruker Optics, Ettlingen, Germany), 
and data was collected in May 2023. The wood surface of 
20 mm × 20 mm was placed on the sample tray and scanned 
for absorbance with a Quartz TE-InGaAs integrating sphere. 
Each sample was rotated 90 degrees clockwise three times, 
and the average of the four resulting scans was used for fur-
ther analysis. This corresponded to a total number of 840 
NIR scans, which were further averaged to a total number of 
210 averaged scans, one for each wood sample. The spectral 
region used was 14,000 cm−1–3950 cm−1 with a resolution 
of 8 cm−1 , and a phase resolution of 32 scans.

2.4 � Multivariate predictive modeling

Pre-processing of NIR data, quantification of VOCs and 
visualization was performed in R (version 4.3.1, CRAN), 
while statistical analysis and prediction modeling was per-
formed in JMP Pro (version 16.0.0, SAS). Multivariate sta-
tistical analysis was employed due to the large number of 
variables in spectroscopic data compared to the number of 
samples (Hastie et al. 2009). Scattering and baseline distor-
tion was performed to account for effects of different particle 
sizes, crystalline structures and other anatomical features 
(such as grain orientation and heartwood/sapwood ratio). 
This was done by applying multiplicative scatter correction 
(MSC) to the average absorbance spectra within each sample 
type (Miller and Igne 2021). After investigation of the opti-
mal smoothing procedure (testing 17, 25 and 31 smooting 
points and first and second derivatives) the resulting spectra 
were smoothed using a Savitsky–Golay (SG) filter with 31 
smoothing points and a second-degree polynomial. This was 
done to improve the resolution of overlapping bands and 
enhance important peaks in the spectra. Prediction models 
were developed using unprocessed, MSC treated and SG 
filtered data sets to evaluate the best fit with regard to pre-
processing methods.

Pre-processing of the NIR data was based on the entire 
data set, while prediction models were developed using 24 
samples with VOC data. Partial least squared regression 
(PLSR) models to predict VOC emission were constructed 
using absorbance and individual VOC emission data (Hastie 
et al. 2009). The data was divided into training (70% ) and 
validation (30% ) sets, and different validation methods were 
explored (manual division with inclusion of each material 
type in validation set (see details in supplement 1 Table S4), 
4-fold and random holdback with 25% ). Manual division was 

Table 1   Mean and standard deviation (SD) of density and moisture 
content (MC) of wood samples, as well as the number (N) of wood 
samples analysed by FT-NIR and TD-GC-MS

Density ± 
SD [kg/m3]

MC ± SD [%] FT-NIR, N GC-MS, N

CLT 470 ± 56 10.6 ± 0.82 70 8
SSP 500 ± 31 12.4 ± 0.34 70 8
USP 470 ± 38 12.2 ± 0.63 70 8
Total 480 ± 45 12 ± 1.0 210 24

Table 2   Temperature gradient program used in the GC oven during 
VOC analysis

Temp. [ ◦C] Rate [ ◦C/min] Hold [min]

30 – 1
220 10 –
300 30 4
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performed in order to guarantee inclusion of VOC data for 
at least two samples of each building material in the training 
and validation sets to obtain the different concentration lev-
els necessary for linear regression. In addition to PLSR mod-
els, bootstrap forest was tested for generation of a collection 
of decision trees based on random sampling from the data 
set. This was executed to compensate for the small data set 
of 12–24 VOC measurements (Hastie et al. 2009; Saccenti 
and Timmerman 2016). Bootstrap models were divided into 
the 70% training and 30% validation sets manually chosen. 
All 3525 independent variables (NIR wavenumbers) were 
included as terms in the bootstrap forest models and a mini-
mum of 5 sample splits were performed. A standard of 100 
trees in the forest was used and the minimum and maximum 
splits per tree were 5 and 2000, respectively. The sampling 
rate of bootstrap samples from real samples was set to 5 
or 10. The linear correlation coefficient (r2 ) and root mean 
squared error (RMSE) were used to assess the performance 
of all models. In order to assess the importance of specific 
wavenumber bands in the prediction of individual VOCs 
variable importance projections (VIP) from the best PLSR 
models were extracted and compared to previous findings.

