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Abstract
Purpose This review article is intended to provide a perspective overview of potential strategies to overcome radiation
resistance of tumors through the combined use of immune checkpoint and DNA repair inhibitors.
Methods A literature search was conducted in PubMed using the terms (“DNA repair* and DNA damage response* and
intracellular immune response* and immune checkpoint inhibition* and radio*”) until January 31, 2023. Articles were
manually selected based on their relevance to the topics analyzed.
Results Modern radiotherapy offers a wide range of options for tumor treatment. Radiation-resistant subpopulations of
the tumor pose a particular challenge for complete cure. This is due to the enhanced activation of molecular defense
mechanisms that prevent cell death because of DNA damage. Novel approaches to enhance tumor cure are provided
by immune checkpoint inhibitors, but their effectiveness, especially in tumors without increased mutational burden, also
remains limited. Combining inhibitors of both immune checkpoints and DNA damage response with radiation may be an
attractive option to augment existing therapies and is the subject of the data summarized here.
Conclusion The combination of tested inhibitors of DNA damage and immune responses in preclinical models opens
additional attractive options for the radiosensitization of tumors and represents a promising application for future therapeutic
approaches.
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Introduction

Radiotherapy (RT) is one of the main therapeutic options in
most cancer entities, with approximately 50% of cancer pa-
tients receiving RT as part of their cancer care [1]. Intrinsic
or adapted radioresistance is therefore a tremendous chal-
lenge, because such a large proportion of cancer patients is
actively treated by RT. A deeper understanding of how ra-
dioresistance occurs and the development of new strategies
to overcome radioresistance is therefore an urging field of
research.
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The discovery of immune checkpoint inhibitors (ICIs)
has improved the therapeutic options for many cancer pa-
tients across multiple tumor entities. The two most targeted
structures for immunotherapy are cytotoxic T-lymphocyte
antigen-4 (CTLA-4) and programmed cell death 1/ligand 1
(PD-1/PD-L1). The first U.S. Food and Drug Administra-
tion (FDA) approval of a CTLA-4 antibody (ipilimumab)
in 2011 was followed by the approval of two PD-1 an-
tibodies (pembrolizumab and nivolumab) in 2014, all ex-
clusively for treatment of advanced-stage melanoma [2–5].
Since then, the application of ICIs has been greatly ex-
panded to more than 15 tumor entities. Although the re-
sponse rate to immunotherapy was between 20 and 50% in
initial clinical trials, only around 15–20% of patients are
expected to respond to immunotherapy in the long term [6,
7]. The response to ICI treatment is largely dependent on
the immunological state of the tumor. Currently, it is be-
lieved that especially tumors with a high tumor mutational
burden (TMB), PD-L1 expression, or high infiltration of tu-
mor-infiltrating lymphocytes (TILs)—and thus designated
as immunologically “hot”—will benefit from immunother-
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apy [8]. Like most drugs, the emergence of resistance, ini-
tially or adaptive, is a widely investigated challenge in the
treatment with ICIs. As a result, research is moving toward
combination treatments. Recently, a combination treatment
of patients with ICIs and DNA damage response (DDR)
inhibitors together with RT has been proposed [9, 10].

In addition to initiating immune-related processes at the
local tumor, the combination of RT with ICI can also en-
hance the so-called abscopal effect of RT. This phenomenon
is observed when one tumor site is irradiated but distant
tumor sites also show a response despite no ionizing radia-
tion (IR) being directly applied. It is believed that immune
signaling mediates this effect [11] and that it might be en-
hanced by combined ICI treatment, as this phenomenon is
extremely rare [12, 13]. The interplay between these cur-
rently developing therapeutic options is therefore the focus
of the present review.

The intrinsic cancer cell immune response

The immune response in the context of cancer is a com-
plex, multidimensional network. The starting point for the
immune response of the tumor microenvironment is DNA
damage in the tumor cell. DNA damage is increasingly
triggered by combination therapies including radiation,
activates the DDR, and can be clinically exploited by
enhancing the immune response of the tumor microenvi-
ronment. The resulting increased DNA damage leads to
accumulation of cytosolic double-strand DNA (dsDNA),
thereby activating the intracellular immune response via
the cyclic GMP–AMP synthase (cGAS)–stimulator of in-
terferon genes (STING) pathway. This is part of the innate
immune system, which is the immediate response after
pathogen-associated molecular patterns (PAMPs) or dan-
ger-associated molecular patterns (DAMPs) detection. In
contrast to the adaptive immune system, it is a general
mechanism that triggers unspecific inflammatory responses
and does not require pathogen-specific antigens. As a result,
inflammatory signaling gets activated, leading to recruit-
ment of immune effector cells like dendritic cells (DCs),
natural killer (NK) cells, and CD8+ T cells [14]. This im-
munogenic change in the tumor microenvironment can have
positive impact, as immunologically hot tumors might be
responsive to ICIs [15]. However, also immunosuppressive
and tumorigenesis-favoring effects, including promotion of
metastasis formation, have been observed [16, 17] and dis-
cussed detailed in Sect. “Immune signaling in response to
ionizing radiation—drawbacks.” In this review the focus is
on the intrinsic cancer cell immune signaling and how the
interconnection of the involved pathways can be elucidated
for novel therapeutic options.

