Skip to main content

Advertisement

Log in

Coronal shear fractures of the femoral neck: a comparison with basicervical fractures

  • Original Article
  • Published:
European Journal of Trauma and Emergency Surgery Aims and scope Submit manuscript

Abstract

Purpose

We propose coronal shear fracture of the femoral neck (CSFF) as a new type of fracture that differs from a basicervical fracture. This study aimed to present the incidence of CSFF and compare its clinical characteristics and outcomes with those of basicervical fractures.

Methods

In this multicenter retrospective cohort study, 2207 patients with hip fractures were identified using computed tomography (CT), 17 and 27 patients were diagnosed with CSFF (CSFF group) and basicervical fractures (basicervical fracture group), respectively. The primary outcome was reoperation, while the secondary outcomes were postoperative radiographic findings, ambulatory ability, and 1-year mortality rate. These outcomes were compared between the two groups. We also conducted diagnostic reliability tests for these fractures using the Cohen’s kappa coefficient.

Results

The incidence of CSFF and basicervical fractures in the 2207 patients were 0.77% and 1.22%, respectively. The inter-and intra-observer agreements for the diagnosis were almost perfect. The comorbidity score was significantly higher in the CSFF group than in the basicervical fracture group. No reoperations occurred in both groups. There were no significant intergroup differences in the postoperative radiographic findings. The 1-year mortality rate was higher in the CSFF group than in the basicervical fracture group (38.5% vs. 5.3%; odds ratio: 11.9, 95% CI: 1.2–118.5; p = 0.025).

Conclusion

This study presents the definition and incidence of CSFF with a high diagnostic reliability. Patients with CSFF had similar reoperation rate postoperative radiographic outcomes to basicervical fractures, while 1-year mortality rate was high.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Blair B, Koval KJ, Kummer F, Zuckerman JD. Basicervical fractures of the proximal femur. A biomechanical study of 3 internal fixation techniques. Clin Orthop Relat Res. 1994;306:256–63 (Epub 1994/09/01 PubMed PMID: 8070205).

    Google Scholar 

  2. Meinberg EG, Age J, Roberts CS, Karam MD, Kellam JF. Fracture and dislocation classification compendium—2018. J Orthop Trauma. 2018;321 Suppl 1:S1–170. https://doi.org/10.1097/bot.0000000000001063 (Epub 2017/12/20 PubMed PMID: 29256945).

    Article  Google Scholar 

  3. Mallick A, Parker MJ. Basal fractures of the femoral neck: intra- or extra-capsular. Injury. 2004;35(10):989–93. https://doi.org/10.1016/j.injury.2003.10.019 (Epub 2004/09/08 PubMed PMID: 15351664).

    Article  PubMed  Google Scholar 

  4. Saarenpaa I, Partanen J, Jalovaara P. Basicervical fracture—a rare type of hip fracture. Archiv Orthop Trauma Surg. 2002;122(2):69–72. https://doi.org/10.1007/s004020100306 (Epub 2002/03/07 PubMed PMID: 11880905).

    Article  CAS  Google Scholar 

  5. Yoo JI, Cha Y, Kwak J, Kim HY, Choy WS. Review on basicervical femoral neck fracture: definition, treatments, and failures. Hip Pelvis. 2020;32(4):170–81. https://doi.org/10.5371/hp.2020.32.4.170 (Epub 2020/12/19 PubMed PMID: 33335865 PubMed Central PMCID: PMCPMC7724026).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Watson ST, Schaller TM, Tanner SL, Adams JD, Jeray KJ. Outcomes of low-energy basicervical proximal femoral fractures treated with cephalomedullary fixation. J Bone Jt Surg Am Vol. 2016;98(13):1097–102. https://doi.org/10.2106/jbjs.15.01093 (Epub 2016/07/08 PubMed PMID: 27385683).

    Article  Google Scholar 

  7. Tucker A, Warnock M, McDonald S, Cusick L, Foster AP. Fatigue failure of the cephalomedullary nail: revision options, outcomes and review of the literature. Eur J Orthop Surg Traumatol. 2018;28(3):511–20. https://doi.org/10.1007/s00590-017-2059-9 (Epub 2017/10/19 PubMed PMID: 29043506).