3 � Results and discussion

3.1 � VOC emission

Among the eleven target analytes, the four compounds �
-pinene, hexanal, benzaldehyde and 3-carene were quanti-
fied within the linear range in at least two of the three spruce 
materials. Minimum, median and maximum emission con-
centrations of these four VOCs are shown in Table 3. See 
supplement 1 (Tables S5 and S6) for all VOC concentra-
tions, along with median significance measures and calibra-
tion results. 

The VOCs exhibited relatively modest emission lev-
els from all samples, ranging from 0.3 to 14 μg/m3 . The 

remaining target compounds were either not detected or 
detected below their individual linear calibration range. The 
surface treated spruce panel (SSP) emitted higher median 
levels of hexanal, benzaldehyde and 3-carene than the other 
spruce materials, along with a greater TVOC emission. The 
untreated spruce panel (USP) yielded the highest concentra-
tions of the most characteristic conifer VOC, �-pinene. CLT 
generally emitted low concentrations of all the quantified 
target compounds. Given that CLT had the most recently 
cut surface, it was expected to emit higher VOC levels due 
to low surface age; however, factors like natural wood varia-
tion and adhesive presence might underlie this phenomenon. 
The geographical proximity of the spruce trees used for the 
building materials, although within a certain range, does 
not fully eliminate growth variations. In addition to this, the 
proportion of heartwood to sapwood might differ, especially 
between CLT and the two panel products SSP and USP, as 
the products were planed differently and in different facto-
ries. Emission of hexanal and �-pinene is previously found 
to be higher from sapwood of spruce than from heartwood 
(Czajka et al. 2020). However, for the purpose of imple-
menting these prediction models in spruce panel industry 
the models must be independent of the ratio of heartwood 
to sapwood in spruce surfaces. Total VOC emission was 
semi-quantified by toluene equivalents, by including all peak 
areas between n-hexane and n-hexadecane in each total ion 
chromatogram. Although TVOC is a term that gives minimal 
information concerning the speciation of VOCs emitted it 
was included in the models to investigate whether TVOC 
could be predicted from NIR absorbanse data.

In the context of predictive modeling, variance in the 
dependent variable is essential for the model to yield mean-
ingful insights. When the variance in the dependent variable 
is minimal, constructing a predictive model that offers valu-
able insights or accurate predictions becomes challenging 
(Hastie et al. 2009). In such instances, even if a model can 
account for a significant portion of the variance, its practi-
cal use may be limited. Between group variance of VOC 

Table 3   Emission 
concentrations of individual 
VOCs and TVOC from the three 
building materials. ChiSquare 
values and significance 
level from Wilcoxon or 
Kruskal–Wallis tests indicate 
the variation in emission 
concentration between material 
types

[�g/m3] �-Pinene 3-Carene Hexanal Benzaldehyde TVOC

CLT Min 0.4 0.1 2 40
Median 1 0.2 3 57
Max 1 0.3 14 73

SSP Min 0.3 0.1 6 3 100
Median 1 0.3 9 3 140
Max 8 9 12 3 200

USP Min 3 0.1 3 0.3 67
Median 6 0.5 4 1 97
Max 12 0.6 5 3 210

ChiSquare 14 4 12 6 16
p value 0.001 0.1 0.003 0.02 0.0004
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emission was therefore tested to assess the distribution of 
VOC emission included in the prediction. As the VOC data 
was not normally distributed, Wilcoxon or Kruskal-Wallis 
tests were performed to regard the levels of VOC emission 
from the building materials. VOC emission concentrations 
varied between the materials, as seen from the ChiSquared 
values and significance levels in Table 3. �-Pinene, hexanal 
and TVOC showed significantly different median emission 
concentrations in at least two of the three building material 
types, with a p value of less than 0.003.