The cGAS/STING pathway

One of the intracellular immune signaling cascades that is
activated by cytosolic DNA is the cGAS/STING pathway
(Fig. 1). This mechanism was first described in response to
and for defense against pathogenic infections by bacteria
or viruses [18]. It is believed to be the main activated
pathway in response to cytosolic DNA. Other different
pathways have been shown to be involved in PAMP and
DAMP detection, including the Toll-like receptors (TLRs),
retinoic acid-inducible gene I (RIG-1), and mitochon-
drial antiviral-signaling protein (MAVS). Since recogni-
tion involves detection of free dsDNA in the cytosol, the
cGAS/STING pathway can also be triggered by the cell’s
own DNA. Cytosolic DNA arises from multiple sources,
including pathogens, micronuclei, and mitochondrial DNA
[19]. Binding of dsDNA to cGAS induces conformational
changes in the protein, activating its catalytically active site
to synthesize cyclic GMP-AMP (cGAMP) from ATP and
GTP [20, 21]. Recently, it was shown that the function of
cGAS signaling depends on the length of the recognized
DNA fragments [22]. The second messenger cGAMP acti-
vates STING upon binding, leading to STING translocation
from the endoplasmic reticulum (ER) membrane to the
Golgi. In its new location, STING recruits TANK-binding
kinase 1 (TBK1) and IкB kinases (IKK) [23], and thereby
activates interferon regulatory factor 3 (IRF3) and nuclear
factor kappa-light-chain-enhancer of activated B cells (NF-
кB) release by phosphorylation of IкBα [24, 25]. IRF3
and NF-кB translocate into the nucleus, where they acti-
vate the expression of type I interferons (IFNs), which in
turn bind autocrine to IFN receptor 1 and 2 (IFNAR1/2),
leading to activation of the Janus kinase (JAK) and signal
transducer and activator of transcription (STAT) signaling
pathway [26]. The phosphorylated STAT1/2 heterodimer
translocates into the nucleus and activates the expression
of IFN-stimulated genes (ISGs), further driving the innate
immune response and connecting it to the adaptive immune
response [27]. IFN signaling further leads to recruitment
and maturation of DCs, which then prime CD8+ T cells for
tumor infiltration [28, 29].

Immune signaling in response to ionizing
radiation—benefits

Upon DNA damage induction by ionizing radiation (IR),
the integrity of the DNA is severely disrupted, resulting
in genomic instability, including formation of micronuclei.
Direct leakage of DNA out of the nucleus or micronu-
clei formation subsequently activates cGAS/STING sig-
naling [30, 31]. Release of IFN-1 as a consequence of
cGAS/STING activation is the main driver of the antitu-
mor immune signaling induced by IR [32] and enhances
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Fig. 1 cGAS/STING activa-
tion by radiation-induced DNA
damage. a Cytosolic dsDNA
migrates in micronuclei or di-
rectly in the cytosol and is
recognized by cGAS which
catalyzes cGAMP synthesis af-
ter dsDNA binding. cGAMP
binds to STING, which translo-
cates from the ER to the Golgi,
recruits IKK and TBK1 and
activates IRF3 and IкBα, result-
ing in release of NF-кB. IRF3
and NF-кB translocate into the
nucleus and induce transcription
of IFN type I and other proin-
flammatory chemokines. IFN
binds to IFNAR1/2 receptors,
activates JAK, and STAT1/2
is phosphorylated. The het-
erodimer translocates to the
nucleus and induces expression
of ISGs. b Activation of DDR
kinases ATR, WEE1, ATM,
and DNA-PK PARP1 after IR
induces DNA repair. Accu-
mulation of cytosolic dsDNA
and formation of micronuclei
leads to activation of over-
all cGAS/STING metabolism.
ATR activation affects PD-L1
surface expression via CHK1
and STAT1/3-IRF1 signal-
ing. ATM ataxia-telangiectasia
mutated protein, ATR ataxia-
telangiectasia and Rad3-related
protein, cGAMP cyclic GMP-
AMP, cGAS cyclic GMP-AMP
synthase, CHK1 checkpoint
kinase 1, DDR DNA damage
response, DNA-PK DNA-de-
pendent protein kinase, ER en-
doplasmic reticulum, IFN in-
terferon, IFNAR1/2 interferon
receptor 1/2, IKK IκB kinases,
IRF1/3 interferon regulatory
factor 1/3, ISG interferon-stim-
ulated gene, JAK Janus kinase,
NF-κB nuclear factor kappa-
light-chain-enhancer of acti-
vated B cells, PARP1 poly-
ADP-ribose polymerase 1, PD-
L1 programmed death ligand
1, STAT1/2/3 signal transducer
and activator of transcription
1/2/3, STING stimulator of in-
terferon genes, TBK1 TANK
binding kinase 1; Wee1 Wee1
G2 checkpoint kinase. Adapted
from “Blank Pathway (Linear),”
by BioRender.com (2023)

