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Abstract
Purpose  In the past decade blast injuries have become more prevalent. Blast trauma may cause extensive injuries requiring 
improved early resuscitation and prevention of haemorrhage. Randomized prospective trials are logistically and ethically 
challenging, and large animal models are important for further research efforts. Few severe blast trauma models have been 
described, which is why we aimed to establish a comprehensive polytrauma model in accordance with the criteria of the 
Berlin definition of polytrauma and with a survival time of > 2 h. Multiple blast injuries to the groin and abdomen were 
combined with hypoperfusion, respiratory and metabolic acidosis, hypoventilation, hypothermia and inflammatory response. 
The model was compared to lung contusion and haemorrhage.
Methods  16 landrace swine (mean weight 60.5 kg) were randomized to “control” (n = 5), “chest trauma/hem” by lung con-
tusion and class II haemorrhage (n = 5), and “blast polytrauma” caused by multiple blast injuries to the groin and abdomen, 
class II haemorrhage, lipopolysaccharide (LPS) infusion and hypothermia 32 °C (n = 6).
Results  The blast polytrauma group had an Injury Severity Score of 57 which resulted in haemodynamic shock, hypothermia, 
respiratory and metabolic acidosis and inflammatory response. The chest trauma/hem group had an Injury Severity Score 
of 9 and less profound physiologic effects. Physiologic parameters presented a dose–response relationship corresponding 
to the trauma levels.
Conclusion  A comprehensive blast polytrauma model fulfilling the Berlin polytrauma criteria, with a high trauma load and 
a survival time of > 2 h was established. A severe, but consistent, injury profile was accomplished enabling the addition of 
experimental interventions in future studies, particularly of immediate resuscitation efforts including whole blood adminis-
tration, trauma packing and haemostasis.
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Introduction

Injury is a serious threat to public health, contributing to 1 
in 10 mortalities and resulting in annual worldwide death of 
more than 5.8 million people [1, 2]. Blast injures account for 
an increasing number of deaths in both military and civilian 
life. In Iraq and Afghanistan, more than 71% of combat casu-
alties in the US military were caused by explosions [3], and 
more than 1300 bombing incidents occur annually in the US 
[4]. In the past decade, sudden mass casualties due to bomb-
ings have become prevalent [2]. Blast events cause extensive 
injuries to multiple locations in the body leading to severe 
complications such as catastrophic haemorrhage and trauma-
induced coagulopathy [2, 5]. Improved survival requires 
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improved early and advanced resuscitation and prevention 
of bleeding [6, 7], but randomized prospective human trials 
are logistically and ethically challenging [8]. While further 
advancements require realistic animal models, few models 
of severe blast trauma have been described. Due to the com-
plexity of blast injury it is unlikely that one model will be 
able to replicate all the relevant injuries and postinjury con-
sequences [9]. Specifically, a model that encompasses a high 
trauma load is required, to complement established trauma 
models based on liver incisions or femur fractures [10–14]. 
It is known that coagulopathic complications increase with 
increased injury severity [15] and few models offer true bal-
listic trauma mechanisms [16, 17]. Therefore, we aimed to 
establish a comprehensive and ballistic polytrauma model, 
with a survival time of > 2 h, using multiple blast injuries 
to the groin and the abdomen, combined with hypoperfu-
sion, respiratory and metabolic acidosis, hypoventilation, 
hypothermia and inflammatory response. The model was 
intended to fulfil the criteria of the Berlin definition of pol-
ytrauma [18]. ~ 60 kg swine were chosen based on the simi-
larities to human anatomy and physiology [19]. Serving as 
a dose–response validation, the polytrauma model was com-
pared to a model of chest trauma/hem caused by lung contu-
sion [20]. We hypothesized that the model may be useful for 
studies of immediate resuscitation efforts, including whole 
blood administration, trauma packing and haemostasis, in 
civilian and military settings.

Material and methods

All experiments were approved by the ethics committee in 
Linköping, Sweden (approval no: 1470). 16 landrace swine 
with a mean weight of 60.5 (range 56–64) kg were used. The 
experimental setup is described in Fig. 1.