3.2 � NIR characterization

Average untreated NIR spectra of the three building mate-
rials are depicted in Fig. 3, while spectra processed by 
MSC and SG are shown in Fig. 4. NIR data collected 
and treated with the different pre-treatment methods 
are given in supplement 1 (Tables S7–S10). The wave-
number range was adjusted for illustrative purposes in 
Fig. 4 (8000–3950 cm−1 ), although the regression models 

employed the full range of 14,000–3950 cm−1 . From prin-
ciple component analysis (PCA) and visual inspection of 
the resulting biplot, one outlier was identified and excluded 
from the unprocessed NIR data. More specifically, one of 
the four absorbance spectra of sample CLT55 contained 
only negative values, and was therefore excluded. Preproc-
essing was performed on the whole data set of 210 wood 
samples (70 samples from each material type). Although 
this can introduce some unwanted influence it was neces-
sary in this case on account of the small data set and time-
consuming GC-MS analysis. Inclusion of all 210 samples 
in pre-processing of the NIR data allowed for a broader 
range of variation included in the data set. However, the 
presumption that the quantitative emission data of the 24 
test specimens subjected to micro chamber experiments 
was representative of the whole data set of 210 samples 
was made in this analysis. 

Despite NIR’s moderate chemical specificity due to 
overlapping bands, some trends were present in the NIR 

Fig. 3   Average absorbance of each spruce sample surface in the near 
infra-red region (14,000–3950  cm−1 ). Orange lines indicate CLT 
samples; green lines indicate SSP samples; blue lines indicate USP 

samples; black vertical lines indicate moisture related wavenumbers; 
shaded areas indicate wavenumber regions with visible variation 
between material types

Fig. 4   MSC and SG filtered absorbance of spruce in the near infra-
red region (8000–3950  cm−1 ). Orange lines indicate CLT samples; 
green lines indicate SSP samples; blue lines indicate USP samples; 

black vertical lines indicate wavenumbers of interest; shaded areas 
indicate wavenumber regions with visible variation between material 
types (6200–5500 cm−1 ; 4900–4300 cm−1)
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spectra which can be discussed and compared to previous 
findings (Schwanninger et al. 2011; Sandak et al. 2016). 
Absorbance data of the spruce building materials all 
followed similar trends, although SSP absorbance devi-
ated form CLT and USP in certain regions. Key spectral 
regions linked to wood moisture’s OH-groups were previ-
ously observed around 5187 cm−1 (O–H deformation) and 
6859 cm−1 (O–H stretching combination) (Ercioglu et al. 
2018; Schwanninger et al. 2011). However, at these bands 
CLT had slightly higher peak intensity than SSP and USP 
despite its lower moisture content, and the bands may not 
be significantly correlated with moisture content in spruce 
in this experiment.

Spectral distinctions were particularly evident between 
the three spruce materials in regions 6200–5500 cm−1 and 
4900–4300 cm−1 . The utilization of MSC and SG techniques 
accentuated these differences, as highlighted in Fig. 4. The 
region at 6200–5800 cm−1 was related to the second over-
tone of C-H stretching vibrations in carbohydrates and lipids 
in biological samples (Beć et al. 2020). Variation in this 
region might be related to hexanal or benzaldehyde emis-
sion as aldehydes are secondary oxidation products of lipids 
(Grebenteuch et al. 2021; Risholm-Sundman et al. 1998). 
Zhang and Lee (1997) found that hexanal concentration on 
a silica gel could be predicted by NIR reflectance data in the 
wavenumber range of 6061-5587 cm−1 . As SSP had slightly 
shaper peaks in this range compared to CLT and USP, this 
region might contain information about the hexanal emis-
sion from spruce.

