Skip to main content

Advertisement

Log in

Moderne Methoden in der Genomforschung und Humangenetik

Beispiele und Anwendungsbereiche

Research into the human genome driven by improved methods

  • Leitthema: Genetik und Gesundheitsforschung, Teil 1: Grundlagen
  • Published:
Bundesgesundheitsblatt - Gesundheitsforschung - Gesundheitsschutz Aims and scope

Zusammenfassung

Die enormen Fortschritte bei der Erforschung des humanen Genoms sind wesentlich auf die Einführung neuer oder verbesserter Methoden zur Analyse von Nukleinsäuren und Proteinen zurück zuführen. Zu den Methoden, die sich in kurzer Zeit in Forschung und Diagnostik etablieren konnten, zählen die Fluoreszenz-in-situ-Hybridisierung (FISH), die Polymerase-Ketten-Reaktion (PCR) einschließlich der Methoden der quantitativen PCR sowie der Einsatz von Short-interfering-RNA-Molekülen (siRNAs) zur Reduktion der Expression ausgewählter Gene. Der zunehmenden Bedeutung der Analyse sekundärer Modifikationen von Nukleinsäuren und Proteinen (Methylierung, post-translationale Proteinmodifikationen) wird der Einsatz der Massenspektrometrie gerecht. Insgesamt lässt sich feststellen, dass mit diesen und weiteren Methoden die humane Genomforschung über ein gutes Arsenal verfügt, mit dem nach der Sequenzierung zunehmend auch die Interpretationsmöglichkeit der vorliegenden genetischen Daten verbessert wird.

Abstract

The enormous progress made by research of the human genome is mainly driven by newly established or improved methods for the analysis of nucleic acids and proteins. Among the methods that have gained a wide-spread use within a comparably short time are fluorescence in situ hybridization (FISH), polymerase chain reaction (PCR) including methods for quantitative PCR, and the use of short interfering RNA (siRNA) molecules aimed at gene silencing. The increasing significance of the analysis of secondary modifications of nucleic acids and proteins (genomic imprinting by DNA methylation, posttranslational protein modification) is reflected by an increasing use of mass spectrometry for the analysis and characterization of these biomolecules. Overall, in the future the research into the human genome and the interpretation of data will further benefit from these and other refined tools.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Literatur

  1. Csako G (2006) Present and future of rapid and/or high-throughput methods for nucleic acid testing. Clin Chim Acta 363:6–31

    Article  PubMed  CAS  Google Scholar 

  2. Jaklevic JM, Garner HR, Miller GA (1999) Instrumentation for the genome project. Annu Rev Biomed Eng 1:649–678

    Article  PubMed  CAS  Google Scholar 

  3. Million RP (2006) Impact of genetic diagnostics on drug development strategy. Nat Rev Drug Discov May 12:1–4 (bisher nur elektronisch veröffentlicht)

    Google Scholar 

  4. Norbury G, Norbury CJ (2006) DNA analysis: what and when to request? Arch Dis Child 91:357–360

    Article  PubMed  CAS  Google Scholar 

  5. Polychronakos C (2004) Genetic variation and health; towards individualized medicine. Pediatr Endocrinol Rev 1 [Suppl 3]:540–544

    PubMed  Google Scholar 

  6. Brinkman RR, Dube MP, Rouleau GA et al. (2006) Human monogenic disorders—a source of novel drug targets. Nat Rev Genet 7:249–260

    Article  PubMed  CAS  Google Scholar 

  7. Haselden JN, Nicholls AW (2006) Personalized medicine progresses. Nat Med 12:510–511

    Article  PubMed  CAS  Google Scholar 

  8. O’Connor TP, Crystal RG (2006) Genetic medicines: treatment strategies for hereditary disorders. Nat Rev Genet 7:261–276

    Article  PubMed  CAS  Google Scholar 

  9. Oliveira AM, French CA (2005) Applications of fluorescence in situ hybridization in cytopathology: a review. Acta Cytol 49:587–594

    PubMed  Google Scholar 

  10. Price CM (1993) Fluorescence in situ hybridization. Blood Rev 7:127–134

    Article  PubMed  CAS  Google Scholar 

  11. Buckle VJ, Kearney L (1994) New methods in cytogenetics. Curr Opin Genet Dev 4:374–382

    Article  PubMed  CAS  Google Scholar 

  12. Going JJ, Gusterson BA (1999) Molecular pathology and future developments. Eur J Cancer 35:1895–1904

    Article  PubMed  CAS  Google Scholar 

  13. Rose MG, Degar BA, Berliner N (2004) Molecular diagnostics of malignant disorders. Clin Adv Hematol Oncol 2:650–660

    PubMed  Google Scholar 

  14. Delhanty JD (1994) Preimplantation diagnosis. Prenat Diagn 14:1217–1227

    PubMed  CAS  Google Scholar 

  15. Sermon K, Van Steirteghem A, Liebaers I (2004) Preimplantation genetic diagnosis. Lancet 363:1633–1641

    Article  PubMed  Google Scholar 

  16. Sun F, Ko E, Martin RH (2006) Is there a relationship between sperm chromosome abnormalities and sperm morphology? Reprod Biol Endocrinol 4:1

