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Abstract
Purpose Convolutional neural networks (CNNs) are increasingly being developed for automated fracture detection in ortho-
paedic trauma surgery. Studies to date, however, are limited to providing classification based on the entire image—and only 
produce heatmaps for approximate fracture localization instead of delineating exact fracture morphology. Therefore, we 
aimed to answer (1) what is the performance of a CNN that detects, classifies, localizes, and segments an ankle fracture, 
and (2) would this be externally valid?
Methods The training set included 326 isolated fibula fractures and 423 non-fracture radiographs. The Detectron2 imple-
mentation of the Mask R-CNN was trained with labelled and annotated radiographs. The internal validation (or ‘test set’) and 
external validation sets consisted of 300 and 334 radiographs, respectively. Consensus agreement between three experienced 
fellowship-trained trauma surgeons was defined as the ground truth label. Diagnostic accuracy and area under the receiver 
operator characteristic curve (AUC) were used to assess classification performance. The Intersection over Union (IoU) was 
used to quantify accuracy of the segmentation predictions by the CNN, where a value of 0.5 is generally considered an 
adequate segmentation.
Results The final CNN was able to classify fibula fractures according to four classes (Danis-Weber A, B, C and No Fracture) 
with AUC values ranging from 0.93 to 0.99. Diagnostic accuracy was 89% on the test set with average sensitivity of 89% 
and specificity of 96%. External validity was 89–90% accurate on a set of radiographs from a different hospital. Accuracies/
AUCs observed were 100/0.99 for the ‘No Fracture’ class, 92/0.99 for ‘Weber B’, 88/0.93 for ‘Weber C’, and 76/0.97 for 
‘Weber A’. For the fracture bounding box prediction by the CNN, a mean IoU of 0.65 (SD ± 0.16) was observed. The fracture 
segmentation predictions by the CNN resulted in a mean IoU of 0.47 (SD ± 0.17).
Conclusions This study presents a look into the ‘black box’ of CNNs and represents the first automated delineation (seg-
mentation) of fracture lines on (ankle) radiographs. The AUC values presented in this paper indicate good discriminatory 
capability of the CNN and substantiate further study of CNNs in detecting and classifying ankle fractures.
Level of evidence II, Diagnostic imaging study.

Keywords Artificial Intelligence · CNN · Ankle · Lateral Malleolus

Introduction

Convolutional neural networks (CNNs) are increasingly 
being developed in orthopaedic trauma surgery for auto-
mated detection and classification of fractures [1–11]. Gen-
eral benefits include the fact that they (a) do not suffer from 
mental or physical fatigue compared to clinicians, (b) are 
consistent in their assessment because they are not limited 
by surgeon bias or poor inter-surgeon reliability [12–15], and 
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(c) can perform at or above the level of consensus agreement 
from a panel of experienced surgeons and radiologists [1, 5, 
10, 11, 16]. To date, most studies that have developed CNNs 
for fracture detection and classification primarily apply mod-
els that classify based on the entire or cropped input image 
[1, 5, 7, 10, 11, 16–18]. In contrast, newer computer vision 
techniques can detect, segment (i.e. exact delineate the sug-
gested location of the fracture (Fig. 5)), and classify fracture 
patterns.

Automated delineation of fracture lines gives us insight 
into what the algorithm ‘sees’, and may help foster clarity 
for the as yet ill-defined role of artificial intelligence (AI) in 
the field of computer vision for fracture recognition [19, 20]. 
The next level of CNN studies in our field report detailed 
segmentation by a CNN of the second intact metacarpal 
[21] on plain radiographs, vertebrae on computed tomog-
raphy (CT) [22], and femora on magnetic resonance imag-
ing (MRI) [23, 24]. To the best of our knowledge, however, 
detailed segmentation of fracture lines on radiographs has 
yet to be reported.

In 2020, Olczak and colleagues successfully applied a 
CNN for ankle fracture classification [8] using the image-
level classification model ResNet [25], but without auto-
mated delineation of the fracture. It remains the only frac-
ture recognition paper for patients sustaining ankle trauma 
to date. Ideally, CNNs should combine object detection with 
segmentation, and thus offer localization and classification 
simultaneously—for example to better guide junior doctors 
during their early learning curves by presenting an exact 
visual outline of the fracture line itself. In addition, CNNs 
are often trained with large datasets without selecting cases 
that facilitate the most efficient training rate for the CNN 
(i.e. learning rate). This results in a large portion of unneces-
sarily labelled and/or annotated cases, because these contrib-
ute minimally to the performance of the model.

