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Abstract
Purpose Three-dimensional (3D) printed patient-specific instruments (PSI) have been introduced to increase precision and 
simplify surgical procedures. Initial results in femoral and tibial osteotomies are promising, but validation studies on 3D 
planning, manufacturing of patient-specific cutting blocks and 3D evaluation of the attained results are lacking.
Methods In this study, patient-specific cutting blocks and spacers were designed, fabricated, and used to perform a high tibial 
osteotomy (HTO). After segmentation of CT data sets from 13 human tibiae, 3D digital planning of the HTO was performed 
with a medial opening of 8 mm. These 3D models were used to fabricate patient-specific cutting blocks and spacers. After 
the surgical procedure, accuracy was evaluated measuring 3D joint angles and surface deviations.
Results The lowest mean deviation was found to be 0.57° (SD ± 0.27) for the MPTA. Medial and lateral tibial slope deviated 
from the 3D planning by an average of 0.98° (SD ± 0.53) and 1.26° (SD ± 0.79), respectively, while tibial torsion deviated 
by an average of 5.74° (SD ± 3.24). Color analysis of surface deviations showed excellent and good agreement in 7 tibiae.
Conclusion With 3D cutting blocks and spacers, the 3D planning of the HTO can be translated into reality with small devia-
tions of the resulting joint angles. Within this study, the results of the individual steps are examined for errors and thus a 
critical evaluation of this new and promising method for performing patient-specific HTOs is presented.
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Introduction

Medial open-wedge high tibial osteotomy (HTO) is an effec-
tive procedure to adjust the coronal and sagittal alignment 
of the tibial plateau [1–4]. The need for coronal alignment 
correction can be indicated by isolated medial tibiofemoral 
compartment osteoarthritis in younger and physically active 
patients. The correction can delay the progression of oste-
oarthritic joint degeneration with a probability of survival 
between 85.4 and 91.6% at 10 years [1, 5, 6]. On the other 
hand, sagittal tibial slope correction can be used as a pow- 
erful tool in patients with cruciate ligament deficiencies or 
prior to the ligament reconstruction to prevent mechanical 
failure of the graft [7–9].

Conventional HTO largely remains an unguided proce- 
dure involving preoperative two-dimensional (2D) plan- 
ning based on standing full-leg radiographs [10]. In clinical 
practice, analysis and planning of deformity correction are 
performed by the treating surgeon using 2D radiographs, 
based on commonly known definitions and criteria (e.g., 
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Paley Book) [11]. But three-dimensional (3D) changes in the 
anatomy cannot sufficiently be depicted or planned with these 
images and occur unintentionally in many cases of HTO 
[12–14]. However, 3D imaging is possible with computer 
tomography (CT) and magnetic resonance imaging (MRI), 
and 3D HTO planning, as well as surgical implementation 
with 3D-printed PSIs, shows promising clinical results 
[15–18]. However, the 3D analysis and planning procedures 
are complex and constitute intellectual property of the 
manufacturing companies. Although the physician is 
involved in the planning process, potential sources of error 
and validation of the individual steps often remain unknown. 
Therefore, the group developed a standardized, validated 3D 
analysis and implemented reference values based on 3D 
analysis of a young cohort [19–21].

To better evaluate the implementation of 3D HTO plan-
ning, 3D printed patient-specific instruments (PSIs) and 
spacers were designed, manufactured and used in this study. 
To avoid large soft tissue detachment, the 3D printed cut-
ting blocks were designed to be smaller than in previous 
published studies [15, 16].

Based on the group`s investigations, it was hypothesized 
that an accurate tibial realignment can be performed with 
the help of 3D planning. 3D planning and postoperative 
results were compared by different means: Medial proximal 
tibial angle (MPTA), medial and lateral tibial slope as well 
as tibial torsion.

Material and Methods

The study consisted of three steps. In the first step, 13 sur-
face models of human tibiae created with CT scans were 
subjected to standardized 3D HTO planning using 3D soft-
ware. Second, patient-specific sawing templates and spacers 

were created based on the virtual planning before the HTO 
(8 mm standardized gap) procedure took place. Third, the 
realigned tibiae were reevaluated by additional CT scan and 
the joint angles were compared with the original 3D plan. 
Furthermore, discrepancies between plans and outcomes 
were visualized by false color analysis.

