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Abstract
Thermal-hydro-mechanical (THM) densification was performed on Picea abies (spruce), Abies alba (European fir), Populus 
nigra (poplar), and Fagus sylvatica (beech). Prior to THM treatment, the wood was impregnated with an aqueous solution 
containing 1%, 2.5%, and 5% biochar. Mechanical characteristics (modulus of elasticity, modulus of rupture), set-recovery, 
and contact angle were measured and compared for all samples in relation to the percentage of biochar present in the mixture. 
Impregnation with biochar/water mixture in combination with THM treatment resulted in densified wood with improved 
properties. Spruce showed the most notable improvement in water resistance, in addition to having the largest reduction in 
set-recovery at 57% and the highest contact angle value at 120°. There was also significant improvement in the mechani-
cal properties of spruce wood, especially when impregnated with 2.5% and 5% of biochar, with MOE values of 17.09 and 
18.61 GPa and MOR values of 190.47 and 176.41 MPa, respectively. The only comparable values were observed in beech 
impregnated with 2.5% biochar mixture, with a MOR value of 204.6 MPa. These findings highlight the effectiveness of 
biochar-enhanced impregnation together with THM treatment in improving the structural and mechanical properties of wood, 
with distinct improvements observed in spruce and a few improvements in beech.

1 Introduction

Policymakers and scientists worldwide are pushing towards 
using materials that are renewable and have a low-envi-
ronmental impact. Since ancient times, wood, an inex-
pensive and non-toxic material, has been used as a natu-
ral resource thanks to its numerous properties. However, 
wood that is used in the outside environment, requires 
treatments to enhance its performance and durability. The 
main weak points of wood are its sensitivity to moisture, 
low dimensional stability, low resistance to UV radiation, 
and decay because of fungi and insects. These issues need 
to be addressed in order to obtain high-performing wood 
products. Wood modification is any physical or chemical 
modification that increases the mechanical, physical, and 
aesthetic properties of wood. In the last decades, the wood 
modification industry, especially in Europe, has developed 
new technologies to improve wood properties and preserve 