Preparation

Pre-medication consisted of 150 mg tiletamine/zolazepam 
(Zoletil 100 Vet) and 6 mg medetomidine (Domitor) after 
which anaesthesia was induced with fentanyl 2.5 µg/kg 
and pentobarbitalnatrium 6 mg/kg. Endotracheal intuba-
tion was performed with a custom-made Miller-type laryn-
goscope using a standard cuffed size 8 tube. Throughout 
the study, perioperative hypnosis was maintained with 
ketamine 25 mg/kg/h and midazolam 0.0485 mg/kg/h, and 
analgesia with fentanyl 3.5 μg/kg/h. The animals were ven-
tilated with a Hamilton C2 (Hamilton Medical, Geneva, 
Switzerland) or a Servo 900C ventilator (Siemens-Elema, 
Solna, Sweden) using pressure control with initial settings 
PEEP 4, PIP 15 cm H20, respiratory rate 15/min and FiO2 
always remained at 21%. Settings were adjusted to achieve 
normoventilation before the onset of trauma (PaCO2 

4.9–5.7 kPa). Arterial blood gases [pH, PaCO2, PaO2, Na+, 
K+, Ca++, glucose, lactate, haematocrit (Hct), arterial blood 
saturation (SaO2) and base excess (BE)] were collected on 
baseline and then repeatedly throughout the experiment 
(GEM Premier 3000, Instrumentation Laboratories, Lex-
ington, MA, USA). Whole blood haemoglobin analysis was 
measured with Hb 201+, HemoCue AB (Ängelholm, Swe-
den). A 7.5 F, 110 cm pulmonary artery catheter (Edwards 
Lifescience, Irvine, California USA) was cannulated in the 
right internal jugular vein via cut-down for monitoring of 
central venous pressure (CVP), cardiac output (CO), pulmo-
nary artery pressure (PAP), mixed venous saturation (SvO2) 
and core temperature (Vigilance II-monitor, Edwards Lifes-
cience). Perioperative monitoring by continuous electrocar-
diograms, and urine output were also performed. After an 
initial fluid bolus of 500 mL Ringer’s Acetate at induction of 
anaesthesia to correct for individual differences in preopera-
tive fluid balance, the infusion rate was 3 mL/kg/h during 
anaesthesia. 100 mL boluses were given if mean arterial 
pressure (MAP) < 35 mmHg. No blood autotransfusion was 
performed. After preparation, animals were randomized 
to control (n = 5), chest trauma/hem (n = 5) or polytrauma 
(n = 6). Control animals were anesthetised for the duration 
of the experiment and were not exposed to any additional 
manipulation.

Chest trauma/hem

The animals were subjected to chest trauma by pulmonary 
contusion by a 59 g, 65 × 55 mm polyethylene projectile with 
mean velocity 82.3 (range 46–97) m/s, deployed 3.3 m from 
a custom-made cold air gun/compressed air gun, producing a 
300-J energy-burst to the thorax. The projectile hit a fix point 
on the right dorsoanterior thorax (5 cm caudal and 2 cm ven-
tral to the tip of the right scapula, 22–24 cm dorsally of the 
xiphoid process, right front leg in maximal abducted posi-
tion) until pulmonary contusion was confirmed by B-lines 
and C-lines in ultra sound (Fig. 2a, b), which has sensitivity 
94% and specificity 96% for lung contusion [21, 22] and 
haemoptysis was detected in the endotracheal tube (× 1 in 4 
animals, × 3 in 1 animal). The consistency of the lung injury 
was confirmed in postmortem calculations of lung injury 
volume and skin lesion size (Fig. 2c, d) (data not shown). 
The chest trauma was followed by controlled haemorrhage 
from the femoral artery at a rate of approximately 100 mL/
min until a class II haemorrhage was reached (25% of an 
estimated total blood volume of 65 mL/kg).

Polytrauma

Swedish military grade plastic explosive (M/46) was uti-
lized for the blast injuries. M/46 consists of 86% penthyl 
(pentaerytritoltetranitrat, C(CH2ONO2)4) and 14% mineral 
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oil and has a detonation speed of 8400 m/s. 1 g of M/46 
was taped to a non-electric initiation system capsule and 
9 m of cord snapline SL-0, connected to a Nonel Dynostart 
ignition box (Dyno Nobel, Brisbane, Australia) (Fig. 2e, 
f). The explosive charge was taped to the skin and covered 
by ceramic plates from a military grade body armour. The 
animals were subjected to the following: (1) blast injury to 
the groin. The point of impact was above the mid-level of 

the femur (Fig. 2g). (2) Blast injury to the abdomen. The 
point of impact was 1 cm medially of the rib cage at level 
I6–I7 dx, corresponding to a level above the liver (Fig. 2h). 
The animals were then covered with flexible freezer packs 
to induce hypothermia. At completion of the blast inju-
ries, lipopolysaccharide (LPS)-infusion (Escherichia coli 
O111:B4, Sigma-Aldrich, St.Louis, USA) was started (1 µg/
kg/h), and the left femoral artery was exposed via cut-down 