Generation of a surface model and standardized 3D 
planning of the HTO

The 13 human cadaveric fresh frozen tibiae without any soft 
tissues were scanned using CT (slice thickness 0.625 mm; 
GE HD750 CT, General Electric, Boston, USA). Based on 
the segmented DICOM data, a surface model (STL file) was 
generated based on a previously published method by semi-
automatic watershed segmentation of the CT data sets uti-
lizing the ImFusion Suite [22]. The resulting surface model 
was then transferred to the 3D software Geomagic Design 
2014. Here, the tibial plateau formed the xy-plane, while the 
z-axis runs vertically through the tibial knee center (Fig. 1).

As previously published, 14 defined landmarks were 
placed on the surface of the tibiae in order to analyze the 
3D anatomy [21]. The anatomical axis was defined using the 
midpoints of the tibial shaft at the level of one and two thirds 
of the shaft length. The medial and lateral tibial slope could 
be identified by the two lines between the most proximal 
anterior and posterior points and the anatomical tibial axis 
[11]. The tibial torsion was defined by two lines (dorsal tan-
gent to proximal tibia plateau and line between the deepest 
point of the incisura fibularis tibiae and the outermost point 
of medial malleolus) [23]. Numerous initial values including 
MPTA, medial and lateral sagittal slope, and tibial torsion 
were calculated using a Python script [21].

The virtual HTO was performed using biplanar cuts. 
The first cut in the coronal plane was made one centimeter 

Fig. 1  3D model in a coor-
dinate system (x-axis = red; 
y-axis = green; z-axis = violet). 
y-axis is defined by the tibial 
most proximal medial anterior 
point (TMCA) and the tibial 
most proximal medial posterior 
(TMCP) of the medial plateau. 
The xy-plane is defined by 
y-axis and a parallel running to 
a line between most medial and 
lateral proximal points (MMPP, 
MLPP). z-axis runs perpendicu-
lar to xy-plane [through TKC 
(tibial knee center)]. TMCA, 
TMCP define the medial slope 
(view from anteromedial 
proximal)
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behind the most ventral point of the tibial tuberosity, parallel 
to the anterior edge of the tibia. In the second step, the main 
osteotomy was performed from medial to lateral. The medial 
cut of the osteotomy was parallel to the medial slope and 
started distally by half of the maximum of the tibial plateau 
width (in average 35 mm). The target point of the osteotomy 
plane was 15 mm distal (z-axis) to the lateral tibial plateau. 
The hinge axis was defined at the lateral edge of the tibia 
and the cut ended 15 mm medially to the lateral cortex. The 
osteotomy gap was always opened by 8 mm (in the z-axis 
direction) at the most medial point to evaluate the printed 
cutting guides that should perfectly fit to the individual tibia. 
During 3D planning, only the MPTA was modified, while 
slope and torsion remained unchanged.

Generation of 3D printed cutting guides/spacers 
and surgical realignment

The virtually osteotomized surface models were then con-
verted to volume models using Catia V5 (Dassault Systèmes, 
Vélizy-Villacoublay, France) using a previously described 
method [22]. Based on these virtual planning models, PSIs 
and spacers were designed using the CAD-program Inventor 

Professional 2020 (Autodesk Inc., San Rafael, CA, USA; 
Fig. 2a).

For each 3D model, the corresponding cutting block was 
specifically adapted to the curvature of the tibia. The cutting 
blocks were designed to be as small as possible to avoid the 
need for complete detachment of the medial collateral liga-
ment (MCL) complex in real surgery. The sawing guides 
hence enabled the execution of the cut according to the pre-
defined planning performed in Geomagic (see Figs. 2, 3).

During the actual sawing process, the template also pre-
vented the saw blade from penetrating too deeply, so that the 
cut ended at 15 mm from the lateral tibial surface (Fig. 3). 
The guide itself was temporarily fixed to the tibia using four 
K-wires (2.5 mm).

A separate spacer/wedge was specifically designed for 
each bone based on the executed planning. The spacers 
allowed an optimal gap opening of 8 mm by inserting the 
wedge posteriorly to the plate. The curvature of the spacer 
allowed a defined positioning and easy removal after plate 
fixation.