The presence of aromatic compounds in lignin and 
extractives, such as benzaldehyde, is also associated with 
this region of the NIR spectrum. Schwanninger et al. (2011) 
reported that the band at 5974 cm−1 was related to lignin and 
extractives and arose from the first overtone C-H stretch of 
aromatic compounds. Additionally, there were some indica-
tions that bands at 5995 cm−1 and 5938 cm−1 were combi-
nation bands of the aromatic C–H stretch. However, fur-
ther examinations of these bands are still required as they 
might arise from first overtone C–H stretching from methyl 
groups. According to Schwanninger et al. (2011), these 
bands (5995 cm−1 , 5974 cm−1 and 5938 cm−1 ) also corre-
lated strongly with the band at 4690 cm−1 , which arose from 
the combination of aromatic C–H stretch and C=C stretch 
in lignin and extractives. The lower wavenumber region of 
4900–4300 cm−1 might therefore also be correlated to aro-
matic extractive compounds in wood.

Guo et al. (2006) measured absorbance of �-pinene in the 
NIR region and reported a high absorbanse intensity in the 
region 4400–4300 cm−1 , due to combination stretching and 
bending of C–H bonds. From Fig. 4, however, both USP and 
CLT samples have more intense peaks in this wavenumber 
region, while only USP had significantly higher �-pinene 
emissions. This region was also related to C–H stretching 

combination of –CH
2
 and –CH

3
 groups in plants, and the 

variation may arise from other differences in the spruce 
structures (Ercioglu et al. 2018).

The two regions containing noise around 7200 cm−1 
and 5400 cm−1 were smoothed during the pre-processing, 
although without significant disruption to the remaining 
spectra. These regions could be related to phenolic hydroxyl 
groups in lignin (7092 cm−1 and 6913 cm−1 ) and to combina-
tion of O–H stretch and second overtone C-O stretch in cel-
lulose (5464 cm−1 ), respectively (Schwanninger et al. 2011). 
In general, the NIR spectra of SSP varied from those of CLT 
and USP, although there was no visually obvious correlation 
between the main differences in individual VOC emission 
and the discussed spectral regions. Multivariate analysis was 
therefore necessary to interpret the predictive power of the 
absorbanse data.

3.3 � Prediction of VOC emission

Prediction of VOC emission from the three spruce build-
ing materials was performed using VOC emission data 
as dependant variables (N = 12–24) and NIR absorbance 
data as independant variables (p = 3525). Three consecu-
tive pre-treatment methods of NIR data were used to create 
data sets for the regression (unprocessed, MSC and MSC + 
SG), where the unprocessed NIR data was averaged spectral 
results from the four measurements. Two methods for linear 
regression were utilized, namely PLSR and bootstrap forest. 
Prediction models were evaluated by number of factors, F, r 2 
and RMSE. Models resulting in a correlation coefficient of 
the validation set below 0.5 were excluded from the results, 
which are shown in Tables 4 and 5. High correlation coef-
ficients and relatively low error terms were obtained from 
multiple models for �-pinene, benzaldehyde and hexanal. 
However, model deficits like possible overfitting, differences 
in linearity in validation and training sets and small data set 
indicate uncertainty in these predictions. 3-Carene was not 
predicted adequately (r2 < 0.50) by either PLSR or bootstrap 
forest models and TVOC was only predicted quite poorly 
by PLSR models. The poor predictability of 3-carene was 
thought to be a result of low emission concentrations and 
high measurement uncertainty for this analyte.

�-Pinene was most accurately predicted with a PLSR 
model using the unprocessed NIR data and 4-fold valida-
tion. This model had a linearity of 0.86 in the validation 
set and a relative error term of 1.1 μg/m3 . The error was 
comparable to the median concentration of �-pinene from 
both CLT and SSP samples, indicating high uncertainty 
in the prediction model at these low concentrations. �
-Pinene prediction did not improve by random sampling 
in bootstrap models. �-Pinene was predicted with a lin-
earity of 0.79 and error of 1.4 μg/m3 in the validation set 
with bootstrap forest and a sampling rate of 10 from the 
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unprocessed NIR data. The improvement from sampling 
rate 5–10 implies the need for a lager data set to improve 
prediction.