them over time (Sandberg et al. 2017). Modifications can be 
divided into four main groups: chemical processes (acety-
lation, furfurylation, impregnation) (Rowell 2014; Kocaefe 
et al. 2015; Mantanis 2017); thermal-based modification 
(TBM) processes (thermal-hydro (TH); thermal–mechanical 
(TM): thermal-hydro-mechanical (THM) processes (Navi 
and Sandberg 2012); physical processes (using microwaves, 
plasma, laser light) (Haller et al. 2004; Wust 2006; Ten-
dero et al. 2006; Leonelli et al. 2010); and other processes 
(e.g., biological treatments, minerals, supercritical fluids, 
and ionic liquids processes) (Sandberg et al. 2021). Ther-
mally modified timber (TMT) is a product of a pyrolysis 
process that reaches temperatures between 160 and 260 °C 
and changes the chemical composition of wood cell wall due 
to the degradation of wood polymers (Esteves and Pereira 
2009); the result is an improvement of durability and hygro-
scopicity (Kesik et al. 2014). The THM treatment uses the 
interaction between heat, water, and compressive force to 
modify the wood without breaking the wood cells. This 
process increases density, hardness, abrasion resistance of 
the wood surface, and strength (Sandberg et al. 2017). The 
challenge of densification is the deformation fixation that 
the wood undergoes when exposed to moisture; the effect 
produced is the set-recovery that occurs because internal 
stresses introduced during the densification treatment are 
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relieved when the wood is exposed to moisture (Morsing 
2000) and can be attributed to its cellular structure and cell 
wall polymers (Wolcott and Shutler 2003). The set-recovery 
reduction is obtained also by impregnating the wood with 
adhesives before densification. Nilsson et al. (2011) pro-
posed a three-layered cross-laminated wood panel where 
one or both of the outer layers were of densified wood and 
a core, or the core and one of the outer layers were of non-
densified wood; as a result, the combined laminate mechan-
ically restrains the set-recovery of the densified layers. 
Schwarzkopf (2021) successfully impregnated wood with 
phenol resin in poplar and beech wood. Steam treatments 
have also been used before densification (Sandberg et al. 
2021). Kutnar and Kamke (2012) performed mechanical 
compression under saturated steam, superheated steam, and 
transient conditions. They demonstrated that the steam and 
temperature influenced the set recovery. The results estab-
lished that considerable fixation of sample dimension can 
be obtained by compressing the wood in a saturated steam 
environment at 170 °C and by post-heat-treatment at 200 °C. 
However, the results indicated that the process had a high 
energy consumption. Dong et al. (2023) studied a thermal 
modification process utilizing superheated steam. They dem-
onstrated the positive effect of thermal modification on the 
fir wood after 12 months of weathering that suggests that 
this wood species may be more suitable for outdoor appli-
cations. Previous literature showed that high temperature 
alone could permanently fixate the compressive deforma-
tion and reduce wood hygroscopicity and set-recovery values 
(Morsing 1998; Welzbacher et al. 2008). Kamperidou et al. 
(2013) showed that the swelling and absorption percentage 
values of the Scots pine wood specimens clearly decreased 
when thermally treated at 200 °C; the better enhancement 
of dimensional stability and hygroscopic properties of the 
treated specimens was reached with the thermal treatment 
of 8 h at 200 °C. Gabrielli and Kamke (2010) observed an 
improvement in the dimensional stability of densified wood 
by combining phenol–formaldehyde and acetic anhydride 
impregnation with viscoelastic thermal compression. Recent 
studies by Neyses et al. (2020; 2021) showed that the set-
recovery of densified wood could be improved by impreg-
nating wood with ionic liquids and organic superbases. The 
solutions adopted in previous research were found to be 
insufficient or highly expensive in terms of energy or cost. 
They require the implementation of multiple phases, thus 
raising the difficulty of production. This study investigated 
the potential use of biochar as a filler to improve set-recov-
ery, and additionally the spring-back behavior and water 
resistance of wood. Biochar is a by-product of slow pyroly-
sis, used to produce gas and bio-oil, consisting of amorphous 
biochar structures and stacked graphene sheets (Xie et al. 
2008; Sohi et al. 2009). Biochar is usually hydrophobic and 
has a higher ignition temperature than wood fiber (Antal 

et al. 2003). Biochar has been recognised as a promising 
filler for enhancing the properties of polymers (epoxy resin, 
rubber) and for wood/polypropylene composites (Das et al. 
2015; DeVallance et al. 2016; Zouari et al. 2022).

In the literature there is limited research on combining 
biochar from woody biomass with solid wood materials 
to form composites. This research evaluated whether add-
ing biochar particles improves the water resistance con-
tact angle, and bending properties of raw and densified 
solid wood. Additionally, the study investigated whether 
or not different wood species (i.e., black poplar, spruce, 
European fir, and beech) resulted in different set-recovery 
properties when they included biochar particles and were 
densified.

2  Materials and methods

Eighty specimens, 220 mm × 20 mm × 20 mm of Black 
poplar-(P), Spruce-(S), European fir-(F), and Beech-(B 
were prepared. The specimens were marked with letters 
representing the type of wood (P = poplar, S = spruce, 
F = European fir, B = beech) and with numbers represent-
ing the type of procedures and treatments performed, as 
shown in Table 1. Ten samples were prepared for each 
type of treatment. Before treatment, specimens were con-
ditioned at 20 °C and 60% relative humidity and were 
there until they reached the equilibrium moisture content 
value (EMC). After THM treatment, the thickness of the 
treated samples was changed to lower values. Commercial 
hardwood biochar (Granfuoco, Biochar Grill Srl, Italy) 
was used. Proximate analysis was used to characterise the 
biochar properties since the production conditions were 
not available.