    Article  PubMed  Google Scholar 

  8. Okano I, Sawada T, Kushima N, Tachibana T, Inagaki K. Treatment with helical blade cephalomedullary nail for two-part basicervical proximal femoral fracture in elderly patients a retrospective observational study. Geriatr Orthop Surg Rehabil. 2017;8(4):244–51. https://doi.org/10.1177/2151458517743327. Epub 2018/01/11. PubMed PMID: 29318087; PubMed Central PMCID: PMCPMC5755846.

  9. Kim JT, Ha YC, Park CH, Yoo JI, Kim TY. Single screw type of lag screw results higher reoperation rate in the osteosynthesis of basicervical hip fracture. J Orthop Sci Off J Jpn Orthop Assoc. 2020;25(1):152–5. https://doi.org/10.1016/j.jos.2019.02.010 (Epub 2019/03/11 PubMed PMID: 30851995).

    Article  Google Scholar 

  10. Massoud EI. Fixation of basicervical and related fractures. Int Orthop. 2010;34(4):577–82. https://doi.org/10.1007/s00264-009-0814-1 (Epub 2009/05/29 PubMed PMID: 19475407; PubMed Central PMCID: PMC2903134).

    Article  PubMed  Google Scholar 

  11. von Elm E, Altman DG, Egger M, Pocock SJ, Gøtzsche PC, Vandenbroucke JP. The strengthening the reporting of observational studies in epidemiology (STROBE) statement guidelines for reporting observational studies. J Clin Epidemiol. 2008;61(4):344–9. https://doi.org/10.1016/j.jclinepi.2007.11.008 (Epub 2008/03/04 PubMed PMID: 18313558).

    Article  Google Scholar 

  12. Chang SM, Zhang YQ, Ma Z, Li Q, Dargel J, Eysel P. Fracture reduction with positive medial cortical support: a key element in stability reconstruction for the unstable pertrochanteric hip fractures. Arch Orthop Trauma Surg. 2015;135(6):811–8. https://doi.org/10.1007/s00402-015-2206-x (Epub 2015/04/05 PubMed PMID: 25840887; PubMed Central PMCID: PMCPMC4436685).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Yamamoto N, Tamura R, Inoue T, Noda T, Nagano H, Ozaki T. Radiological findings and outcomes of anterior wall fractures in pertrochanteric fractures. J Orthop Sci Off J Jpn Orthop Assoc. 2021;26(2):247–53. https://doi.org/10.1016/j.jos.2020.02.020 (Epub 2020/04/04 PubMed PMID: 32241602).

    Article  Google Scholar 

  14. Quan H, Li B, Couris CM, Fushimi K, Graham P, Hider P, et al. Updating and validating the Charlson comorbidity index and score for risk adjustment in hospital discharge abstracts using data from 6 countries. Am J Epidemiol. 2011;173(6):676–82. https://doi.org/10.1093/aje/kwq433 (Epub 2011/02/19 PubMed PMID: 21330339).

    Article  PubMed  Google Scholar 

  15. Nguyen BN, Hoshino H, Togawa D, Matsuyama Y. Cortical thickness index of the proximal femur: a radiographic parameter for preliminary assessment of bone mineral density and osteoporosis status in the age 50 years and over population. Clin Orthop Surg. 2018;10(2):149–56. https://doi.org/10.4055/cios.2018.10.2.149 (Epub 2018/06/02 PubMed PMID: 29854337; PubMed Central PMCID: PMCPMC5964262).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Cole PA, Mehrle RK, Bhandari M, Zlowodzki M. The pilon map: fracture lines and comminution zones in OTA/AO type 43C3 pilon fractures. J Orthop Trauma. 2013;27(7):e152–6. https://doi.org/10.1097/BOT.0b013e318288a7e9 (Epub 2013/01/31 PubMed PMID: 23360909).

    Article  PubMed  Google Scholar 

  17. Baumgaertner MR, Curtin SL, Lindskog DM, Keggi JM. The value of the tip-apex distance in predicting failure of fixation of peritrochanteric fractures of the hip. J Bone Joint Surg Am Vol. 1995;77(7):1058–64. https://doi.org/10.2106/00004623-199507000-00012 (Epub 1995/07/01 PubMed PMID: 7608228).