Fig. 1   Chart of experimental 
setup and groups
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technique and transected to induce uncontrolled haemor-
rhage. If MAP < 25 mmHg, the bleeding was temporarily 
stopped by compression. To ensure survivability during the 
observation period, vasopressor support by norepinephrine 
was given if MAP < 25 mmHg. The bleeding was terminated 
when a class II haemorrhage was reached (25% of an esti-
mated total blood volume of 65 mL/kg). Following the blast 
injuries, hypoventilation causing hypercapnia was initiated 
by decreasing the minute ventilation. At completion of the 
experiments, the animals were euthanized by 40 mL pento-
barbitalnatrium (Alfatal Vet 100 mg/mL) and post-mortem 
examinations were performed.

Statistical analyses

Statistical analyses were performed using GraphPad Prism 
version 8.2.1 for Windows (GraphPad Software, La Jolla, 
Ca). For all temporal data sets, a mixed effects model with 

the Geisser–Greenhouse correction was used, comparing 
groups to the control group. For troponin T and myoglo-
bin, paired t tests were used, comparing groups to the cor-
responding control group for the specific time. p < 0.05 was 
considered statistically significant. Error bars represent the 
standard error of the mean.

Results

The chest trauma/hem resulted in Injury Severity Score 9 
(head and neck: no injury, face: no injury, chest: serious, 
abdomen: no injury, extremity: no injury, external: no 
injury), and the polytrauma in Injury Severity Score 57 
(head and neck: no injury, face: no injury, chest: severe, 
abdomen: critical, extremity: severe, external: severe).

The panel in Fig. 3 describes circulatory consequences. 
MAP decreased in chest trauma/hem (p = 0.038, 95% CI 

Fig. 2   Photos of a ultrasound 
image of the lung with sub-
cutaneous tissue (#), pleura 
(¤) and unaffected lung (§). b 
Ultrasound image of the lung 
with pleura (¤) and b-lines 
(*) disclosing intrapulmonary 
fluids. c Macro-histopathology 
specimens of the lung showing 
lung contusion. d Picture of 
thoracic skin lesion caused by 
impact of the projectile e deto-
nator with 1 g of penthyl plastic 
explosive attached by tape. f 
Detonated explosive charge. g 
Placement of explosive charge 
above the femur, marked with 
a green cross. h Placement 
of explosive charge on the 
right abdomen above the liver, 
marked with a green cross. Size 
markers equal 5 cm
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of difference 1.458–38.14) and polytrauma (p = 0.023, 
95% CI of difference 4.096–43.91) compared to controls 
(Fig. 3a). CO decreased in chest trauma/hem (p = 0.03, 95% 
CI of difference 0.1856–2.798) and polytrauma (p = 0.022, 
95% CI of difference 0.2757–2.757) compared to controls 
(Fig. 3b). Haemoglobin remained unchanged compared to 
controls (Fig. 3c). Pulmonary artery wedge pressure (PAWP) 
remained unchanged compared to controls (Fig. 3d). MPAP 
increased in polytrauma (p = 0.015, 95% CI of difference 
− 16.44 to − 2.274) compared to controls (Fig. 3e). Tem-
perature decreased in polytrauma (p = 0.001, 95% CI of 
difference 2.743–5.660) compared to controls (Fig. 3f). 
Mean haemorrhage was 892 mL in chest trauma/hem and 
826 mL in polytrauma (Fig. 3g). Troponin T increased in 

polytrauma although not reaching statistical significance 
at 120  min compared to controls (Fig.  3h). Myoglobin 
increased in chest trauma/hem at 120 min (p = 0.015, 95% 
CI of difference − 200.3 to 61.99) and polytrauma at 20 min 
and 120 min (p = 0.0002, 95% CI of difference − 651.8 to 
− 300.3) (Fig. 3i).

The panel in Fig. 4 describes ventilatory consequences. 
PaO2 decreased in polytrauma (p = 0.0062, 95% CI of dif-
ference 2.235–3.740) compared to controls. FiO2 was kept 
at 21% but oxygen tension did not fall below 5 mm Hg. 
(Fig. 4a). PaCO2 increased in polytrauma (p < 0.0001, 95% 
CI of difference − 5.143 to − 3.032) compared to controls 
(Fig. 4b). SvO2 decreased in polytrauma (p = 0.039, 95% CI 
of difference 1.663–40.25) compared to controls (Fig. 4c). 