K



Strahlentherapie und Onkologie (2023) 199:1152–1163 1155

the attraction of DCs which process the tumor-associated
antigens [33]. Upon maturation and migration to the lymph
nodes, the DCs present those tumor antigens via the major
histocompatibility complex (MHC) to the CD8+ T cells.
This then allows for CD8+ T cells to infiltrate the tumor
and recognize tumor-specific cells and potentially eradicate
them [34]. Gupta et al. showed that RT specifically en-
hances tumor-specific CD8+ T cell activation by DCs, in-
dicating how RT contributes to activation of the antitumor
immune response [35]. Additionally, tumor-specific CD8+
T cell infiltration is enhanced by the release of chemokines
due to activated ISG expression in response to JAK signal-
ing. Two of the main inflammatory chemokines responsible
for T cell attraction are C-X-C motif chemokine ligand
10 (CXCL10) and C-C motif chemokine ligand 5 (CCL5)
[36].

The cGAS/STING pathway has been suggested to also
play an important role in DC activation internally. After
recruitment of DCs to the immunogenic tumor site, the
cGAS/STING pathway can be triggered inside the DCs,
further enhancing antitumor IFN-1 signaling [37]. Differ-
ent mechanisms have been proposed for how activation of
the cGAS/STING pathway in non-tumor cells is mediated
after IR: (i) phagosomal escape due to alkalinization of
phagosomes in DCs [38]; (ii) transfer of the second mes-
senger cGAMP from tumor cells to DCs [39], possibly via
gap junctions [40]; (iii) direct exosomal transfer of tumor
cell dsDNA to DCs [28]; (iv) uptake of oxidized tumor
mitochondrial DNA [41].

Immune signaling in response to ionizing
radiation—drawbacks

Radiotherapy induces not only beneficial antitumor effects
of the immune system but can also support immune escape
mechanisms [42]. Experiments in mice showed that induc-
tion of IFN-1 signaling was dependent on the fractionation
and dose of RT. Single high-dose radiation did not show
the same response and abscopal effect after combined RT
and anti-CTLA-4 treatment as fractionated RT with anti-
CTLA-4 antibodies [43]. This indicates that treatment plan-
ning for combination therapies has to be designed carefully.
A dose dependence was also demonstrated by Vanpouille-
Box and colleagues in 2017, where a single dose of 20Gy
upregulated three prime repair exonuclease 1 (TREX1) ex-
pression, while fractionation of 3× 8Gy upregulated ISG
expression in patient-derived xenografts of a transcription
factor p53 (TP53)- and GTPase K-Ras (KRAS)-mutated
lung adenocarcinoma [44]. TREX1 is a cytoplasmic DNA
exonuclease which degrades the dsDNA arising in the cy-
toplasm due to IR; thus, high expression would suppress
cGAS/STING activation, inhibiting the intracellular antitu-
mor immune signaling cascade [44]. The same group later

showed that TREX1 can also be transmitted via exosomal
shuttling, inhibiting cGAS/STING activation in DCs [28].
However, this mechanism appears to be dependent on the
cell system studied. Other studies have shown that tumors,
which suppress cGAS/STING signaling due to mutations or
epigenetic silencing, can also escape induction of the IFN-
1 response [45, 46].

Chronic activation of IFN-1 signaling in a tumor can
result in immunosuppressive behavior [47]. In the study
of Benci et al., the authors showed that continuous IFN
signaling was associated with STAT1-related epigenomic
and transcriptomic modifications, which lead to PD-L1-
independent adaptive resistance [47]. Another study from
Bakhoum et al. in 2018 showed that chromosomal instabil-
ity in tumor cells can lead to activation of the cGAS/STING
pathway. This activation was associated with metastasis for-
mation driven by the noncanonical NF-кB signaling path-
way [16]. The same pathway was shown to be activated in
DCs and negatively affect IR-induced IFN-1 signaling. It
was further shown that inhibition of the noncanonical NF-
кB pathway led to tumor regression by treatment with IR
[48].

