Skip to main content
Log in

Hintergrund und aktueller Einsatz von Adjuvanzien für die Regionalanästhesie

Aus der Forschung in die evidenzbasierte Patientenversorgung

Background and current use of adjuvants for regional anesthesia

From research to evidence-based patient treatment

  • Leitthema
  • Published:
Der Anaesthesist Aims and scope Submit manuscript

Zusammenfassung

Die Entdeckung der lokalanästhetischen Wirkung durch Blockade der Natriumionenkanäle war ein Meilenstein in der Anästhesie, die jedoch schon bald ihre Limitierung durch z. T. lebensbedrohliche toxische Wirkungen der Lokalanästhetika (LA) erfuhr. Durch Entwicklung neuartiger LA, aber auch durch Hinzunahme sog. Adjuvanzien wurde versucht, diese lebensbedrohlichen Wirkungen einzuschränken. Der vorliegende Beitrag hat zum Ziel, Hintergrund und aktuellen Stand der Anwendung dieser Adjuvanzien zur Regionalanästhesie zu betrachten. Durch Zusatz von Adrenalin, Clonidin oder Dexmedetomidin – jedoch nur als einmalige Gabe – kommt es zu einer schnelleren Anschlagzeit, einer längeren Wirkdauer und einer intensiveren neuronalen Blockade der Regionalanästhesie. Die Vorteile einer zusätzlichen Gabe von Natriumbikarbonat sind dagegen relativ gering und klinisch eher vernachlässigbar. Obwohl in der Literatur Belege für eine Verbesserung und Verlängerung der analgetischen Wirkung nach axonaler Gabe von Opioiden gefunden werden, sind zentrale Nebenwirkungen und eine systemische Wirkung nicht sicher ausgeschlossen. Die z. T. vorkommenden lokalanästhetischen Wirkungen der Opioide sind nicht immer klar abgrenzbar von den opioidrezeptorspezifischen Wirkungen. Mechanistische Untersuchungen postulieren eine funktionelle Kopplung von Opioidrezeptoren eher nach Störungen der axonalen Integrität des Nerven, nicht jedoch im intakten peripheren Nerv. Neuere Untersuchungen identifizieren Glukokortikoid- und Mineralokortikoidrezeptoren bevorzugt auf peripheren schmerzleitenden Nervenfasern. Dies geht einher mit zahlreichen klinischen Berichten einer deutlichen Verlängerung der lokalanästhetischen Wirkung. Neben bekannten genomischen Effekten, die sich über eine Änderung der Genexpression schmerzunterhaltender Proteinstrukturen ergeben, werden auch immer mehr schnell einsetzende, nichtgenomische Wirkungen der Steroide diskutiert, denen eine Veränderung intrazellulärer Signalwege zugrunde liegt. Zusammenfassend stehen dem Anästhesisten neue Erkenntnisse und Ergebnisse klinischer Studien zur Adjuvanzienapplikation im Rahmen der Regionalanästhesie zur Verfügung, die in der Bewertung ihres möglichen Einsatzes zur Schmerztherapie eines jeden individuellen Patienten Berücksichtigung finden sollten.

Abstract

The discovery of the local anaesthetic effect by blocking sodium ion channels was a milestone in anaesthesia but was soon limited by sometimes life-threatening toxic effects of the local anaesthetics. By developing novel local anaesthetics and also by adding so-called adjuvants, attempts have been made to limit these life-threatening events. This article focuses on the historic background and the current state of the use of these adjuvants for regional anaesthesia. Adding epinephrine, clonidine or dexmedetomidine, but only as a single dose, results in a faster onset, longer duration of action and increased intensity of neuronal blockade of regional anaesthesia. The benefits of adding sodium bicarbonate, on the other hand, are relatively minor and, therefore, clinically negligible. Although increasing evidence in the literature suggests an improvement and prolongation of the analgesic effect after axonal administration of opioids, which can also be given continuously, systemic effects are not fully ruled out due to the increased incidence of central side effects. The partial local anaesthetic effects of opioids cannot always be distinguished from opioid receptor-specific effects. Mechanistic studies postulate a functional coupling of opioid receptors in injured rather than in intact peripheral nerves. Recent studies have identified glucocorticoid and mineralocorticoid receptors predominantly on peripheral nociceptive nerve fibers. This is consistent with numerous clinical reports of a marked prolongation of the local anaesthetic effect. In addition to the known genomic effects of steroids that occur via a change in gene expression of pain-sustaining protein structures, faster non-genomic effects are also discussed, which occur via a change in intracellular signaling pathways. In summary, new insights into mechanisms and novel results from clinical trials will help the anaesthesiologist in the decision to use adjuvants for regional anaesthesia which, however, requires to weigh the individual patient’s benefits against the risks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4