Fig. 3   Circulatory and systemic effects. The polytrauma resulted 
in circulatory instability and hypothermia. a Mean artery pressure, 
MAP, b cardiac output, CO, c haemoglobin, d pulmonary artery 

wedge pressure, PAWP, e mean pulmonary artery pressure, MPAP, f 
temperature, g haemorrhage. h Troponin T, i myoglobin. *p < 0.05, 
**p < 0.01, ***p < 0.005
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Tidal volume decreased in polytrauma (p < 0.0001, 95% CI 
of difference 189.1–340.2) compared to controls (Fig. 4d). 
Respiratory rate decreased in polytrauma (p0.0058, 95% CI 
of difference 1.413–6.200) compared to controls (Fig. 4e). 
Alveolar minute ventilation decreased in polytrauma 
(p < 0.0001, 95% CI of difference56.78–99.24) compared 
to controls (Fig. 4e).

The panel in Fig. 5 describes metabolic consequences. pH 
decreased in polytrauma (p < 0.0001, 95% CI of difference 
0.1931–0.3412) and chest trauma/hem (p = 0.0179, 95% 
CI of difference 0.01016–0.08064) compared to controls 
(Fig. 5a). Base excess decreased in polytrauma (p = 0.0015, 
95% CI of difference 4.227–12.32) and chest trauma/hem 
(p = 0.0479, 95% CI of difference 0.04467–7.475) com-
pared to controls (Fig. 5b). Lactate increased in polytrauma 
(p = 0.0003, 95% CI of difference − 5.454 to − 2.381) 
and chest trauma/hem (p = 0.0025, 95% CI of difference 
− 4.132 to − 1.260) compared to controls (Fig. 5c). Sodium 
decreased in polytrauma (p0.0017, 95% CI of difference 
2.076–6.646) compared to controls (Fig. 5d). Potassium 
remained stable compared to controls (Fig. 5e). Glucose 
increased in polytrauma although not reaching statistical 
significance compared to controls (Fig. 5f).

Mean norepinephrine administration was 0 in control, 0 
in chest trauma/hem and 0.067 µg/kg/min in polytrauma. 
Mean total Ringer´s Acetate administration did not differ 

between groups and was 1517 mL in control (range 416 mL), 
1780 mL in chest trauma/hem (range 892 mL) and 1230 mL 
in polytrauma (range 1359 mL).

Discussion

In this study we describe a severe polytrauma model by 
multiple blast injuries and multiple exposure insults and 
a high trauma load of ISS 57. We aimed to create a plat-
form for advanced prehospital and intrahospital resuscita-
tion research, relevant for severe civilian or military trauma 
where trauma levels may be high [23]. A consistent and 
severe injury profile was attained and entailed severe tis-
sue lacerations in the groin, a complex and multilevel femur 
fracture, complex liver lacerations, ventricle- and small 
intestine contusions and pulmonary contusions located cau-
dally. The injuries were survivable during the observation 
period and did not result in malignant arrythmias or ventila-
tory complications.

The trauma model was designed to fulfil the criteria 
of the Berlin definition of polytrauma. The Berlin defini-
tion requires significant injuries of three or more points in 
two or more different anatomic Abbreviated Injury Scale 
(AIS) regions, in conjunction with one or more additional 
variable from five physiologic parameters (older age, 

Fig. 4   Respiratory effects. The polytrauma caused a severe hypercapnia and a transient hypoxia. a PaO2, b PaCO2, c SvO2, d tidal volume, e res-
piratory rate, f alveolar minute ventilation. *p < 0.05, **p < 0.01, ****p < 0.001
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unconsciousness, hypotension, acidosis, coagulopathy) [18]. 
The model was also designed to include all proposed causes 
of trauma-induced coagulopathy: severe trauma, hypoperfu-
sion, respiratory and metabolic acidosis, hypoventilation, 
hypothermia and inflammatory response [24]. Potentially 
lethal complications by trauma-induced coagulopathy 
involve trauma in conjunction with acidosis, hypothermia 
and hypoperfusion [2, 25]. Our model complements exist-
ing porcine trauma models by increasing the injury load and 
combining hypoperfusion, hypoventilation and inflamma-
tory response [26–32].