Twenty specimens of 20 × 20 × 20 mm for each type of 
wood were cut to determine the initial moisture content 
of the species. The samples were weighed and placed in 
a laboratory oven for 24 h at 103 °C. The dry samples 
were then weighed again. Wood moisture was calculated 
according to the standard ASTM D4442-20 method B.

Table 1  Pressing parameters for densification

Parameter Value

Closing rate [mm/s] 2
Initial heating temperature [°C] 170
Hold Time [s] 120
Final heating temperature [°C] 200
Set force [N] 300
Cooling temperature [°C] 60
Final thickness of specimen [mm] 10
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2.1  Biochar particle preparation

The biochar used as filler was obtained from grinding the 
commercial biochar to an average dimension of 38 µm. The 
biochar particles were prepared using a two-step milling 
process. Specifically, the biochar was ground using a Pul-
verisette 25/19 mill (Fritsch GmbH, Germany) set for coarse 
grinding (< 4 mm particle sieve), followed by fine grind-
ing (< 0.25 mm particle sieve). The final biochar particles 
were separated in a sieve shaker (Cole-Parmer srl, Italy) with 
sieve No. 400 (< 38 µm) and stored in closed glass jars until 
further use. The size of the biochar particles used in the 
mixture was measured on the laser scattering particle size 
analyser Horiba LA-960V2 (Horiba ltd., Japan) by using the 
root for particles in a liquid suspension made of 1% biochar 
and distilled water. A wet measuring procedure with ultra-
sonic dispersion was used.

The samples were cut lengthwise in two halves to verify 
the distribution of the biochar particles and determine which 
wood species had absorbed a greater quantity of biochar. 
Images were acquired with the Keyence VHX-6000 digital 
microscope (Keyence, Japan) at three different points along 
the specimen; obviously, the point of greatest interest was 
the center where the greatest difficulty in penetration of the 
biochar particles was expected.

2.2  Wood impregnation

Mixtures containing 1% (w/w), 2.5% (w/w), and 5% (w/w) 
biochar and deionised water were prepared; 0.01% (v/v) of 
ethanol was added to avoid high surface tension of water. 
The prepared mixture was stirred on the C-MAG HS 7 hot-
plate stirrer (IKA-Werke GmbH, Germany) at 300 rpm at 
room temperature for 30 min before impregnation. The sam-
ples were embedded with the prepared mixtures (Fig. 1) and 
impregnated using a vacuum chamber.

Impregnation of wood specimen groups was performed 
in a specialty-designed Kambič pressure/vacuum chamber 
(Kambič, Slovenia) at 827,37 Pa for one hour. After impreg-
nation, the samples were dried for 24 h at room temperature 
and 48 h in a lab oven at 60 °C and placed in the climate 
chamber for 48 h. The weight and dimensions of the speci-
mens were measured after impregnation, before and after 
48 h in a lab oven at 60 °C, and then after 48 h in the climate 
chamber.

2.3  Thermal‑hydro‑mechanical treatment (THM)

THM-treated samples were densified in a hydraulic, 30-ton 
capacity Langzauner "Perfect" LZT-UK-30-L model hot 
press (Lambrechten, Austria) equipped with a water-cool-
ing system. Five specimens of the same initial thickness 
(20 mm) were pressed simultaneously as a batch, obtaining 

a 50% reduction in thickness. The upper and lower platens 
were first pre-heated to 170 °C. Then the specimens were 
densified using the pressing parameters presented in Table 1. 
Each specimen was placed in the press at 170 °C and sub-
jected to a pressure of 4 N/mm2 until the target thickness was 
reached. Once the target thickness was reached, the speci-
mens were held at 170 °C for 3 min. Then both the upper 
and lower platen temperature was increased to 200 °C for 
2 min. Once the final heating cycle was completed, the spec-
imens remained compressed while the platens were cooled 
to 60 °C. After cooling to 60 °C, the pressure was released. 
The mass and dimensions were measured before and after 
densification. The samples were then placed in the climate 
chamber for 48 h.