Literatur

  1. Abel JJ (1897) On the blood-pressure-raising constituent of the suprarenbal capsule. Bull Johns Hopkins Hosp 8:151

    Google Scholar 

  2. Andersen JH, Jaeger P, Sonne TL et al (2017) Clonidine used as a perineural adjuvant to ropivacaine, does not prolong the duration of sensory block when controlling for systemic effects: A paired, blinded, randomized trial in healthy volunteers. PLoS ONE 12:e181351

    PubMed  PubMed Central  Google Scholar 

  3. Antonijevic I, Mousa SA, Schafer M et al (1995) Perineurial defect and peripheral opioid analgesia in inflammation. J Neurosci 15:165–172

    CAS  PubMed  Google Scholar 

  4. Aulestia-Viera PV, Braga MM, Borsatti MA (2018) The effect of adjusting the pH of local anaesthetics in dentistry: a systematic review and meta-analysis. Int Endod J 51:862–876

    CAS  PubMed  Google Scholar 

  5. Azad SC, Beyer A, Romer AW et al (2000) Continuous axillary brachial plexus analgesia with low dose morphine in patients with complex regional pain syndromes. Eur J Anaesthesiol 17:185–188

    CAS  PubMed  Google Scholar 

  6. Baeriswyl M, Kirkham KR, Jacot-Guillarmod A et al (2017) Efficacy of perineural vs systemic dexamethasone to prolong analgesia after peripheral nerve block: a systematic review and meta-analysis. Br J Anaesth 119:183–191

    CAS  PubMed  Google Scholar 

  7. Bailard NS, Ortiz J, Flores RA (2014) Additives to local anesthetics for peripheral nerve blocks: evidence, limitations, and recommendations. Am J Health Syst Pharm 71:373–385

    CAS  PubMed  Google Scholar 

  8. Bhatia A, Flamer D, Shah PS et al (2016) Transforaminal epidural steroid injections for treating lumbosacral radicular pain from herniated intervertebral discs: a systematic review and meta-analysis. Anesth Analg 122:857–870

    CAS  PubMed  Google Scholar 

  9. Bier A (1899) Versuche über die Cocainisierung des Rückenmarks. Dtsch Z Chir 51:361–368

    Google Scholar 

  10. Bone HG, Van Aken H, Booke M et al (1999) Enhancement of axillary brachial plexus block anesthesia by coadministration of neostigmine. Reg Anesth Pain Med 24:405–410

    CAS  PubMed  Google Scholar 

  11. Bouaziz H, Paqueron X, Bur ML et al (1999) No enhancement of sensory and motor blockade by neostigmine added to mepivacaine axillary plexus block. Anesthesiology 91:78–83

    CAS  PubMed  Google Scholar 

  12. Braun H (1903) Ueber den Einfluß der Vitalität der Gewebe auf die örtlichen und allgemeinen Giftwirkungen localanästhesierender Mittel und über die Bedeutung des Adrenalins für die Localanästhesie. Arch Klin Chir 69:541–591

    Google Scholar 

  13. Braun H (1905) Ueber einige neue örtliche anaesthetica (Stovain, Alypin, Novocain). Dtsch Med Wochenschr 31:1667–1671