The polytrauma triggered a severe hypoperfusion due to 
hypotension and a decrease in cardiac output. The effects 
were less profound for mild chest trauma/hem and likely 
related to hypovolemia and systemic responses of the 
trauma. PAWP, a surrogate measure for cardiac preload, 
remained stable. This omitted heart failure as cause of 
hypotension [33]. Haemoglobin levels remained stable due 
to a deliberately conservative fluid resuscitation. To ensure 
survivability during the observation period, the polytrauma 
group was, therefore, stabilized by norepinephrine if needed. 
Vasopressor support is not standard treatment in trauma 
resuscitation and may not be available in a pre-hospital set-
ting, why this comprises a limitation of the model. How-
ever, the model was designed to provide a near-fatal plat-
form for specific and advanced resuscitation interventions, 
and we believe that intermittent vasopressor support in the 
absence of other resuscitation efforts was justified to assure 

survivability during the observation period. The quantity of 
vasopressor support given may also be useful as a marker of 
resuscitation efficacy in ensuing studies.

The metabolic derangements were dose–response related 
to the trauma and less profound in the mild trauma group. A 
similar dose–response was detected in tissue damage mark-
ers troponin and myoglobin. A deliberate hypoventilation 
was determined to be clinically relevant and led to a mixed 
respiratory and metabolic acidosis with a decreased pH, base 
excess and increased lactate. Interestingly, the polytrauma 
group displayed a hyponatremia while potassium remained 
unaffected. While hyponatremia is common in traumatic 
brain injuries [34], the association to polytrauma should be 
investigated in ensuing studies.

The polytrauma model was designed to include an 
inflammatory response during the 2-h observation period. 
Therefore, a low-level LPS infusion of 1 µg/kg/h was initi-
ated after the trauma. LPS is a structural part of the outer 
membrane of Gram-negative bacteria, and one of the most 
effective stimulators of the immune system. LPS has been 
widely applied in swine in experimental models for bacte-
rial infection with described infusion rates of 0.5–200 µg/
kg/h [35]. However, LPS may be more artificial compared to 
methods of inflammation-induction such as faecal contami-
nation of the peritoneal cavity. While future studies using 
this trauma model may consider omitting LPS-infusion for 
this reason, we show that LPS-infusion was possible after 
severe polytrauma and that advanced trauma models may 

Fig. 5   Metabolic effects. The polytrauma caused a combined severe respiratory and metabolic acidosis, hyponatremia and hyperglycaemia. a pH, 
b base excess, c lactate, d Na+, e K+, f glucose. *p < 0.05, **p < 0.01, ***p < 0.005, ****p < 0.001
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utilize LPS to induce inflammatory response in models with 
hemodynamic instability. LPS allowed for a rapid, standard-
ized and reproducible response during the observation time.

Another limitation of the model was the short observation 
time of 2 h, compared to described observation times of 48 h 
in milder polytrauma models [36]. However, when studying 
acute interventions after severe trauma, 2 h in the absence 
of resuscitation efforts are likely sufficient, and increased 
survival times may be expected when resuscitation is intro-
duced in ensuing studies.

Human trials in severe trauma are difficult to design for 
logistical reasons and may be unethical. For this reason, 
prospective clinical data are scarce [29]. Animal models 
are thus invaluable when investigating pre-hospital trauma 
resuscitation and massive transfusion. Swine are considered 
a major animal species used in translational research and are 
increasingly used as the nonrodent species of choice. There 
is a large body of literature covering the normal anatomy and 
physiology of the swine [19]. Although anatomical varia-
tions exist compared to humans, the physiology of digestion, 
cardiovascular system and the lungs are remarkably alike. 
Differences include that of a spiral colon, increased amount 
of interlobular connective tissue in the liver and a hyperco-
agulative phenotype [19, 37]. While differences should be 
acknowledged and discussed when interpreting results from 
porcine trauma models, similarities between ~ 60 kg swine 
and humans make the animal model useful for advanced 
translational trauma research. There is increasing clinical 
and scientific interests in the use of early goal-directed coag-
ulation therapies for haemostatic control in bleeding trauma 
patients [38], requiring relevant and new trauma models, 
particularly after blast injury [9]. We believe that this model 
will provide a platform for continued research, particularly 
of immediate resuscitation efforts after severe trauma.

Conclusion

A comprehensive and severe blast polytrauma model ful-
filling the Berlin polytrauma criteria, with a survival time 
of > 2 h, was established. A severe, but consistent, injury 
profile was accomplished enabling addition of experimental 
interventions in future studies.
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