2.4  Property evaluation

Set-recovery was studied in the densified wood. Ten speci-
mens for the THM-C and THM procedures and for each spe-
cies of wood were prepared with dimensions of 20 × 20 × t 
mm, to make a total of 60 specimens. Set-recovery test 
cycles consisted of oven dried specimens at 103 (± 3) °C, 
followed by submersion in water (room temperature) for 
24  h, and then oven drying at 103 (± 3)  °C. Specimen 

Fig. 1  Immersion of specimens in biochar + water mixture
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thickness in the direction of compression was measured 
before and after submersion for every cycle. In total, five 
cycles were completed. Set-recovery was calculated using 
the following formula: set-recovery = (t

S
− t

C
)/t

C
 where t

S
 is 

oven-dry thickness after soaking and t
C
 is oven-dry initial 

thickness. The Optical Tensiometer Attension Theta Flex 
Auto 4 (Biolin Scientific, Sweden), with 3D Topography 
Module was used for contact angle measurements. For each 
sample, five drops of distilled water were released onto the 
surface. For each drop, three measurements were recorded 
at 0, 30, and 60 s, with 0 s equaling the moment the drop 
of water was released onto the surface of the specimen. For 
each type of wood, five specimens were tested. To investi-
gate the bending properties of each sample, three-point flex-
ure tests based on ASTM D143 were carried out using the 
universal testing machine (UTM Zwick-Roell model Z100 
with a load cell capacity of 100 kN, Germany). Ten bending 
specimens for each experiment type were tested. The support 
span was set at 160 mm, and the crosshead speed was 5 mm/
min. Force and deflection were measured and recorded until 
complete failure, and the modulus of rupture (MOR) and 
modulus of elasticity (MOE) were determined. Before test-
ing, all specimens were cut to a width of 10 mm.

3  Results and discussion

The size of the biochar particles used for the impregnation of 
the wood samples was verified through a particle size analy-
sis. The results are shown in the graph (Fig. 2) and the values 
obtained from the proximate analysis are reported in Table 2.

The initial moisture content values measured for spruce, 
European fir, poplar, and beech were 10.3, 27, 16.9, and 
9%, respectively. Between one treatment and another, the 
specimens were placed in a climatic chamber at a tempera-
ture of 20 °C and 60% of humidity. The four wood species 
were subjected to the procedures reported in Table 3.

Once procedures RM-C1%, THM-C1%, THM, 
RM-C2.5%, THM-C2.5%, RM-C5%, THM-C5% were 
performed, all the specimens were subjected to tests 
(Table 4).

Tables 5, 6, 7 and 8 show the middle points of the 
cross-section of poplar, spruce, European fir, and beech 
specimens for a qualitative analysis of impregnation with 
biochar particles. The side of the reported images cor-
responds to a sample size of 320 µm. In all wood species, 
the biochar particles penetrated along the entire cross-
section (20 × 20 mm) of the specimen, but the greatest 
amount remained on the edges (< 2 mm).   

Fig. 2  Biochar particle size analysis

Table 2  Proximate analysis of 
biochar

Moisture Volatile Ash Fixed carbon Volatile dry Ash dry Fixed carbon dry

Average value [%] 4.95 19.88 3.07 72.10 20.92 3.23 75.85
St. Dev. [%]  ± 0.19  ± 0.50  ± 0.06  ± 0.56  ± 0.54  ± 0.06  ± 0.51

Table 3  Procedures carried out on the materials

Procedure Treatments on wood

RM Raw material-no treatments
THM Thermal-hydro-mechanical treatment (THM)
RM-C1% Impregnation with 1% biochar mixture
THM-C1% Impregnation with 1% biochar mixture + THM
RM-C2.5% Impregnation with 2.5% biochar mixture
THM-C2.5% Impregnation with 2.5% biochar mixture + THM
RM-C5% Impregnation with 5% biochar mixture
THM-C5% Impregnation with 5% biochar mixture + THM
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3.1  Resistance to water: set‑recovery and contact 
angle tests