However, these identified adverse effects of RT for the
immune response provided deeper insights into how it may
be possible to overcome nonresponsive phenotypes or ac-
quired resistances.

Genomic instability as a predictive
biomarker for immune therapies

Immunotherapy is currently transforming existing tumor
treatment. ICIs have achieved tremendous therapeutic suc-
cess in numerous tumor types, including cancers tradition-
ally considered nonimmunogenic. However, a significant
proportion of patients do not respond to these therapies.
Therefore, early selection of susceptible patients is critical,
and the development of predictive biomarkers is one of the
major challenges in ICI development. Starting from the im-
munogenic side, the expression of PD-L1 and infiltrating
T lymphocytes are the most frequently used biomarkers of
potential response to tumor therapy [49]. Recent publica-
tions suggest that the genomic landscape of the tumor, its
mutational burden, and tumor-specific neoantigens are po-
tential determinants of the response to ICI and may there-
fore influence immunotherapy outcomes. In addition, tu-
mor-associated defects in DNA repair mechanisms have
been associated with improved survival and durable clini-
cal benefit from ICI. Thus, the TMB and associated tumor-
specific neoantigens appear to be important predictive ap-
proaches to anticipate potential clinical benefits of ICI, as
they closely reflect the repair capacity of tumor cells and
their intrinsic genomic instability. Initially, studies showed
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that TMB is correlated with the clinical benefit of anti-PD-1
and anti-CTLA-4 therapy in several tumor types, including
malignant myeloma, non-small cell lung cancer (NSCLC),
and various tumors with DNA repair deficits [50]. Overall,
a direct correlation between DNA repair deficiency, TMB,
predicted neoantigen load, and clinical activity of ICI is
suggested.

Tumormutational burden

A correlation between TMB and response to ICI has been
enabled by recent advances in next-generation sequencing
(NGS) technology, particularly in whole-exome sequencing
and RNA sequencing. High mutation load, defined as >100
nonsynonymous single-nucleotide variants (nsSNV) per ex-
ome, was associated with clinical benefit in melanoma pa-
tients treated with anti-CTLA-4 therapy [51, 52]. Rizvi and
colleagues correlated high TMB (defined as >178 nsSNVs
per exome) and durable clinical benefit in two indepen-
dent cohorts of NSCLC patients receiving pembrolizumab
[53]. Of note, the study reported a significantly increased
overall response rate (ORR) in tumors with a smoking-
related molecular signature, which are potential determi-
nants of response to ICI. In addition, mutations in DNA
repair genes, including DNA polymerase delta 1, DNA
polymerase epsilon catalytic subunit, mismatch repair gene
MutS homolog 2 (MSH2), breast cancer gene 2 (BRCA2),
RAD51 gene homolog C (RAD51C), and RAD17 check-
point clamp loader compound (RAD17) were observed in
responders with the highest mutational burden. This sup-
ports the notion that DNA repair defects may increase tumor
immunogenicity by promoting somatic mutations. Consis-
tently, later findings showed higher response rates to anti-
PD-1 therapy in mismatch repair (MMR)-deficient tumors
and in BRCA2-mutated melanoma [50].

Major challenges that remain to be addressed to im-
prove the robustness of TMB include the definition of
optimal tumor purity and sequencing depth, as well as the
threshold for defining “high” and “low” mutation burden.
Indeed, there is a significant overlap in the mutational range
between responders and nonresponders [51, 52]. Some pa-
tients still benefit from ICI despite very low mutation rates,
and conversely, high TMB does not always correlate with
response. This is best illustrated in relapsed or refractory
Hodgkin’s lymphoma, which is very sensitive to PD-1
blockade despite having virtually no mutation [54]. Muta-
tional signatures, which are functional slices of past and
current disease biology related to DNA damage and DNA
repair, may provide an additional genomic determinant of
response to ICI. Their use, combined with assessment of
TMB and detection of mutations in DNA repair genes, may
therefore allow better grouping of patients and identify
ICI-sensitive tumors. Importantly, the mutational landscape

analyses described above provide only an instantaneous
and descriptive picture of a tumor genome. Mutational
signatures may even in some cases exclusively reflect past
DNA repair deficiencies and may not be relevant markers
of the current DNA repair status of the tumor. It is therefore
critical to evaluate the potential of these mutations to func-
tionally enhance the antitumor immune response through
the generation of immunogenic neoantigens.