Therefore, we aimed to develop a CNN that detects (i.e. 
fracture yes/no), classifies (according to AO/OTA 44/Weber 
A, B and C [26]), and localizes (with exact delineation/seg-
mentation of an ankle fracture). The following questions 
will be answered in this paper: (1) What are the diagnostic 
performance characteristics (accuracy, sensitivity, specific-
ity) and area under the receiver operator characteristic curve 
(AUC) of a CNN that classifies, localizes, and segments a 
lateral malleolus ankle fracture?, (2) Is this CNN externally 
valid?, and (3) Does application of a preliminary CNN that 
selects an appropriate training set result in an efficient train-
ing rate for the CNN?

Materials and methods

This study was approved by our Regional Review Board, 
according to the Declaration of Helsinki under number 
13991.

Guidelines

This study was conducted according to the Guidelines for 
Developing and Reporting Machine Learning Predictive 
Models in Biomedical Research [27] as well as the CON-
SORT-AI [28] the SPIRIT-AI [29], MI-CLAIM [30], and 
the CAIR checklist [31].

Dataset

For this study, 12.000 radiographic ankle examinations with 
standard views (AP, Mortise and Lateral) were retrospec-
tively collected from our Level 1 Trauma Centre, between 
January 2016 and December 2020. Studies were filtered 
using keywords in radiology reports to create an index data-
base containing isolated fibular fractures and a non-fracture 
database (Fig. 1).

Three independent observers manually reviewed and 
classified the radiographs according to the AO/OTA 44/
Weber A, B, and C [26], thereby excluding malleolar frac-
tures where the tibia was involved. Any disagreements were 
resolved by discussion with a fourth independent senior 
observer. Data curation further excluded radiographs with 
fractures and pathology other than a fibular fracture, old 
fractures, presence of callous or cast, radiographs of poor 
quality (i.e. radiographs of patients that would be sent back 
to radiology in clinic), open physes, radiological views of 
insufficient quality, and presence of plates or screws.

Preliminary CNN model

To improve efficiency in labelling and segmentation, a pre-
liminary CNN was trained to provide model-assisted label-
ling and annotations. For the annotation task, the DeepLab 
V3 + [32] architecture with MobileNet V2 [33], pre-trained 
on ImageNet [34] data, was used. For the classification task, 
a separate CNN with a MobileNet V2 [33] backbone and a 
softmax classifier were used. Training data for the prelimi-
nary CNN consisted of 147 radiographs with a fracture and 
228 without a fracture. Using Labelbox [35], the images 
were manually labelled for visibility of the fracture (easy, 
difficult, or impossible) and annotated by two independent 
observers for the following: shape of tibia/fibula and frac-
ture. Bounding boxes were created around the borders of 
these respective annotations.
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Final CNN model (Fig. 2)

For final model development, the Detectron2 [36] imple-
mentation of the Mask R-CNN was used. The backbone of 
the Mask R-CNN model was set to the Microsoft Research 
Asia version ResNet-50 [37], pre-trained on ImageNet 
[34]. The ResNet-101 variation of the backbone was tested 
but did not result in significant improvement.

An instance segmentation model can segment indi-
vidual objects (i.e. bones) by combining object detection 
(bounding box) and semantic segmentation (Fig. 3). The 
simplified explanation order in which Mask R-CNN does 
this is as follows (Fig. 2): (1) The radiograph is fed into 
the CNN; (2) the backbone (ResNet-50) together with the 
Region Proposal Network (RPN) creates many bounding 
boxes with each proposal being an object; (3) each region 
proposal is resized by Region of Interest (RoI) pooling to 
fit fixed height and width dimensions of 256 × 256; (4a) 
Mask R-CNN classifies each pixel in a region proposal to 

create a segmentation; (4b) simultaneously, Mask R-CNN 
uses object class prediction on each region proposal; (5) 
predictions are reverted back to original height and width 
dimensions and projected onto the output image.