He set-recovery values for the densified wood are shown in 
Fig. 3, while Table 9 shows the mean values and standard 
deviation of the set-recovery for all the procedures. If we 
consider the procedures THM-C1% and THM, the average 
set-recovery values in the densified specimens with 1% of 
biochar and without it were: 65% with biochar and 73% 
without biochar for poplar; 57% with biochar and 73.9% 
without biochar for spruce; 60% with biochar and 69% with-
out biochar for European fir; 75% with biochar and 74% 
without biochar for beech. Among the THM-C1% treated 
specimens, a lower set-recovery was obtained in spruce. 
The European-fir specimens showed the best set-recovery 
behavior among the densified woods (THM procedure). 
Therefore, with the same densification, biochar lowered 
the set-recovery. Statistically significant differences in set-
recovery were determined through an ANOVA test, followed 
by Tukey–Kramer Multiple-Comparison Test. The results 
showed a statistically significant difference in average set-
recovery between densified wood with biochar (1%) and 
simple densified samples in three species, poplar, spruce, 
and European fir. However, beech wood showed the same 
behaviour despite the presence of biochar. Comparing the 
procedures THM-C2.5% and THM, the average values for 
set-recovery are: 76.5% with biochar and 73% without bio-
char for poplar; 83.4% with biochar and 73.9% without bio-
char for spruce; 80.7% with biochar and 69% without bio-
char for European fir; 75.9% with biochar and 74% without 

biochar for beech. Based on statistical analysis, there was 
a statistically significant difference in average set-recovery 
between densified wood with biochar (2.5%) and densified 
samples without biochar for spruce and European fir speci-
mens. However, there was no statistically significant differ-
ence found in average set-recovery between densified wood 
with biochar (2.5%) and densified samples without biochar 
for poplar and beech specimens. In the THM-C5% and THM 
procedures, the set-recovery results are: 82.6% with biochar 
and 73% without biochar for poplar; 83.,8% with biochar and 
73.9% without biochar for spruce; 83.1% with biochar and 
69% without biochar for European fir; 77.5% with biochar 
and 74% without biochar for beech. There was a statistically 
significant difference in average set-recovery between densi-
fied wood with biochar (5%) and simple densified samples 
in poplar, spruce, and European fir. However, there was no 
statistically significant difference between densified sam-
ples with biochar at 5% and simple densified beech wood 
specimens. By using the biochar as filler in this study, an 
improvement of set-recovery was observed in the cases in 
which the impregnation was done with a 1% biochar content. 
In the case of impregnations with biochar quantities exceed-
ing 1%, the results of the set-recovery process deteriorate 
for all wood species, except for beech, where no significant 
variation is observed. The authors suggest that a possible 
explanation for this behaviour may stem from the saturation 
of wood porosities with biochar when using a 1% concen-
tration, consequently improving the wood's water resist-
ance. However, in the presence of higher concentrations of 
biochar, the rupture of wood cell walls occurs due to the 

Table 4  Example of a prepared 
set of poplar specimens ready 
prior to testing

RM: raw material

THM: densification 

of raw material

RM-C1%: biochar 

addition at 1% w/w

 THM-C1%: biochar

addition at 1% w/w 

+densification

RM-C2.5%: biochar 

addition at 5% w/w

THM-C2.5%: biochar

Addition at 2.5% w/w 

+densification

      
RM-C5%: biochar 

addition at 5% w/w

THM-C5% : biochar

addition at 5% w/w 

+densification
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increased quantity of biochar particles employed. Specifi-
cally for spruce and European fir woods, the values are com-
parable with the results presented in the literature but foresee 
the use of non-eco friendly materials such as phenol resin 
(Schwarzkpof 2020) and are better than the cases in which 
just thermal modification was done without impregnation 
(Laine et al. 2016; Gao et al. 2019). 