    Article  CAS  Google Scholar 

  18. Hsueh KK, Fang CK, Chen CM, Su YP, Wu HF, Chiu FY. Risk factors in cutout of sliding hip screw in intertrochanteric fractures: an evaluation of 937 patients. Int Orthop. 2010;34(8):1273–6. https://doi.org/10.1007/s00264-009-0866-2 (Epub 2009/09/29. PubMed PMID: 19784649; PubMed Central PMCID: PMCPMC2989068).

    Article  PubMed  Google Scholar 

  19. Yamamoto N, Tomita Y, Noda T, Inoue T, Mochizuki Y, Ozaki T. Reduction quality and nail fixation ratio as bone-implant stability factors associated with reoperation for trochanteric fractures. Injury. 2021;52(7):1813–8. https://doi.org/10.1016/j.injury.2021.04.048 (Epub 2021/04/29 PubMed PMID: 33906740).

    Article  PubMed  Google Scholar 

  20. Chinzei N, Hiranaka T, Niikura T, Tsuji M, Kuroda R, Doita M, et al. Comparison of the Sliding and Femoral Head Rotation among Three Different Femoral Head Fixation Devices for Trochanteric Fractures. Clin Orthop Surg. 2015;7(3):291–7. https://doi.org/10.4055/cios.2015.7.3.291 (Epub 2015/09/04. PubMed PMID: 26330949; PubMed Central PMCID: PMCPMC4553275).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Tsukada S, Okumura G, Matsueda M. Postoperative stability on lateral radiographs in the surgical treatment of pertrochanteric hip fractures. Arch Orthop Trauma Surg. 2012;132(6):839–46. https://doi.org/10.1007/s00402-012-1484-9 (Epub 2012/02/22 PubMed PMID: 22350102).

    Article  PubMed  Google Scholar 

  22. Koo H, Leveridge M, Thompson C, Zdero R, Bhandari M, Kreder HJ, et al. Interobserver reliability of the young-burgess and tile classification systems for fractures of the pelvic ring. J Orthop Trauma. 2008;22(6):379–84. https://doi.org/10.1097/BOT.0b013e31817440cf (Epub 2008/07/03 PubMed PMID: 18594301).

    Article  PubMed  Google Scholar 

  23. Yamamoto N, Imaizumi T, Noda T, Inoue T, Kawasaki K, Ozaki T. Postoperative computed tomography assessment of anteromedial cortex reduction is a predictor for reoperation after intramedullary nail fixation for pertrochanteric fractures. Eur J Trauma Emerg Surg Off Publ Eur Trauma Soc. 2021. https://doi.org/10.1007/s00068-021-01718-9. Epub 2021/06/01. PubMed PMID: 34057554.

  24. Landis JR, Koch GG. The measurement of observer agreement for categorical data. Biometrics. 1977;33(1):159–74 (Epub 1977/03/01 PubMed PMID: 843571).

    Article  CAS  PubMed  Google Scholar 

  25. Lee YK, Yoon BH, Hwang JS, Cha YH, Kim KC, Koo KH. Risk factors of fixation failure in basicervical femoral neck fracture: Which device is optimal for fixation? Injury. 2018;49(3):691–6. https://doi.org/10.1016/j.injury.2018.02.009 (Epub 2018/02/13 PubMed PMID: 29433801).

    Article  PubMed  Google Scholar 

  26. Wang Q, Gu XH, Li X, Wu JH, Ju YF, Huang WJ, et al. Management of low-energy basicervical proximal femoral fractures by proximal femoral nail anti-rotation. Orthop Surg. 2019;11(6):1173–9. https://doi.org/10.1111/os.12579 (Epub 2019/12/12. PubMed PMID: 31823497; PubMed Central PMCID: PMCPMC6904631).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Shoda E, Kitada S, Sasaki Y, Hirase H, Niikura T, Lee SY, et al. Proposal of new classification of femoral trochanteric fracture by three-dimensional computed tomography and relationship to usual plain X-ray classification. J Orthop Surg (Hong Kong). 2017;25(1):2309499017692700. https://doi.org/10.1177/2309499017692700 (Epub 2017/02/18 PubMed PMID: 28211303).