    Article  PubMed  CAS  Google Scholar 

  17. Hanson C, Caisander G (2005) Human embryonic stem cells and chromosome stability. APMIS 113:751–755

    Article  PubMed  Google Scholar 

  18. Mitelman Database of Chromosome Aberrations in Cancer, http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=CancerChromosomes

  19. Butler JM (2006) Genetics and genomics of core short tandem repeat loci used in human identity testing. J Forensic Sci 51:253–265

    Article  PubMed  CAS  Google Scholar 

  20. Varsha (2006) DNA fingerprinting in the criminal justice system: an overview. DNA Cell Biol 25:181–188

    Article  PubMed  CAS  Google Scholar 

  21. Bustin SA, Benes V, Nolan T, Pfaffl MW (2005) Quantitative real-time RT-PCR—a perspective. J Mol Endocrinol 34:597–601

    Article  PubMed  CAS  Google Scholar 

  22. Rickman L, Fiegler H, Carter NP, Bobrow M (2005) Prenatal diagnosis by array-CGH. Eur J Med Genet 48:1688–1689

    Article  Google Scholar 

  23. Chatterjee SK, Zetter BR (2005) Cancer biomarkers: knowing the present and predicting the future. Future Oncol 1:37–50

    Article  PubMed  CAS  Google Scholar 

  24. van Es HH, Arts GJ (2005) Biology calls the targets: combining RNAi and disease biology. Drug Discov Today 10:1385–1391

    Article  PubMed  CAS  Google Scholar 

  25. Cejka D, Losert D, Wacheck V (2006) Short interfering RNA (siRNA): tool or therapeutic? Clin Sci (Lond) 110:47–58

    Article  PubMed  CAS  Google Scholar 

  26. Domon B, Aebersold R (2006) Mass spectrometry and protein analysis. Science 312:212–2

    Article  PubMed  CAS  Google Scholar 

  27. West M, Ginsburg GS, Huang AT, Nevins JR (2006) Embracing the complexity of genomic data for personalized medicine. Genome Res 16:559–566

    Article  PubMed  CAS  Google Scholar 

  28. Doerfler W (2006) De novo methylation, long-term promoter silencing, methylation patterns in the human genome, and consequences of foreign DNA insertion. Curr Top Microbiol Immunol 301:125–175

    Article  PubMed  CAS  Google Scholar 

  29. Scarano MI, Strazzullo M, Matarazzo MR, D‘Esposito M (2005) DNA methylation 40 years later: its role in human health and disease. J Cell Physiol 204:21–35

    Article  PubMed  CAS  Google Scholar 

  30. Rodenhiser D, Mann M (2006) Epigenetics and human disease: translating basic biology into clinical applications. CMAJ 174:241–348

    Google Scholar 

  31. Szyf M (2005) Therapeutic implications of DNA methylation. Future Oncol 1:125–135

    Article  PubMed  CAS  Google Scholar 

  32. Suriano R, Lin Y, Ashok BT, et al. (2006) Pilot study using SELDI-TOF-MS based proteomic profile for the identification of diagnostic biomarkers of thyroid proliferative diseases. J Proteome Res 5:856–861

    Article  PubMed  CAS  Google Scholar 

  33. Bianchi ME, Agresti A (2005) HMG proteins: dynamic players in gene regulation and differentiation. Curr Opin Genet Dev 15:496–506

    Article  PubMed  CAS  Google Scholar 

  34. Charoonpatrapong K, Shah R, Robling AG et al. (2006) HMGB1 expression and release by bone cells. J Cell Physiol 207:480–490

    Article  PubMed  CAS  Google Scholar 

  35. Li W, Sama AE, Wang H (2006) Role of HMGB1 in cardiovascular diseases. Curr Opin Pharmacol 6:130–135

    Article  PubMed  CAS  Google Scholar 

  36. Murua Escobar H, Meyer B, Richter A et al. (2003) Molecular characterization of the canine HMGB1. Cytogenet Genome Res 101:33–38

    Article  PubMed  CAS  Google Scholar 

  37. Riuzzi F, Sorci G, Donato R (2006) The amphoterin (HMGB1)/receptor for advanced glycation end products (RAGE) pair modulates myoblast proliferation, apoptosis, adhesiveness, migration, and invasiveness. Functional inactivation of RAGE in L6 myoblasts results in tumor formation in vivo. J Biol Chem 281:8242–8253

    Article  PubMed  CAS  Google Scholar 

  38. Schlueter C, Weber H, Meyer B et al. (2005) Angiogenetic signaling through hypoxia: HMGB1: an angiogenetic switch molecule. Am J Pathol 166:1259–1263

    PubMed  CAS  Google Scholar 

  39. Ulloa L, Messmer D (2006) High-mobility group box 1 (HMGB1) protein: Friend and foe. Cytokine Growth Factor Rev Feb 28; (bisher nur elektronisch veröffentlicht)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Bullerdiek.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bullerdiek, J. Moderne Methoden in der Genomforschung und Humangenetik. Bundesgesundheitsbl. 49, 989–994 (2006). https://doi.org/10.1007/s00103-006-0044-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00103-006-0044-2

Schlüsselwörter

Keywords

Navigation