Training of final CNN model

The training set included 326 fracture and 423 non-fracture 
radiographs, which were labelled and annotated in Label-
box [35]. Standard data augmentation (random cropping and 
horizontal flip operations) was used to improve the generali-
zation of the model. To reduce bias, cases were re-weighted 
according to their prevalence. The annotated bounding boxes 
are used as the Ground Truth for the RPN. Training was 
completed at 64 epochs (64 iterations of the complete data-
set) after 90 min. The training starts from an initial learning 
rate of 0.05 down to 1/10 every 1000 steps. Each step is 
commonly known as a mini-batch iteration; in this study, 
we loaded 12 images per mini-batch.

Fig. 1  Workflow used to create 
the final convoluted neural 
network (CNN) for the classifi-
cation of ankle fractures. This 
involves a two-stage approach. 
An initial CNN was trained to 
select cases that were consid-
ered difficult—for example, 
fractures that were hard to 
appreciate—for classification. 
Subsequently, the final CNN 
was trained using these radio-
graphs selected by the former 
CNN
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This gure presents how the nal Convoluted Neural Network (CNN) goes from the input image (1) to the nal prediction (6). The region proposal network and backbone create countless bounding boxes (2), 
where each box has a high likelihood of presence of an object. Then the Region of Interest (RoI) crops the bounding boxes to t xed dimensions, in this case 256x256 pixels (3). These cropped images are 

then used to simultaneously segment (4a) and classify (4b). Finally the cropped images are then resized to their original dimensions (5) and presented on top of the input image as predictions (6).

Fig. 2  This figure presents how the final convoluted neural network 
(CNN) goes from the input image (1) to the final prediction (6). The 
region proposal network and backbone create countless bounding 
boxes (2), where each box has a high likelihood of the presence of an 
object. Then, the region of interest (RoI) crops the bounding boxes to 

fit fixed dimensions, in this case 256 × 256 pixels (3). These cropped 
images are then used to simultaneously segment (4a) and classify 
(4b). Finally, the cropped images are then resized to their original 
dimensions (5) and presented on top of the input image as predictions 
(6)

Object Detection Semantic Segmentation Instance Segmentation

Fig. 3  From left to right: Object detection, semantic segmentation, and instance segmentation
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Evaluation of final CNN model

Twenty-five patients of each class (AO/OTA 44/Weber A, 
B, C or No Fracture), were randomly selected by the com-
puter—and cross-checked with the 400 (by the preliminary 
CNN) selected ‘difficult’ images—for the internal valida-
tion set (also known as ‘test set’), to assess the patient-level 
accuracy. The final prediction was the class with the highest 
combined prediction value among all radiographic views. 
The ground truth was the consensus between three experi-
enced fellowship-trained trauma surgeons. Consensus was 
achieved on all cases; however, ambiguous cases (low inter-
observer agreement) were put in a clinically challenging 
set and swapped with randomly selected patients to ensure 
objective measurement (high inter-observer agreement) of 
model performance. After assessing performance using non-
ambiguous cases (clinically easy internal validation), these 
were then put back into the internal validation set to assess 
the effect of clinically challenging cases (clinically challeng-
ing internal validation) on performance of the model.

To assess transportability and generalizability of the 
model, external validation was performed using 167 cases 
from our second Level-1 Trauma hospital in the Netherlands 
with the same methodology as for the internal validation. 

Due to a difference in protocol, these did not contain mortise 
views.

For assessment of the image-level accuracy, Intersection 
over Union (IoU; also known as the Jaccard index, Fig. 4) was 
used to quantify accuracy of the segmentation predictions by 
the CNN, where 0 indicates no overlap at all and 1 a perfect 
overlap. Due to the complex nature of CNNs, it cannot be 
assumed that predictions will perfectly match the ground truth; 
therefore, IoU is used as it is an indicator of overlap. Generally, 
an IoU > 0.5 is considered a good prediction [38, 39].