The contact angle was determined at 0, 30, and 60 s 
taking into account the values at zero time for comparison 
with literature results. The average values for spruce wood 
are shown in Fig. 4; there was a statistically significant dif-
ference between the raw materials (RM and RM-C1%) due 
to biochar, the latter showing higher contact angle values. 
The biochar content did not influence the contact angle 
results for the densified materials (THM-C1%, THM-
C2.5%, THM-C5%, and THM). Considering the densifi-
cation process, only the RM samples showed a statistically 
significant difference. In the RM-C1% samples, biochar 
addition resulted in the same contact angle values as the 
densified specimens. The densified spruce (THM) showed 

the highest absolute contact angle value (120°) at 0 s. On 
the Tukey–Kramer analysis, there was a statistically signif-
icant difference in contact angle between the non-densified 
European fir samples with and without biochar (between 
RM and RM-C1%, RM-C2.5%, RM-C5%), indicating that 
biochar particles affected the contact angle values. Spe-
cifically, in the non-densified European fir samples, the 
contact angle increased with an increasing percentage of 
biochar. The densified specimens had the highest contact 
angle values, with a value of 110° for THM-C2.5%. How-
ever, within the densified specimens (THM, THM-C1%, 
THM-C2.5%, THM-C5%), there was no statistically sig-
nificant difference in contact angle as the percentage of 
biochar increased. The average contact angle values for 
European fir are reported in Fig. 5. In poplar wood (Fig. 6) 
the presence of biochar showed no effect. Statistically 
there was no significant difference in contact angle values 
due to the presence of biochar particles in both densified 
and non-densified specimens. The contact angle values 
for densified samples were higher than the non-densified 
ones. The THM-C1% samples showed the highest value at 

Table 5  Cross-section of spruce samples showing the distribution of 
biochar particles in the center of specimens for the different percent-
ages of biochar

Spruce

1%

2.5%

5%

Table 6  Cross-section of European fir samples showing the distribu-
tion of biochar particles in the center of specimens for the different 
percentages of biochar

Euroean fir

1%

2.5%

5%
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94.12°. In beech samples, THM-C1% showed the highest 
contact angle (102°) value, and in general the densified 
specimen values are similar so there is no influence due to 
the biochar; for the non-densified ones there was no differ-
ence in the values with or without biochar particles. The 
average contact angle values for beech wood are reported 
in Fig. 7.

In a recent research study that reported a high contact 
angle value of 97,25° for a treated fir, the wood was impreg-
nated with styrene; the authors found that after the impreg-
nation process, the contact angle values of both undensi-
fied and densified fir specimens increased (Pelit and Arisut 
2023). In this study fir showed comparable values and in two 
cases higher values than obtained by Pelit and Arisut (2023). 
Li et al. (2013) reported that poplar wood treated with mono-
mers synthesised from styrene and methyl metacrylate has 
a higher contact angle than untreated poplar. Comparing 
untreated wood (66°) to wood treated with paraffin emul-
sion (94°), the wood treated with an emulsion of paraffin/
acrylate compound had the highest contact angle value of 
133° (Jiang et al. 2020).

Table 7  Cross-section of poplar samples showing the distribution of 
biochar particles in the center of specimens for the different percent-
ages of biochar

Poplar

1%

2.5%

5%

Table 8  Cross-section of beech samples showing the distribution of 
biochar particles in the center of specimens for the different percent-
ages of biochar

Beech

1%

2.5%

5%
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Fig. 3  Set-recovery comparison between wood types and procedures
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3.2  Mechanical test results