    Google Scholar 

  14. Butterworth JFT, Strichartz GR (1993) The alpha 2‑adrenergic agonists clonidine and guanfacine produce tonic and phasic block of conduction in rat sciatic nerve fibers. Anesth Analg 76:295–301

    CAS  PubMed  Google Scholar 

  15. Capogna G, Celleno D, Laudano D et al (1995) Alkalinization of local anesthetics. Which block, which local anesthetic? Reg Anesth 20:369–377

    CAS  PubMed  Google Scholar 

  16. Catchlove RF (1972) The influence of CO 2 and pH on local anesthetic action. J Pharmacol Exp Ther 181:298–309

    CAS  PubMed  Google Scholar 

  17. Catterall WA (2000) From ionic currents to molecular mechanisms: the structure and function of voltage-gated sodium channels. Neuron 26:13–25

    CAS  PubMed  Google Scholar 

  18. Cayla C, Labuz D, Machelska H et al (2012) Impaired nociception and peripheral opioid antinociception in mice lacking both kinin B1 and B2 receptors. Anesthesiology 116:448–457

    CAS  PubMed  Google Scholar 

  19. Corning JL (1885) Spinal anaesthesia and local medication of the cord. N Y State Med J 42:483–485

    Google Scholar 

  20. Dalle C, Schneider M, Clergue F et al (2001) Inhibition of the I(h) current in isolated peripheral nerve: a novel mode of peripheral antinociception? Muscle Nerve 24:254–261

    CAS  PubMed  Google Scholar 

  21. Dawson LF, Phillips JK, Finch PM et al (2011) Expression of alpha1-adrenoceptors on peripheral nociceptive neurons. Neuroscience 175:300–314

    CAS  PubMed  Google Scholar 

  22. De Kloet ER, Vreugdenhil E, Oitzl MS et al (1998) Brain corticosteroid receptor balance in health and disease. Endocr Rev 19:269–301

    PubMed  Google Scholar 

  23. Desmet M, Braems H, Reynvoet M et al (2013) I. V. and perineural dexamethasone are equivalent in increasing the analgesic duration of a single-shot interscalene block with ropivacaine for shoulder surgery: a prospective, randomized, placebo-controlled study. Br J Anaesth 111:445–452

    CAS  PubMed  Google Scholar 

  24. Devor M, Govrin-Lippmann R, Angelides K (1993) Na+ channel immunolocalization in peripheral mammalian axons and changes following nerve injury and neuroma formation. J Neurosci 13:1976–1992

    CAS  PubMed  Google Scholar 

  25. El-Boghdadly K, Brull R, Sehmbi H et al (2017) Perineural dexmedetomidine is more effective than clonidine when added to local anesthetic for supraclavicular brachial plexus block: a systematic review and meta-analysis. Anesth Analg 124:2008–2020

    CAS  PubMed  Google Scholar 

  26. Eledjam JJ, Deschodt J, Viel EJ et al (1991) Brachial plexus block with bupivacaine: effects of added alpha-adrenergic agonists: comparison between clonidine and epinephrine. Can J Anaesth 38:870–875

    CAS  PubMed  Google Scholar 

  27. Erne-Brand F, Jirounek P, Drewe J et al (1999) Mechanism of antinociceptive action of clonidine in nonmyelinated nerve fibres. Eur J Pharmacol 383:1–8

    CAS  PubMed  Google Scholar 

  28. Feng SW, Cao Y, Wang WG et al (2012) Addition of adrenaline to chloroprocaine provides a moderate duration time for epidural anaesthesia in elective caesarean section. J Int Med Res 40:1099–1107

    CAS  PubMed  Google Scholar 

  29. Fields HL, Emson PC, Leigh BK et al (1980) Multiple opiate receptor sites on primary afferent fibres. Nature 284:351–353