Statistical analysis

Accuracy (defined as the percentage of cases correctly pre-
dicted by the CNN), sensitivity, specificity, and AUC were 
calculated for each (non) fracture class. The AUC reflects the 
discriminative ability of the CNN to separate classes, an AUC 
of 1.0 corresponds to a prediction with perfect discrimina-
tory performance, whereas 0.5 indicates a prediction equal 
to chance.

Statistical analysis was performed using Python 3.9.0 
[Python Software Foundation, Beaverton, United States] with 
the modules: pandas, cv2, NumPy, sklearn, and plotly.

Ground Truth (gt) versus Prediction (pred) Area of Union (gt + pred) Area of Overlap

Fig. 4  From left to right: Ground truth (gt) versus prediction (pred), area of union (gt + pred), and area of overlap



1062 J. Prijs et al.

1 3

Results

Test set—performance of CNN model 2 on clinically 
‘Easy’ cases (Fig. 5)

The final CNN was able to classify fibula fractures accord-
ing to four classes (Danis-Weber A, B, C and No Fracture) 
with AUC values ranging from 0.93–0.99 and 89% accu-
racy (Tables 1, 2 and Fig. 5). Best accuracy was observed 
for the ‘No Fracture’ class with 100% and ‘Weber B’ 
with 92%. Accuracies of 88% and 76% were observed for 
classes ‘Weber C’ and ‘Weber A’, respectively. Specificity, 
however, was 100% for both of those two fracture classes.

In the ‘Weber C’ group, three cases were misclassi-
fied of which two were subtle fractures that were picked 
up on the lateral radiograph but missed or misclassified 

as ‘Weber B’ on the anteroposterior and mortise views, 
and one was a steep oblique fracture line misclassified 
as ‘Weber B’. From the ‘Weber A’ group, the six patients 
that were misclassified, five had transverse fractures at the 
level of the ankle joint (the line between ‘A’ or ‘B’ clas-
sification), and one was a subtle fracture. Two examples 
of misclassifications are shown in Fig. 6.

Test set—performance of CNN model 2 on clinically 
‘Difficult’ cases

With reintroduction of ambiguous cases, AUC values ranged 
from 0.90 to 0.98 and accuracy decreased by 4% to an average 
of 85%. Performance metrics per class are given in Tables 1 
and 2. Besides minor changes in other classes, the ‘Weber C’ 
class was most affected, where accuracy decreased from 88% 
(22/25) to 72% (18/25). Compared with the initial internal vali-
dation set, the ‘Weber C’ class had two extra ‘Weber B’ mis-
classifications. These occurred with a steep oblique fracture 
line, and two extra misclassifications as ‘No Fracture’ occurred 
when there was a presence of high ‘Weber C’ fracture.

Test set—accuracy of segmentation (i.e. delineation 
of the fracture line) (Fig. 7)

 Quality of the predicted fracture segmentations by the CNN 
was quantified by the IoU (Figs. 2 and 7). For the fracture 
bounding box prediction by the CNN, a mean IoU of 0.65 
(SD ± 0.16) was observed. The much more challenging frac-
ture polygon segmentation predictions by the CNN resulted in 
a mean IoU of 0.47 (SD ± 0.17).

External validation of CNN model 2

 On the clinically ‘easy’ external validation set without ambig-
uous cases, the model achieved AUC values ranging from 0.83 
to 0.95 and an overall accuracy of 90% (Table 3). Best accu-
racies of 99% and 92% were achieved for the ‘No Fracture’ 
and ‘Weber B’ classes, respectively, while the ‘Weber C’ and 
‘Weber A’ classes resulted in the least accurate predictions 
with 71% and 64%, respectively.

When ambiguous cases were introduced, the model 
achieved AUC values ranging from 0.84 to 0.92 and accu-
racy to 89%. Compared to the former external validation, all 
fracture classes’ accuracies were affected by 1–2% (Table 3). 
A similar pattern to the internal validation was observed; the 
model struggled with ambiguous cases; however, in contrast 
to the internal validation, no specific class was more affected 
than others.