Benzaldehyde was most accurately predicted by a PLSR 
model with manual division of data for validation (70/30%), 
using the unprocessed NIR data. The validation set had a 
linearity of 0.73 and an error of 0.55 μg/m3 . As for �-pinene, 
the prediction of benzaldehyde did not improve by bootstrap 
sampling. The fact that �-pinene and benzaldehyde models 
had highest linearity when built on untreated data might 
indicate a correlation between emission of these VOCs 
and physical aspects in the spruce surface, such as density. 
Scatter correction by MSC and smoothing with an SG filter 

was generally considered to remove physical aspects like 
scattering and baseline distortion in NIR data (Windig et al. 
2008; Chen et al. 2013). However, the number of factors in 
the best �-pinene and benzaldehyde models was quite high, 
at 6 factors, indicating a possible overfitting of the models 
built using the untreated NIR data set. The number of factors 
used in the 4-fold validation models of MSC treated data and 
MSC + SG treated data for both VOCs was much lower, at 
3 and 2 for �-pinene and benzaldehyde, respectively. These 
models resulted in lower r 2 , at 0.69 and 0.53 for �-pinene 
and benzaldehyde, respectively. Combined with the small 
sample number these models indicated lower certainty in 
the fundamental correlation.

Table 4   PLSR model results 
from predictive modeling 
of VOC emission, evaluated 
by number of factors (F), r 2 
and RMSE. Validation was 
performed either by 4-fold 
validation, manual division 
of data set into 70% test and 
30% validation set or random 
holdback of 25% of the data set 
for validation

Dependent variable Validation F r2 RMSE N Data set Pretreatment

�-Pinene 4-Fold 6 0.86 1.1 7 Validation Unprocessed
4-Fold 6 0.78 1.7 15 Training Unprocessed
4-Fold 3 0.69 1.7 7 Validation MSC
4-Fold 3 0.55 2.4 15 Training MSC
4-Fold 3 0.69 1.7 7 Validation MSC + SG
4-Fold 3 0.55 2.4 15 Training MSC + SG

Benzaldehyde Manual 70/30 6 0.73 0.55 3 Validation Unprocessed
Manual 70/30 6 0.93 0.28 9 Training Unprocessed
4-Fold 2 0.53 0.73 3 Validation MSC
4-Fold 2 0.59 0.69 9 Training MSC
4-Fold 2 0.53 0.73 3 Validation MSC + SG
4-Fold 2 0.59 0.69 9 Training MSC + SG

Hexanal Holdback 25% 4 0.75 1.4 7 Validation MSC
Holdback 25% 4 0.35 2.8 17 Training MSC
4-Fold 3 0.72 1.5 7 Validation MSC + SG
4-Fold 3 0.40 2.7 17 Training MSC + SG
Holdback 25% 3 0.70 1.5 7 Validation MSC + SG
Holdback 25% 3 0.41 2.7 17 Training MSC + SG

TVOC Holdback 25% 3 0.53 31 7 Validation MSC
Holdback 25% 3 0.56 33 17 Training MSC
4-Fold 4 0.52 31 7 Validation Unprocessed
4-Fold 4 0.57 32 17 Training Unprocessed

Table 5   Bootstrap forest model 
results from predictive modeling 
of VOC emission, evaluated 
by r 2 and RMSE. Bootstrap 
sampling rate was set to either 
5 or 10

Dependent variable Sampling rate r2 RMSE N Division Pretreatment

�-Pinene 10 0.79 1.4 7 Validation Unprocessed
10 1.00 0.05 15 Training Unprocessed
5 0.59 1.9 7 Validation Unprocessed
5 0.97 0.61 15 Training Unprocessed