    CAS  PubMed  Google Scholar 

  30. Freud S (1884) Über Coca. Zentralbl Gesamt Ther 2:289–314

    Google Scholar 

  31. Fulling PD, Peterfreund RA (2000) Alkalinization and precipitation characteristics of 0.2 % ropivacaine. Reg Anesth Pain Med 25:518–521

    CAS  PubMed  Google Scholar 

  32. Giovannitti JA Jr., Thoms SM, Crawford JJ (2015) Alpha-2 adrenergic receptor agonists: a review of current clinical applications. Anesth Prog 62:31–39

    PubMed  PubMed Central  Google Scholar 

  33. Gobeaux D, Landais A, Bexon G et al (1987) Addition of fentanyl to adrenalinized lidocaine for the brachial plexus block. Cah Anesthesiol 35:195–199

    CAS  PubMed  Google Scholar 

  34. Goldfarb GAE, Debaene B, Galet C, Jolis P (1989) Duration of analgesia after femoral nerve block with bupivacaine: effect of clonidine added to the anesthetic solution. Ann Fr Anesth Reanim 8(Suppl):R212

    PubMed  Google Scholar 

  35. Grant GJ, Vermeulen K, Zakowski MI et al (2001) Perineural antinociceptive effect of opioids in a rat model. Acta Anaesthesiol Scand 45:906–910

    CAS  PubMed  Google Scholar 

  36. Hanna MN, Elhassan A, Veloso PM et al (2009) Efficacy of bicarbonate in decreasing pain on intradermal injection of local anesthetics: a meta-analysis. Reg Anesth Pain Med 34:122–125

    CAS  PubMed  Google Scholar 

  37. Heesen M, Klimek M, Imberger G et al (2018) Co-administration of dexamethasone with peripheral nerve block: intravenous vs perineural application: systematic review, meta-analysis, meta-regression and trial-sequential analysis. Br J Anaesth 120:212–227

    CAS  PubMed  Google Scholar 

  38. Hille B (1966) Common mode of action of three agents that decrease the transient change in sodium permeability in nerves. Nature 210:1220–1222

    CAS  PubMed  Google Scholar 

  39. Ilicki J (2015) Safety of epinephrine in digital nerve blocks: a literature review. J Emerg Med 49:799–809

    PubMed  Google Scholar 

  40. Johansson A, Hao J, Sjolund B (1990) Local corticosteroid application blocks transmission in normal nociceptive C‑fibres. Acta Anaesthesiol Scand 34:335–338

    CAS  PubMed  Google Scholar 

  41. Karaman S, Kocabas S, Uyar M et al (2006) The effects of sufentanil or morphine added to hyperbaric bupivacaine in spinal anaesthesia for caesarean section. Eur J Anaesthesiol 23:285–291

    CAS  PubMed  Google Scholar 

  42. Kaufner L, Heimann S, Zander D et al (2016) Neuraxial anesthesia for pain control after cesarean section: a prospective randomized trial comparing three different neuraxial techniques in clinical practice. Minerva Anestesiol 82:514–524

    PubMed  Google Scholar 

  43. Kim WH, Ko JS, Ahn HJ et al (2013) Epinephrine decreases the dose of hyperbaric bupivacaine necessary for tourniquet pain blockade during spinal anesthesia for total knee replacement arthroplasty. J Anesth 27:72–79

    PubMed  Google Scholar 

  44. Kirkham KR, Jacot-Guillarmod A, Albrecht E (2018) Optimal dose of perineural dexamethasone to prolong analgesia after brachial plexus blockade: a systematic review and meta-analysis. Anesth Analg 126:270–279

    PubMed  Google Scholar 

  45. Kirksey MA, Haskins SC, Cheng J et al (2015) Local anesthetic peripheral nerve block adjuvants for prolongation of analgesia: a systematic qualitative review. PLoS ONE 10:e137312