The average values of the results from mechanical testing 
are shown in Table 10, the reference values for un-treated 
woods are from Meier (2023). An ANOVA test following the 
Tukey–Kramer- Multiple Comparison test was performed 
on mechanical test results. The data analysis for spruce 
wood showed a statistically significant difference in MOR 
values between the densified specimens but not between 

the non-densified samples. Therefore, the presence of bio-
char particles seems to have a negative influence only in 
the case of THM-C1% samples, while in THM-C2.5% and 
THM-C5%, there was a statistically significant increase in 
the MOR. THM-C2.5% samples showed the highest values 
of MOR. The two subgroups, non-densified and densified 
samples, follow the same trend in statistical difference for 
MOE and MOR. The mechanical test results for European 
fir showed no statistical difference in MOR values between 
RM and RM-C1%, and between THM-C1%, THM-C2.5%, 
THM-C5%, and THM samples; therefore, the biochar par-
ticles did not induce any difference in the behaviour of the 
material. There was a statistically significant difference in 

Table 9  Set-recovery after five wetting–drying cycles (mean val-
ues ± standard deviation)

Species Procedure Room tempera-
ture set-recovery 
[%]

Poplar THM 73.1 (± 4.56)
THM-C1% 65.7 (± 4.95)
THM-C2.5% 76,54 (± 2.29)
THM-C5% 82.67 (± 5.16)

Spruce THM 73.96 (± 1.23)
THM-C1% 57.69 (± 4.89)
THM-C2.5% 83.46 (± 2.24)
THM-C5% 83.88 (± 3,63)

European fir THM 69.66 (± 7.21)
THM-C1% 60.14 (± 6.68)
THM-C2.5% 80.72 (± 0.02)
THM-C5% 83.14 (± 0.04)

Beech THM 74 (± 1.6)
THM-C1% 75 (± 5.97)
THM-C2.5% 75.93 (± 4.49)
THM-C5% 77.56 (± 2.42)

Fig. 4  Average contact angle values for spruce

Fig. 5  Average contact angle values for European fir

Fig. 6  Average contact angle values for poplar wood
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MOR values when comparing non-densified and densified 
specimens. The MOE values for European fir followed the 
same trend shown for the MOR values, except when com-
paring THM and THM-C5%, where there was a significant 
increase in the elasticity values. In the case of poplar, there 
was no statistically significant difference in the average 
MOR between the RM and RM-C1% samples. Given these 
results, the biochar particles did not appear to improve the 
MOR of non-THM poplar when 1% biochar was impreg-
nated. However, there was a statistically significant differ-
ence between the MOR average values of the densified sam-
ples THM-C1% and THM and THM-C2.5% and THM cases. 
In the case of THM-5% and THM, there was no statistically 
significant difference in the MOR values, so the biochar did 
not affect the wood behaviour. If the densification process 
is considered, there is a statistically significant difference 
in MOR values between the non-densified and densified 
materials. For the average MOE, there was no statistically 
significant difference between THM and THM-2.5%. How-
ever, there was a statistically significant difference in average 
MOE between THM and THM-5%. The bending test results 
for beech wood showed a statistically significant difference 
in average MOR between the subgroups of non-densified 
and densified samples.

4  Conclusion

The aim of this work was to research a technological solu-
tion to reduce the use of highly polluting wood protec-
tion products in the construction industry. To pursue this 
objective, biochar was used as a filler and some physi-
cal and mechanical properties of different types of wood 

commonly used in the construction sector were evalu-
ated. The results of this study showed that wood density 
increased by compressing the wood specimens under suit-
able moisture and temperature conditions, which changes 
the mechanical and physical properties of the wood. How-
ever, the densified wood was still moisture-sensitive and 
susceptible to high set-recovery. Specifically, 84% of the 
deformation was recovered when soaked in water. How-
ever, the presence of biochar particles decreased the set-
recovery of the wood specimens subjected to densifica-
tion. The contact angle results, which indicate how the 

Fig. 7  Average contact angle values for beech wood

Table 10  Three-point flexure test data of specimens for all procedures 
(mean values ± standard deviation)

Species Procedure MOE[GPa] MOR[MPa]