The osteotomy was fixed with 3D printed reverse-engi-
neered plates similar to TomoFix™ which, to simplify the 
verification of the resultant osteotomy, are used to prevent 
artifacts from appearing in CT scans. The plate was affixed 

Fig. 2  Patient-specific sawing 
guide designed in Inventor 
Professional 2020 (Autodesk 
Inc., San Rafael, CA, USA) for 
left tibia (a); Cutting block at 
curvature of the proximal right 
tibia (sawbone test; b)

Fig. 3  a: Design of a spacer 
in Inventor Professional 2020 
(Autodesk Inc., San Rafael, CA, 
USA), b: Inserted spacer after 
osteotomy for a left tibia (dorsal 
view)
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via two proximal and distal screws. The wedge was then 
removed.

Using selective laser sintering (SLS) technology, the 
wedge, spacers, and osteotomy plates were additively manu-
factured using biocompatible polyamide. The medial open-
wedge osteotomies were performed on a total of 13 tibial 
cadavers.

Control of surgical realignment

After physical osteotomy of the tibiae with the specific 
instrumentation, the realigned specimen was scanned by 
CT once more (GE HD750 CT, General Electric, Boston, 
USA) with a slice thickness of 0.625 mm. The segmentation 
procedure was repeated on the DICOM data of the osteoto-
mized tibiae in order to create the 13 tibial surface models 
(ImFusion Suite, ImFusion GmbH, Munich, Germany). The 
angles were determined again by setting the defined land-
marks on the 3D bone models as described previously. The 
results were then compared with the original 3D plans. The 
deviations between plans and results were analyzed quali-
tatively using a distance-based false color analysis. The 
3D plan and the surgical result were aligned using the pre-
alignment function of the GOM Inspect Suite 2020 (GOM 
GmbH, Germany) in order to allow for surface comparison 
between the two. Here, the realigned anatomy is matched to 
the planned anatomy with the help of an automatic calcula-
tion of the best-fit. Because only the identical areas of the 
anatomies can be used for the regression, the proximal part 
of the repositioned tibia was separated using Inventor Pro-
fessional 2020 (Autodesk Inc., San Rafael, CA, USA). The 
coordinate system was adapted and transferred to the entire 
anatomy. The surface of both models was then compared 
in the GOM Inspect Suite 2020 (GOM GmbH, Germany). 
The software computes the perpendicular distance of each 
polygonal point on the realigned anatomy to the planned 
anatomy. The software displays the deviation as a color plot. 
For quantitative evaluation, deviation in the realignment of 
more than 1.7 mm was defined as unacceptable. The ranges 
are displayed using the following color scheme: Very good 
(green) deviation up to 0.6 mm above/below, good (yellow/
light blue) deviation of 0.6–1.2 mm above/below the planned 
position, acceptable range (orange/blue) 1.2–1.7 mm above/
below, unacceptable range (red/dark blue) deviation of at 
least 1.7 mm above/below the planned position.

Reliability of 3D HTO planning

In order to ensure high reliability, the same sequence of 
CT scan, segmentation and landmark setting according to 
preliminary studies was performed [21]. The 13 osteoto-
mized tibiae models were aligned into the same predefined 

coordinate system and relevant angles of them were auto-
matically calculated again via the same Python script.

Two investigators performed 3D HTO planning of the 
cadavers and performed the post-interventional measure-
ment of the osteotomized tibiae using the scanned 3D mod-
els. As described, the aim of this surgical implementation 
was to achieve an HTO of 8 mm gap measurement and 
changing the MPTA while maintaining the medial and lat-
eral slope and torsion. Accordingly, to the consistent 8 mm 
gap, the templates could evaluated better.

Statistics

Each examiner placed the predefined landmarks on the 
cadaver tibia and performed an 8 mm osteotomy. Measured 
angles were given in absolute values. The same procedure 
was followed with the scanned HTO-tibiae. In both cases, 
differences across all 13 tibiae were reported as mean values 
(with standard deviations) between investigators [24]. The 
averaged values of the examiners were then compared with 
the planned and real HTO-values. The corresponding devia-
tions were also indicated and further processed using Excel 
(Microsoft, Redmond, WA, USA).