    PubMed  PubMed Central  Google Scholar 

  46. Koller C (1884) Über die Verwendung des Cocains zur Anästhesierung am Auge. Wien Med Wochenschr 34:1276–1277

    Google Scholar 

  47. Lee IO, Kim WK, Kong MH et al (2002) No enhancement of sensory and motor blockade by ketamine added to ropivacaine interscalene brachial plexus blockade. Acta Anaesthesiol Scand 46:821–826

    CAS  PubMed  Google Scholar 

  48. Leffler A, Frank G, Kistner K et al (2012) Local anesthetic-like inhibition of voltage-gated Na(+) channels by the partial mu-opioid receptor agonist buprenorphine. Anesthesiology 116:1335–1346

    CAS  PubMed  Google Scholar 

  49. Li X, Shaqura M, Mohamed D et al (2018) Pro-versus antinociceptive nongenomic effects of neuronal mineralocorticoid versus glucocorticoid receptors during rat hind paw inflammation. Anesthesiology 128:796–809

    CAS  PubMed  Google Scholar 

  50. Lievre JA, Bloch-Michel H, Pean G et al (1953) L’hydrocortisone en injection locale. Rev Rhum 20:310e311

    Google Scholar 

  51. Luan H, Zhu P, Zhang X et al (2017) Effect of dexmedetomidine as an adjuvant to ropivacaine for wound infiltration in patients undergoing open gastrectomy: A prospective randomized controlled trial. Medicine 96:e7950

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Mccartney CJ, Duggan E, Apatu E (2007) Should we add clonidine to local anesthetic for peripheral nerve blockade? A qualitative systematic review of the literature. Reg Anesth Pain Med 32:330–338

    CAS  PubMed  Google Scholar 

  53. Messerer BPM, Justin C, Vittinghoff M (2014) Österreichischen Gesellschaft für Anästhesiologie, Reanimation und Intensivmedizin (ÖGARI). Regional anesthesia procedures in childhood: Austrian interdisciplinary recommendations on pediatric perioperative pain management. Schmerz 28(1):67–81

    CAS  PubMed  Google Scholar 

  54. Mhuircheartaigh RJ, Moore RA, Mcquay HJ (2009) Analysis of individual patient data from clinical trials: epidural morphine for postoperative pain. Br J Anaesth 103:874–881

    CAS  PubMed  Google Scholar 

  55. Milner QJ, Guard BC, Allen JG (2000) Alkalinization of amide local anaesthetics by addition of 1 % sodium bicarbonate solution. Eur J Anaesthesiol 17:38–42

    CAS  PubMed  Google Scholar 

  56. Mousa SA, Shaqura M, Al-Madol M et al (2017) Accessibility of axonal G protein coupled mu-opioid receptors requires conceptual changes of axonal membrane targeting for pain modulation. J Control Release 268:352–363

    CAS  PubMed  Google Scholar 

  57. Movafegh A, Razazian M, Hajimaohamadi F et al (2006) Dexamethasone added to lidocaine prolongs axillary brachial plexus blockade. Anesth Analg 102:263–267

    CAS  PubMed  Google Scholar 

  58. Murphy DB, Mccartney CJ, Chan VW (2000) Novel analgesic adjuncts for brachial plexus block: a systematic review. Anesth Analg 90:1122–1128

    CAS  PubMed  Google Scholar 

  59. Myers RR, Heckman HM (1989) Effects of local anesthesia on nerve blood flow: studies using lidocaine with and without epinephrine. Anesthesiology 71:757–762

    CAS  PubMed  Google Scholar 

  60. Nau C, Wang GK (2004) Interactions of local anesthetics with voltage-gated Na+ channels. J Membr Biol 201:1–8

    CAS  PubMed  Google Scholar 

  61. Oda A, Iida H, Tanahashi S et al (2007) Effects of alpha2-adrenoceptor agonists on tetrodotoxin-resistant Na+ channels in rat dorsal root ganglion neurons. Eur J Anaesthesiol 24:934–941