Hexanal 5 0.92 0.77 7 Validation MSC + SG
5 0.98 0.45 17 Training MSC + SG
5 0.88 0.96 7 Validation MSC
5 0.98 0.44 17 Training MSC
10 0.87 0.97 7 Validation MSC
10 1.00 0.05 17 Training MSC
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The best predictability of hexanal was obtained by a boot-
strap forest model with a sampling rate of 5. This model had 
linearity of 0.92 and error of 0.77 μg/m3 for the validation 
set, and was built from SG filtered data. The second best 
prediction model was a bootstrap forest model with MSC 
treated data, and it was not improved when increasing sam-
pling rate from 5 to 10. The PLSR models of hexanal emis-
sion also yielded best results when based on SG or MSC 
treated data. Here a random holdback validation of 25% of 
the samples was the best model with linearity 0.75 and an 
error of 1.4 μg/m3 in the validation set. All PLSR models 
for hexanal led to poor linearity in the training set and high 
error terms compared to median emission values. There 
were differences in linearity of validation and training sets 
with both 25% holdback and 4-fold validation of hexanal 
PLSR models. This indicated that the emission range was 
not adequately covered for these random data set divisions 
and is another indication that the data set was too small to 
obtain complete certainty in the prediction models. The rela-
tive error in the best bootstrap forest model, however, was 
lower than the median of measured hexanal emission, and 
this was thus considered a more robust model than the best 
�-pinene or benzaldehyde models.

TVOC emission concentrations were predicted with a lin-
earity of 0.53 and an error of 31 μg/m3 in the validation set 
by a PLSR model with 25% random holdback of samples, 
using the MSC treated NIR data. TVOC emission data is 
by definition nonspecific regarding chemical grouping and 
speciation of VOCs (Salthammer 2022). As NIR absorbance 
data contains information about combination and overtones 
from molecular vibrations which are specific for chemical 
grouping it is to be expected that TVOC would not be pre-
dicted adequately. NIR data was therefore considered to be 
more suitable for prediction of individual VOC emission 
from spruce wood than of TVOC.

The two best prediction models were obtained for �
-pinene and hexanal, and the actual by predicted plots for 
these two models are shown in Fig. 5. The actual by pre-
dicted plot of the best benzaldehyde model was not included 
as there were too few data points to obtain a meaningful plot.

3.4 � Variable importance

Variable importance projections (VIP) from the best 
PLSR models of �-pinene, benzaldehyde and hexanal were 
extracted for further inspection. The independent variables 
with highest VIP were evaluated with regard to similarities 
in the NIR spectra and previously reported spectral bands. 
Variables with high influence on the models were defined as 
having VIP > 1, and are shown visually in Fig. 6. The range 
and number of wavenumbers with VIP > 1, along with the 
wavenumber with highest VIP are listed in Table 6.

Limiting the variables to only wavenumbers with VIP > 
1 did not enhance the prediction for any of the three VOCs. 
PLSR prediction models were constructed using the wave-
number subset shown in Fig. 6 but all r 2 values remained 
lower than those presented in Table 4. The reduction of 
wavenumber regions in NIR spectroscopy lacks meaningful 
impact on analysis time, given that each scan took approxi-
mately 20 s.

The regions 6200–5500 cm−1 and 4900–4300 cm−1 were 
somewhat correlated with prediction of the three VOCs �
-pinene, benzaldehyde and hexanal, as variable importance 
was above 1 for these wavenumber regions. As expected, 