Spruce RM 5.98 (± 0.94) 61.11 (± 2.20)
THM 7.40 (± 2.16) 110.74 (± 23.85)
RM-C1% 6.11 (± 1.57) 64.36 (± 5.72)
THM-C1% 4.39 (± 1.13) 87.84 (± 8.52)
RM-C2.5% 10.31 (± 2.72) 94.24 (± 13.9)
THM-C2.5% 17.09 (± 1.26) 190.47 (± 13.5)
RM-C5% 10.80 (± 0.96) 98.55 (± 5.3)
THM-C5% 18.61 (± 3.73) 176.41 (± 30.67)
Reference value 9.7 63

European fir RM 7.57 (± 1.25) 67.18 (± 2.44)
THM 10.88 (± 2.42) 143.70 (± 17.89)
RM-C1% 7.95 (± 1.94) 83.97 (± 26.43)
THM-C1% 9.27 (± 0.50) 125.82 (± 14.77)
RM-C2.5% 8.63 (± 1.64) 76.02 (± 17.5)
THM-C2.5% 10.92 (± 1.96) 116.08 (± 9.98)
RM-C5% 6.04 (± 1.24) 62.27 (± 7.65)
THM-C5% 14.42 (± 2.91) 153.77 (± 30.83)
Ref. value 8.28 66.1

Poplar RM 8.99 (± 0.90) 75.40 (± 2.66)
THM 11.16 (± 2.22) 128.50 (± 32.76)
RM-C1% 8.80 (± 1.30) 84.94 (± 9.28)
THM-C1% 7.35 (± 0.78) 104.74 (± 5.35)
RM-C2.5% 7.9 (± 0.81) 77.85 (± 6.65)
THM-C2.5% 11,97 (± 1.73) 122.7 (± 13.58)
RM-C5% 6.18 (± 0.74) 66.13 (± 5.56)
THM-C5% 15.31 (± 0.89) 155.86 (± 14.18)
Ref. value 7.21 63.7

Beech RM 12.62 (± 1.70) 131.06 (± 11.19)
THM 14.35 (± 1.20) 203.08 (± 13.16)
RM-C1% 13.32 (± 1.49) 137.55 (± 6.30)
THM-C1% 12.93 (± 1.17) 206.67 (± 19.0)
RM-C2.5% 11.18 (± 1.99) 125.73 (± 12.29)
THM-C2.5% 10.44 (± 0.64) 165.07 (± 16.48)
RM-C5% 11.94 (± 0.95) 134.01 (± 8.65)
THM-C5% 12.68 (± 1.13) 204.62 (± 22.64)
Ref. value 14.31 110.1
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wood surface resists water, showed that the presence of 
biochar enhanced the waterproof behaviour of material 
surfaces in non-densified specimens. In contrast, there 
was no statistically significant improvement in densified 
specimens when biochar particles were present. Between 
wood species, spruce had the highest average contact angle 
values. The different behaviour of the four woods could be 
explained considering that different wood species have dif-
ferent anatomical and chemical characteristics that affect 
their surface properties and wettability. Spruce has resin 
canals that can secrete resinous substances that increase 
the contact angle. Regarding the mechanical properties, 
the addition of biochar particles had a positive effect in 
spruce wood resulting in the highest average MOR val-
ues in samples subjected to impregnation treatment with 
2.5 and 5% of biochar. However, there was no statistically 
significant difference in either average MOR or average 
MOE for the other wood species with and without the 
presence of biochar. The influence of resin on spruce den-
sification can impact the mechanical properties, density, 
and overall performance of the densified wood. During the 
densification there is an increase in spruce density. The 
interaction between resin and the wood fibers during this 
process can enhance the resulting strength, hardness, and 
other mechanical properties of the densified spruce wood. 
The absence of the resin canals is one of the most impor-
tant features to distinguish fir from spruce, while poplar 
and beech have vessels that can influence the capillary 
forces and penetration of liquids into the wood.

To improve the performance of biochar impregna-
tion, more research is needed to evaluate the impact of 
using different particle sizes of biochar and customised 
rather than commercially prepared biochar. Additionally, 
research is needed on different impregnation processes to 
obtain better penetration of biochar particles into wood.
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