    CAS  PubMed  Google Scholar 

  62. Packiasabapathy SK, Kashyap L, Arora MK et al (2017) Effect of dexmedetomidine as an adjuvant to bupivacaine in femoral nerve block for perioperative analgesia in patients undergoing total knee replacement arthroplasty: A dose-response study. Saudi J Anaesth 11:293–298

    PubMed  PubMed Central  Google Scholar 

  63. Partridge BL (1991) The effects of local anesthetics and epinephrine on rat sciatic nerve blood flow. Anesthesiology 75:243–250

    CAS  PubMed  Google Scholar 

  64. Pehora C, Pearson AM, Kaushal A et al (2017) Dexamethasone as an adjuvant to peripheral nerve block. Cochrane Database Syst Rev. https://doi.org/10.1002/14651858.CD011770.pub2

    Article  PubMed  Google Scholar 

  65. Pernice L (1890) Über Cocainanästhesie. Dtsch Med Wochenschr 16:287–289

    Google Scholar 

  66. Picard PR, Tramer MR, Mcquay HJ et al (1997) Analgesic efficacy of peripheral opioids (all except intra-articular): a qualitative systematic review of randomised controlled trials. Pain 72:309–318

    CAS  PubMed  Google Scholar 

  67. Popping DM, Elia N, Marret E et al (2009) Clonidine as an adjuvant to local anesthetics for peripheral nerve and plexus blocks: a meta-analysis of randomized trials. Anesthesiology 111:406–415

    PubMed  Google Scholar 

  68. Prabhakar H, Rath S, Kalaivani M et al (2015) Adrenaline with lidocaine for digital nerve blocks. Cochrane Database Syst Rev. https://doi.org/10.1002/14651858.CD010645.pub2

    Article  PubMed  Google Scholar 

  69. Reddy SV, Maderdrut JL, Yaksh TL (1980) Spinal cord pharmacology of adrenergic agonist-mediated antinociception. J Pharmacol Exp Ther 213:525–533

    CAS  PubMed  Google Scholar 

  70. Riedl MS, Schnell SA, Overland AC et al (2009) Coexpression of alpha 2A-adrenergic and delta-opioid receptors in substance P‑containing terminals in rat dorsal horn. J Comp Neurol 513:385–398

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Rijsdijk M, Van Wijck AJ, Kalkman CJ et al (2014) The effects of glucocorticoids on neuropathic pain: a review with emphasis on intrathecal methylprednisolone acetate delivery. Anesth Analg 118:1097–1112

    CAS  PubMed  Google Scholar 

  72. Saied NN, Gupta RK, Saffour L et al (2017) Dexamethasone and clonidine, but not epinephrine, prolong duration of ropivacaine brachial plexus blocks, cross-sectional analysis in outpatient surgery setting. Pain Med 18:2013–2026

    PubMed  Google Scholar 

  73. Schafer M (2000) Analgesic effects of neostigmine in the periphery. Anesthesiology 92:1207–1208

    CAS  PubMed  Google Scholar 

  74. Schleich C (1894) Schmerzlose Operationen. Örtliche Betäubung mit indifferenten Flüssigkeiten. Springer, Berlin, Heidelberg

    Google Scholar 

  75. Schnabel A, Reichl SU, Zahn PK et al (2017) Efficacy and safety of buprenorphine in peripheral nerve blocks: a meta-analysis of randomised controlled trials. Eur J Anaesthesiol 34:576–586

    CAS  PubMed  Google Scholar 

  76. Schnabl SM, Herrmann N, Wilder D et al (2014) Clinical results for use of local anesthesia with epinephrine in penile nerve block. J Dtsch Dermatol Ges 12:332–339

    PubMed  Google Scholar 

  77. Schnabl SM, Unglaub F, Leitz Z et al (2013) Skin perfusion and pain evaluation with different local anaesthetics in a double blind randomized study following digital nerve block anaesthesia. Clin Hemorheol Microcirc 55:241–253