Fig. 5   Actual by predicted plots for a �-pinene PLSR model using 
4-fold validation and unprocessed NIR data and b hexanal bootstrap 
model with sampling rate 5 from SG filtered data. Red shows training 
data; blue shows validation data
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the wavenumbers in region 6200–5500 were more impor-
tant in the prediction of aldehyde than terpene emission, as 
this region might be related to emissions of lipid-derived 
aldehydes (Beć et al. 2020; Grebenteuch et al. 2021). The 
wavenumbers with maximum prediction importance, how-
ever, were all between these two regions at 5069, 5149 and 
5389 cm−1 for benzaldehyde, �-pinene and hexanal, respec-
tively. The region previously found to be related to hexanal 
on silica gel, 6061–5587 cm−1 (Zhang and Lee 1997), was 
indeed a large part in predicting hexanal emissions from 
spruce. The high variable importance at wavenumber band 
4435 cm−1 might be related to acetyl groups but this band 
overlaps with a range of wood related bands from cellulose 
and hemicellulose in softwoods between 4400–4200 cm−1 
(Schwanninger et al. 2011; Sandak et al. 2016). The same 
can be said for benzaldehyde, as it had high variable impor-
tance projections around 6200–5500 cm−1 . This correlated 
with previous findings, as this region was related to both the 
second overtone vibration of C–H in lipids and with first 
overtone aromatic C–H stretches (the band at 5974 cm−1 ) 
(Schwanninger et al. 2011). The band at 4690 cm−1 was 
related to aromatic extractives (Schwanninger et al. 2011), 
and benzaldehyde did show a higher VIP value at this 

wavenumber than hexanal, although slightly lower than 
the aliphatic compound �-pinene. The best �-pinene pre-
diction had a clear maximum variable importance around 
5150 cm−1 , very close to the O–H deformation band of mois-
ture in wood at 5187 cm−1 (Ercioglu et al. 2018). The region 
4400–4300 cm−1 was previously related to combination C–H 
stretching and bending in �-pinene (Guo et al. 2006), how-
ever this region was slightly less relevant in the prediction 
of �-pinene emissions in the PLSR model.

4 � Conclusion

An interdisciplinary approach using FT-NIR, TD-GC-MS 
and multivariate data analysis is a potential tool for predict-
ing emission of VOCs such as �-pinene, hexanal and benza-
ldehyde from Norway spruce (Picea abies) building mate-
rials. The labor-intensive measurement of VOC emissions 
using TD-GC-MS could potentially be substituted by in-situ 
NIR measurements coupled with robust prediction models, 
particularly in cases where NIR technology has already 
been successfully implemented in wood industry processes. 
Method evaluation of the VOC prediction approach was 
not attempted due to low number of samples, and valida-
tion of the proposed method is a natural next step in this 
work. Some of the presented models showed overfitting and 
low linearity terms, both issues that need to be investigated 
with a larger data set. Although the combination of micro 
chamber analysis and NIR analysis is less time-consuming 
than chamber emission tests following the horizontal Euro-
pean standard (NS-EN 16516:2017+A1:2020), the approach 
must be tested using chamber sizes within the scope of the 
standard. Additionally, the list of VOCs of interest in emis-
sion measurements increases continuously as new VOCs are 

Fig. 6   Variable importance projections above 1 from best PLSR mod-
els for �-pinene, benzaldehyde and hexanal. Colored lines indicate 
highest VIP wavenumbers for each VOC; dotted lines indicate wave-

numbers of interest; shaded areas indicate initial wavenumber regions 
of interest (6200–5500 cm−1 ; 4900–4300 cm−1)

Table 6   Variable importance projection > 1 for the best PLSR model 
of �-pinene, benzaldehyde and hexanal

Range [cm−1] N High-
est VIP 
[cm−1]

Min Max

�-Pinene 4083 8028 1197 5149
Benzaldehyde 4128 7920 1331 5069
Hexanal 4134 7986 1352 5389
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detected and evaluated with regard to human toxicology, 
which poses the need for a wide range of prediction models. 
While NIR data proves advantageous due to the complexity 
and specificity of absorbance data, it becomes problematic 
when combined with nonspecific VOC data such as TVOC. 
Uncertainty in the measured emission concentrations con-
tributed to relatively high error terms in the prediction mod-
els in this study. As the VOC emission concentrations for the 
majority of the targeted compounds were below quantifica-
tion ranges, considering a design of study with samples that 
have higher volatilization, such as Scots pine (Pinus sylves-
tris) interior panel, might be a viable alternative.

Supplementary Information  The online version contains supplemen-
tary material available at https://​doi.​org/​10.​1007/​s00107-​024-​02092-0.
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