Results

Reliability of the measurements

Regarding the reliability of the measurements, previous 
studies of the presenting group revealed an intraclass corre-
lation (ICC) of > 0.75; except the tibial torsion (MPTA 0.98; 
medial slope 0.8; lateral slope 0.9; tibial torsion 0.69) [21]. 
The mean differences in two-observer measurements for the 
models in this study (3D planning and surgical outcomes) 
are displayed in Table 1.

Deviation of 3D HTO planning versus surgical result

Compared to the 3D planning, the osteotomies showed an 
average MPTA deviation of 0.57° (SD ± 0.27). Medial and 
lateral slope differed by an average of 0.98° (SD ± 0.53) and 
1.26° (SD ± 0.79), respectively, tibial torsion differed by an 

Table 1  Mean differences between observers` measurements of 3D 
planning and surgical outcome

SD standard deviation

MPTA Medial 
tibial slope

Lateral 
tibial slope

Tibial torsion

Mean value 0.57 0.98 1.26 5.74
SD 0.50 0.61 1.21 4.6
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average of 5.74° (SD ± 3.24; Table 2). Overall, however, the 
measurements of both observers—apart from the tibial tor-
sion—showed acceptable to good results.

False color analysis

In the false color analysis using GOM Inspect Suite 2020 
(GOM GmbH, Germany), a surface comparison was per-
formed between the 3D plan and the surgical result. Seven 
tibiae had only minimal surface differences compared to 

the preoperative 3D plan which are most likely segmenta-
tion related color deviations (Fig. 4).

Six tibias were found to be under-corrected, three of 
them with respect to the MPTA and in two of them at the 
ventral tibial part (Table 3).

Discussion

Overall, the results of the realignment surgery on cadaveric 
models using 3D plans and 3D printed cutting blocks are 
convincing. The 3D approach is superior when compared 
to conventional two-dimensional (2D) planning and imple-
mentation with accepted ranges of ± 3° MPTA [10]. Tibial 
knee joint angles (MPTA, medial and lateral slope) deviated 
in average by less than 1.3 degree from the preoperative 
planning in this study.

One of the main problems in 3D planning and imple-
mentation of osteotomies is that the ideal technique of 3D 
anatomy analysis, the ideal target and the accepted range of 
accuracy are still subject of discussion in current literature. 
Even in the 2D there are planning methods which use the 
Mikulicz line in relation to the tibial plateau or using the 
Hip-Knee-Angle [25–28]. However, the strong results in 
clinical studies showing a deviation of only 0.1° between 
planning and surgical outcome when using 3D PSI in high 
tibial osteotomy could not be replicated in this study [29]. 
In addition, a meta-analysis demonstrates no significant 
improvement in accuracy by PSI compared with the con-
ventional technique even though outliers were reduced by 
the presented technique [25].

Results in tibial torsion, a relevant value representing the 
third dimension, are not included in most published stud-
ies investigating PSI in osteotomy [15, 16, 29, 30]. One 

Table 2  Difference and absolute mean difference between real und 
planned HTO in degrees (°)

SD standard deviation

Tibia No  MPTA Medial 
tibial slope

Lateral 
tibial slope

Tibial torsion

1 0.25 1.42 3.03 6.18
2 0.46 0.45 0.89 6.81
3 0.83 0.97 0.95 3.12
4 0.28 1.97 0.02 5.64
5 0.94 0.4 1.39 4.62
6 0.85 0.79 0.61 5.66
7 0.14 1.19 1.44 12.67
8 0.85 0.79 0.61 4.89
9 0.41 0.98 2.21 1.16
10 0.31 0.37 0.63 11.63
11 0.84 1.69 1.88 2.84
12 0.78 1.39 1.52 5.52
13 0.63 0.35 1.27 3.91
Absolute 

mean value
0.57 0.98 1.26 5.74

SD 0.27 0.53 0.79 3.24

Fig. 4  a: Very good results in surface comparison with minimal deviation between the plan and the surgical result. b: deviation in millimeters. c: 
ventral under-correction of surgical result compared to the planning
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reason for deviations of tibial torsion in this study (up to 
12.67°) could be the manual selection of landmarks on the 
3D bone surface model. Liodakis et al. demonstrated that 
torsion control in the case of fracture or osteotomy is prone 
to error using 2D imaging only. 3D imaging is listed here 
as a possible solution [31, 32]. Goleski et al. also described 
poor torsional reliability of navigated lower limb alignment 
in HTO, while Liodakis et al. compared different methods 
of measuring torsion on 2D CT slice images; good values 
were shown across all measurements [23, 33]. However, our 
group`s previous work on 3D analysis of lower limb align-
ment showed that manual landmark determination of tibial 
torsion led to low reliability [21]. In conclusion, a more pre-
cise 3D landmark definition seems to be necessary for tibial 
torsion. Ideally, this will be achieved by automatic landmark 
recognition, a method which was recently published by Ste-
phen et al. [34].