    CAS  PubMed  Google Scholar 

  78. Schotanus MGM, Bemelmans YFL, Van Der Kuy PHM et al (2017) No advantage of adrenaline in the local infiltration analgesia mixture during total knee arthroplasty. Knee Surg Sports Traumatol Arthrosc 25:2778–2783

    PubMed  Google Scholar 

  79. Schug SA, Saunders D, Kurowski I et al (2006) Neuraxial drug administration: a review of treatment options for anaesthesia and analgesia. CNS Drugs 20:917–933

    CAS  PubMed  Google Scholar 

  80. Shaqura M, Li X, Al-Khrasani M et al (2016) Membrane-bound glucocorticoid receptors on distinct nociceptive neurons as potential targets for pain control through rapid non-genomic effects. Neuropharmacology 111:1–13

    CAS  PubMed  Google Scholar 

  81. Sherif AA, Elsersy HE (2016) Dexamethasone as adjuvant for femoral nerve block following knee arthroplasty: a randomized, controlled study. Acta Anaesthesiol Scand 60:977–987

    CAS  PubMed  Google Scholar 

  82. Shishido H, Kikuchi S, Heckman H et al (2002) Dexamethasone decreases blood flow in normal nerves and dorsal root ganglia. Spine 27:581–586

    PubMed  Google Scholar 

  83. Shrestha BR, Maharjan SK, Tabedar S (2003) Supraclavicular brachial plexus block with and without dexamethasone—a comparative study. Kathmandu Univ Med J (KUMJ) 1:158–160

    CAS  Google Scholar 

  84. Sinnott CJ, Cogswell IL, Johnson A et al (2003) On the mechanism by which epinephrine potentiates lidocaine’s peripheral nerve block. Anesthesiology 98:181–188

    CAS  PubMed  Google Scholar 

  85. Sollmann T (1918) The comparative efficiency of local anesthetics. JAMA 70:216

    Google Scholar 

  86. Stähle H (2000) A historical perspective: development of clonidine. Best Pract Res Clin Anaesthesiol 14:237–246

    Google Scholar 

  87. Stan T, Goodman EJ, Bravo-Fernandez C et al (2004) Adding methylprednisolone to local anesthetic increases the duration of axillary block. Reg Anesth Pain Med 29:380–381

    CAS  PubMed  Google Scholar 

  88. Strichartz GR (1973) The inhibition of sodium currents in myelinated nerve by quaternary derivatives of lidocaine. J Gen Physiol 62:37–57

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Swain A, Nag DS, Sahu S et al (2017) Adjuvants to local anesthetics: Current understanding and future trends. World J Clin Cases 5:307–323

    PubMed  PubMed Central  Google Scholar 

  90. Tamsen A, Gordh T (1984) Epidural clonidine produces analgesia. Lancet 2:231–232

    CAS  PubMed  Google Scholar 

  91. Thomson CJ, Lalonde DH, Denkler KA et al (2007) A critical look at the evidence for and against elective epinephrine use in the finger. Plast Reconstr Surg 119:260–266

    CAS  PubMed  Google Scholar 

  92. Truong W, Cheng C, Xu QG et al (2003) Mu opioid receptors and analgesia at the site of a peripheral nerve injury. Ann Neurol 53:366–375

    CAS  PubMed  Google Scholar 

  93. Tschopp C, Tramer MR, Schneider A et al (2018) Benefit and Harm of adding epinephrine to a local anesthetic for neuraxial and locoregional anesthesia: a meta-analysis of randomized controlled trials with trial sequential analyses. Anesth Analg 127:228–239

    CAS  PubMed  Google Scholar 

  94. Unnerstall JR, Kopajtic TA, Kuhar MJ (1984) Distribution of alpha 2 agonist binding sites in the rat and human central nervous system: analysis of some functional, anatomic correlates of the pharmacologic effects of clonidine and related adrenergic agents. Brain Res 319:69–101

    CAS  PubMed  Google Scholar 

  95. Viel EJ, Eledjam JJ, De La Coussaye JE et al (1989) Brachial plexus block with opioids for postoperative pain relief: comparison between buprenorphine and morphine. Reg Anesth 14:274–278