Table 1  Combined radiograph confusion matrix and accuracy

Predicted

Weber A Weber B Weber C No Frac-
ture

Accuracy 
(%)

Performance on clinically ‘Easy’ cases
 Weber A 19 3 0 3 76
 Weber B 0 23 0 2 92
 Weber C 0 2 22 1 88
 No frac-

ture
0 0 0 25 100

Performance on clinically ‘Difficult’ cases
 Weber A 19 2 0 4 76
 Weber B 0 23 0 2 92
 Weber C 0 4 18 3 72
 No frac-

ture
0 0 0 25 100

Table 2  Sensitivity, specificity, and AUC per class

Sensitivity (%) Specificity (%) AUC 

Performance on clinically easy cases
 Weber A 76 100 0.93
 Weber B 92 93 0.97
 Weber C 88 100 0.99
 No fracture 100 92 0.99

Performance on clinically difficult cases
 Weber A 76 100 0.93
 Weber B 92 93 0.97
 Weber C 72 100 0.9
 No fracture 100 88 0.98
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Fig. 5  Selection of correct 
classifications by the final con-
voluted neural network

This gure presents a selection of correct classi cations by the nal Convoluted Neural Network.



1064 J. Prijs et al.

1 3

Discussion

To date, studies on the clinical application of AI in the field 
of computer vision have not deployed CNNs to automati-
cally delineate fractures, which can reduce the black box 
effect as well as aide less experienced doctors who are still 
in their early learning curve. Moreover, external validity of 
current CNNs for fracture recognition in orthopaedic trauma 
is scarce [3]. In this study, we developed a CNN that can 
detect, classify, and create detailed segmentations of fracture 
lines in ankle fractures (AO/OTA 44/Weber A, B and C) 
with an overall accuracy of 89%. In addition, it was found 
to be externally valid on radiographs from Level I Trauma 
Centre on a different continent, with an average accuracy 
of 89–90%. We used a preliminary CNN to select fractures 
that were difficult to appreciate, aiming for the most efficient 
training rate per image for the final CNN.

As with any study, this information must be interpreted 
with respect to its scientific strengths and weaknesses. One 
limitation is that existing classification systems suffer from 

varying inter-observer reliability, affecting performance of 
the model [14]. Another stems from evaluating the CNN 
using retrospective instead of prospective data, although the 
internal and external validation were collected from multiple 
years and thus simulate clinical practice. Also, as training 
data did not include fractures with concomitant joint dis-
locations, the CNN is unlikely to recognize this significant 
fracture subset. These study shortcomings, however, are 
counterbalanced by several notable merits, including that 
this is the first paper in the field of orthopaedic trauma to 
describe a pixel perfect segmentation of fracture lines on 
plain radiographs—compared to rough predictions using 
heat/activation maps described in literature—and use a pre-
liminary CNN to select cases to train the final CNN model. 
Another strength is external validation of the CNN in assess-
ing generalizability and possible bias of the model on data 
different than that used for development. Moreover, labelling 
of the internal validation set was done by three independ-
ent experienced surgeons, and a consensus was used as the 
ground truth. Finally, the Mask R-CNN [40] used in this 

AO/OTA 44/Weber A misclassi ed as a 44/Weber B

AO/OTA 44/Weber C misclassi ed as a No Fracture

Fig. 6  AO/OTA 44/Weber A misclassified as a 44/Weber B, AO/OTA 44/Weber C misclassified as a No Fracture
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Fig. 7  Segmentations and 
classifications of the final 
convoluted neural network for 
AO/OTA 44/Weber A (top), B 
(middle), and C (bottom)

 

This gure presents the segmentations and classi cations of the nal Convoluted Neural Network for AO/OTA 44/
Weber A (top), B (middle) and C (bottom).
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investigation represents a state-of-the-art CNN that accepts 
entire radiographs as input image for the detection, classi-
fication, and segmentation tasks, whereas commonly used 
CNN models often warrant cropping and are more difficult 
to implement in clinical practice.

In 2020, Olczak et al. [8] were the first and the only ones 
thus far to report the use of a CNN in classifying ankle frac-
tures. The current study adds to our knowledge by presenting 
a CNN that was developed to create a detailed localization 
and segmentation of fracture lines on radiographs. This 
may improve clinical reasoning and diagnostics by giving 
junior clinicians a visual guide and simultaneously reduces 
the ominous ‘black box’ effect, which facilitates a feedback 
loop for an ongoing learning curve. Furthermore, this study 
reports an improvement in the discriminatory performance 
(AUC values) compared to the study from Olczak and col-
leagues [8], using less than a fourth (approximately 250 
cases) of the 1064 cases for the corresponding classes with-
out tibial involvement (AO/OTA 44A1, B1, B2.1 and C1.1). 
Accuracy cannot be compared as the latter study did not 
report an accuracy of their CNN in classifying ankle frac-
tures. As labelling and annotating is very labour-intensive 
and qualified experts’ time is often limited, training an initial 
CNN to select optimal cases for training the CNN increases 
efficiency.