False color analysis of surface deviations and angle meas-
urements revealed unintended slope changes in some speci-
mens. Under-correction of the anterior tibia (two cases) is a 
possible consequence of wedges inserted posteriorly only. 
Under-correction of MPTA occurred in four specimen which 
could be explained by post-sintering after removal of the 
wedge as described by Valkering et al. [35]. Fresh, frozen 
cadaver bone is more rigid and therefore harder to deform, 
so these problems are likely to be less severe in vivo. Both 
aspects could be addressed by bigger allograft wedges or 3D 
printed scaffolds in future studies.

One limitation of this study is that the osteotomy was 
performed on cadaveric tibiae only. This means that there 
was no fibula or soft tissue. Accordingly, the lateral malleo-
lus landmark was placed in the deepest point of the Incisura 
fibularis tibiae and considering the multi-observer measure-
ments, this landmark appears to have a low reliability, result-
ing in low accuracy in the measurement of tibial torsion.

Specimens without soft tissue were selected to facilitate 
the segmentation process and to reduce differences due to 
repeated CT scans and in the segmentation process. With a 
slice thickness of 0.65 mm and thresholding segmentation, 
the differences in the creation of the 3D model were esti-
mated to be minimal [22, 36]. Conclusions about possible 
soft tissue forces are therefore not possible [37, 38]. At the 
same time, the absence of soft tissues enabled perfect fitting 
of the template to the bone.

However, in accordance with previous studies, results of 
angle measurements and false color analysis indicate a high 
accuracy for the evaluated 8 mm-osteotomies performed 
with 3D printed cutting blocks [15–17]. Jud et al. showed 
that a slight deviation of the template does not seem to have 
a relevant effect on coronal alignment in HTO [39]. Tem-
plates can be designed and used according to desired target 
angles [40]. Even the problem of posterolateral hinge posi-
tions in HTO increasing the tibial slope was avoided in this 
study by using 3D printed PSIs [41, 42].

In future studies, templates adapted to the 3D model will 
allow different heights of osteotomy gaps and with oblique 
osteotomy planes they will allow multidimensional changes. 
Variously shaped wedges also offer a wide range of correc-
tion possibilities for open-wedge osteotomies.

First in vivo results also showed similar advantages in 
accuracy with PSI for femoral osteotomies [43]. In addi-
tion to improving accuracy, 3D printed PSIs could reduce 
intraoperative fluoroscopy time and surgical time [44, 45].

An important point of this study is the execution of 
the essential steps in the planning and analysis process by 
orthopedic surgeons. An uninfluenced analysis of these new 
promising possibilities of PSI, independent of the manu-
facturing companies, is necessary for a critical scientific 
discussion.

Conclusion

With 3D printed PSIs and spacers, 3D planning of HTO can 
be realized with high accuracy. Only minor deviations were 
recorded in the surgical procedures using relatively small 3D 
printed PSIs. Some deviations in the 3D angle measurement 
are due to the manual nature of these measurements and can 
soon be improved by automation. False color analysis can 
reveal deviations from the 3D plans and helps to improve 
the procedure. Based on the present results, 3D cutting tem-
plates appear to be a promising tool for optimizing and sim-
plifying HTOs, but further studies on 3D printed wedges and 
the required size of the cutting blocks are warranted.

Funding Open Access funding enabled and organized by Projekt 
DEAL. This research was funded by the German Knee Society e.V. 
(Deutsche Kniegesellschaft e.V. (DKG)).

Table 3  False color analysis 
of surface deviations of the 13 
tibiae and described deviations

Tibia HTO

01 Very Good
02 Very good
03 Very good
04 Very good
05 General under-correction
06 Ventral under-correction
07 General under-correction
08 General under-correction
09 Good
10 Very good
11 Ventral under-correction
12 General under-correction
13 Very good
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