    Article  PubMed  Google Scholar 

  28. Schileo E, Balistreri L, Grassi L, Cristofolini L, Taddei F. To what extent can linear finite element models of human femora predict failure under stance and fall loading configurations? J Biomech. 2014;47(14):3531–8. https://doi.org/10.1016/j.jbiomech.2014.08.024 (Epub 2014/09/28 PubMed PMID: 25261321).

    Article  PubMed  Google Scholar 

  29. Gautier E, Ganz K, Krügel N, Gill T, Ganz R. Anatomy of the medial femoral circumflex artery and its surgical implications. J Bone Jt Surg Brit. 2000;82B(5):679–83. https://doi.org/10.1302/0301-620x.82b5.0820679.

    Article  Google Scholar 

  30. Felsenberg D, Boonen S. The bone quality framework: determinants of bone strength and their interrelationships, and implications for osteoporosis management. Clin Ther. 2005;27(1):1–11. https://doi.org/10.1016/j.clinthera.2004.12.020 (Epub 2005/03/15 PubMed PMID: 15763602).

    Article  PubMed  Google Scholar 

  31. Ek S, Meyer AC, Hedström M, Modig K. Comorbidity and the association with 1-year mortality in hip fracture patients: can the ASA score and the Charlson Comorbidity Index be used interchangeably? Aging Clin Exp Res. 2022;34(1):129–36. https://doi.org/10.1007/s40520-021-01896-x (Epub 2021/06/10 PubMed PMID: 34106421; PubMed Central PMCID: PMCPMC8795011).

    Article  PubMed  Google Scholar 

  32. Kokoroghiannis C, Vasilakos D, Zisis K, Dimitriou G, Pappa E, Evangelopoulos D. Is rotation the mode of failure in pertrochanteric fractures fixed with nails? Theoretical approach and illustrative cases. Eur J Orthop Surg Traumatol. 2020;30(2):199–205. https://doi.org/10.1007/s00590-019-02557-6 (Epub 2019/09/21 PubMed PMID: 31538272).

    Article  CAS  PubMed  Google Scholar 

  33. Fuse Y, Zenke Y, Okimoto N, Yoshioka T, Yamanaka Y, Kawasaki M, et al. Biomechanical comparison of lag screw and non-spiral blade fixation of a novel femoral trochanteric nail in an osteoporotic bone model. Sci Rep. 2022;12(1):782. https://doi.org/10.1038/s41598-022-04844-5 (Epub 2022/01/19 PubMed PMID: 35039574; PubMed Central PMCID: PMCPMC8764022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Santoni BG, Nayak AN, Cooper SA, Smithson IR, Cox JL, Marberry ST, et al. Comparison of femoral head rotation and varus collapse between a single lag screw and integrated dual screw intertrochanteric hip fracture fixation device using a cadaveric hemi-pelvis biomechanical model. J Orthop Trauma. 2016;30(4):164–9. https://doi.org/10.1097/bot.0000000000000552 (Epub 2016/03/24 PubMed PMID: 27003028).

    Article  PubMed  Google Scholar 

  35. Kuan FC, Hsu KL, Lin CL, Hong CK, Yeh ML, Su WR. Biomechanical properties of off-axis screw in Pauwels III femoral neck fracture fixation: bicortical screw construct is superior to unicortical screw construct. Injury. 2019;50(11):1889–94. https://doi.org/10.1016/j.injury.2019.07.020 (Epub 2019/08/23 PubMed PMID: 31431332).

    Article  PubMed  Google Scholar 

Download references

Funding

None.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Data collection was performed by YY, NY, and TI. YY conducted statistical analysis. The first draft of the manuscript was written by NY and YT. All authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Norio Yamamoto.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare relevant to the content of this article.

Ethical approval

The study protocol was approved by the ethics committee (approval no. 201051).

Informed consent

Informed consent was obtained from all individual participants included in the study.

Appendix 1

Appendix 1

See Fig. 7.

Fig. 7
figure 7

Kaplan–Meier curves showing the cumulative survival probability in the CSFF and basicervical groups, in one year

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yamakawa, Y., Yamamoto, N., Tomita, Y. et al. Coronal shear fractures of the femoral neck: a comparison with basicervical fractures. Eur J Trauma Emerg Surg 49, 419–430 (2023). https://doi.org/10.1007/s00068-022-02079-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00068-022-02079-7

Keywords

Navigation