Although accuracy and the AUCs were high, the CNN 
misclassified 11 out of 100 patients in our test set (Figs. 5, 
6, and 7). It should be noted, however, that the AUC is close 
to 1 (indicating almost perfect discriminatory performance), 
ranging from 0.93 to 0.99. Accuracy depends greatly on 
individual cases in the internal validation set. Interestingly, 
the same cases considered ambiguous by surgeons (i.e. poor 
inter-observer reliability) were also the ones that CNN had 
difficulties with. Since CNNs can only be as good as their 
training, it should be noted that without an absolute truth 
(e.g. a CT scan), current computers can only be trained to 
approach the performance of surgeons—but they cannot 
surpass it. If one defines the ground truth as a consensus 
agreement, however, at least some inherent surgeon bias can 
be eliminated. The AO/OTA 44/Weber A and C classifica-
tions were most susceptible for misclassification, together 
accounting for nine of the 11 errors. The recognition of 
higher Weber C-type injuries might be limited by that the 
fact that the CNN appears to have no positional awareness 
and seems to classify based purely on fracture configuration. 
Another explanation might be the alternative CNN short-
coming in trying to detect features that exist at the margin 
of an image; similarly, CNNs are likely dependent on the 
variability in what gets captured in a given radiograph, since 
for multiple reasons this clearly varies image to image. Since 
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Weber C injuries can have dynamic instability or exist at a 
level not identified on non-stressed or more limited expo-
sure radiographs, it makes sense that this is where these 
algorithms seems to fall short and demonstrate room for 
improvement. For the segmentation task, the average IoU 
value for the bounding boxes was good, even though one 
study suggests that IoU is optimal for round shapes, but not 
for elongated ones [41] such as those used in this study. As 
expected, the highly variable fracture line segmentations 
resulted in a lower IoU compared to the bounding box. How-
ever, the average IoU was still close to 0.5, suggesting an 
overall accurate fracture line segmentation despite the great 
variation in fracture configurations.

It is worth noting that accuracy was the highest when 
detecting a lack of fracture, doing so with 100% accuracy. 
Thus, while much of the efforts of this study were to distin-
guish between various fracture patterns, the ability of the 
same process to exclude fracture is inherently useful to those 
working in the emergency or urgent care setting who simply 
need guidance as to when to seek additional orthopaedic 
consultation.

Performance is often reduced when assessed with 
an external validation set [4, 16, 42], as there are many 
observer- and machine-dependent variances between 
hospitals. Therefore, geographical external validation is 
a stringent and crucial test towards clinical implementa-
tion of these models. Enabling the external validation set 
to usually have two views (anteroposterior and lateral) 
instead of three (mortise) improved classification of frac-
tures that were only detected on one of the views, with a 
caveat that the CNN has to be more confident of its ‘Frac-
ture’ classification than its ‘No Fracture’ classification. 
A notable distinction here is that when there were three 
views and the fracture was seen on the lateral view but not 
on the anteroposterior and mortise, it was always classified 
as ‘No Fracture’.

In summary, this early work on automated detection 
in orthopaedic imaging demonstrates remarkable future 
potential despite several shortcomings noted in its current 
level of development. In conclusion, even though object 
detection has been employed for certain other types of 
fractures and imaging modalities, this study presents the 
first automated segmentation of fracture lines on ankle 
radiographs. The accuracy and AUC values presented in 
this paper certainly fortify a role for CNNs in detecting 
and classifying ankle fractures. Moreover, using a prelimi-
nary CNN to identify cases resulted in a network that was 
accurate enough to be externally valid in another hospi-
tal, surely important for reducing the workload of creating 
high-quality data for training of CNNs.
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