    CAS  PubMed  Google Scholar 

  96. Virtanen R, Savola JM, Saano V et al (1988) Characterization of the selectivity, specificity and potency of medetomidine as an alpha 2‑adrenoceptor agonist. Eur J Pharmacol 150:9–14

    CAS  PubMed  Google Scholar 

  97. Vorobeichik L, Brull R, Abdallah FW (2017) Evidence basis for using perineural dexmedetomidine to enhance the quality of brachial plexus nerve blocks: a systematic review and meta-analysis of randomized controlled trials. Br J Anaesth 118:167–181

    CAS  PubMed  Google Scholar 

  98. Weber A, Fournier R, Van Gessel E et al (2001) Epinephrine does not prolong the analgesia of 20 mL ropivacaine 0.5 % or 0.2 % in a femoral three-in-one block. Anesth Analg 93:1327–1331

    CAS  PubMed  Google Scholar 

  99. Wiesmann T, Muller S, Muller HH et al (2018) Effect of bupivacaine and adjuvant drugs for regional anesthesia on nerve tissue oximetry and nerve blood flow. J Pain Res 11:227–235

    PubMed  PubMed Central  Google Scholar 

  100. Williams BA, Hough KA, Tsui BY et al (2011) Neurotoxicity of adjuvants used in perineural anesthesia and analgesia in comparison with ropivacaine. Reg Anesth Pain Med 36:225–230

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Wissenschaftlicher Arbeitskreis Kinderanästhesie (2007) Handlungsempfehlungen zur Regionalanästhesie bei Kindern. Anästh Intensivmed 48:79–S85.https://www.bda.de/docman/alle-dokumente-fuer-suchindex/oeffentlich/empfehlungen/589-handlungsempfehlungen-1/file.html

  102. Yang Y, Yu LY, Zhang WS (2018) Clonidine versus other adjuncts added to local anesthetics for pediatric neuraxial blocks: a systematic review and meta-analysis. J Pain Res 11:1027–1036

    PubMed  PubMed Central  Google Scholar 

  103. Young WS 3rd, Wamsley JK, Zarbin MA et al (1980) Opioid receptors undergo axonal flow. Science 210:76–78

    CAS  PubMed  Google Scholar 

  104. Youssef N, Orlov D, Alie T et al (2014) What epidural opioid results in the best analgesia outcomes and fewest side effects after surgery?: a meta-analysis of randomized controlled trials. Anesth Analg 119:965–977

    CAS  PubMed  Google Scholar 

  105. Zahn S, Leis S, Schick C et al (2004) No alpha-adrenoreceptor-induced C‑fiber activation in healthy human skin. J Appl Physiol 96:1380–1384

    PubMed  Google Scholar 

  106. Zarbin MA, Wamsley JK, Kuhar MJ (1990) Anterograde transport of opioid receptors in rat vagus nerves and dorsal roots of spinal nerves: pharmacology and sensitivity to sodium and guanine nucleotides. Exp Brain Res 81:267–278

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Schäfer.

Ethics declarations

Interessenkonflikt

M. Schäfer, S.A. Mousa, M. Shaqura und S. Tafelski geben an, dass kein Interessenkonflikt besteht.

Dieser Beitrag nimmt Bezug auf Studien, die an Tieren und an Patienten vorgenommen wurden. Für beides gab es ethische Einwilligungen über die entsprechenden autorisierten Gremien (Tierschutzbehörden und Ethikkommissionen). Abb. 1–4 zeigen immunhistochemische Anfärbungen von tierischen Gewebeschnitten.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schäfer, M., Mousa, S.A., Shaqura, M. et al. Hintergrund und aktueller Einsatz von Adjuvanzien für die Regionalanästhesie. Anaesthesist 68, 3–14 (2019). https://doi.org/10.1007/s00101-018-0522-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00101-018-0522-6

Schlüsselwörter

Keywords

Navigation