Link between DNA repair and the immune
response

Understanding the mechanism underlying DNA damage-
derived signal transduction is critical for overcoming re-
fractory cancer, especially when cancer immunotherapy is
used in combination with DNA damage-dependent radio-/
chemotherapy. Several lines of evidence suggest a link be-
tween DNA damage signaling and modulation of the im-
mune response. In this process, DNA damage-triggered sig-
nals within the cell of origin are transmitted to the cell
surface and neighboring cells, modulating immune and in-
flammatory responses. The interplay between PD-L1 ex-
pression, microsatellite instability (MSI), and accumulation
of mutations in the cancer genome leads to production
of neoantigens and presentation of the human leukocyte
antigen (HLA)–neoantigen complex in cancer cells. HLA
neoantigen presentation promotes immune activity in the
tumor environment and characterizes a so-called hot tumor
[55]. Several studies have shown that PD-L1 expression is
upregulated in cancer cells in response to increased DNA
damage [56–60]. This may be triggered by loss of indi-
vidual DNA repair proteins responsible for double strand
break (DSB) repair, such as BRCA2 or Ku70/80, after ir-
radiation [58]. Likewise, defects in other DNA repair path-
ways can lead to upregulation of PD-L1 [56]. The com-
mon mechanism leading to upregulation of PD-L1 occurs
through activation of the DNA damage response. This di-
rectly affects activation of the STAT1/3-IRF1 signaling cas-
cade, downstream of which PD-L1 mRNA transcription is
activated [58]. Supporting this observation, it was shown
that DNA repair-deficient breast tumors were associated
with CD4+ and CD8+ lymphocyte infiltration and that cells
from these DNA repair-deficient breast tumors expressed
the chemokines CXCL10 and CCL5 more strongly [59].

In terms of RT delivery, this means that a wide range
of diverse DNA damage, including base damage, single-
strand breaks (SSBs), DSBs, and DNA crosslinks (ICLs),
is induced [61]. DNA damage induced by IR activates the
DDR, which subsequently regulates the appropriate DNA
repair pathway choice. The DDR represents a complex net-
work consisting of cell cycle control, DNA repair, and in-
activation of multiple interconnected signaling pathways
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and mechanisms, all aiming to maintain cell viability. Once
DNA damage is detected, cell cycle checkpoints are acti-
vated to arrest the cell cycle for DNA repair prior to cell
division. This allows the cell to survive genomic instability
and replication stress through successful DNA repair, or to
initiate permanent arrest or cell death. The DDR consists
of a series of pathways with different protein sets special-
ized for specific types of damage and classified as sensors,
transducers, and effectors. Over the past few years, it has
become more evident that failure or defectiveness of in-
dividual components of the DDR machinery leads to frag-
mentation of DNA, which enters the cytoplasm and thereby
contributes to immune signaling in the tumor [31, 57, 59,
62, 63].

Recognition of DNA damage

Double-strand breaks are the most lethal event in a cell and
are therefore rapidly recognized by the MRE11-RAD50-
NBS1 (MRN) complex, which interacts with chromatin and
promotes activation of ataxia-telangiectasia mutated (ATM)
kinase by subsequent autophosphorylation at Ser1981 [64].
The ATM kinase, discovered in 1995 by Y. Shiloh [65], is
an essential sensor of DNA damage by activating hundreds
of different substrates, including TP53 and checkpoint ki-
nase 2 (CHK2) [66]. In addition, ATM enables phosphory-
lation of histone H2AX to form H2AX foci [67], which is
essential for the repair of DSBs.

Single-strand breaks are recognized by another repair
pathway, the RAD9-HUS1-RAD1 complex, which in coop-
eration with RAD17, replication factor C (RFC) 2, RFC3,
RFC4, and RFC5 activates the ataxia-telangiectasia and
Rad3-related (ATR) kinase [68]. ATR-interacting protein
(ATRIP)-dependent recruitment of ATR to replication pro-
tein A (RPA)-bound single-stranded DNA is initiated upon
ATR activation [69, 70], leading to phosphorylation of
checkpoint kinase 1 (CHK1) [71].

CHK1 and CHK2 then further transmit the signaling by
phosphorylation of various downstream effectors. CHK2
suppresses phosphatase cell division cycle 25A (CDC25A),
which abrogates suppressive phosphorylation of cyclin E/
cyclin-dependent kinase (CDK) 2 and cyclin A/CDK2 com-
plexes, preventing entry into the S-phase of the cell cycle
[66]. CHK1 regulates the G2/M checkpoint by activating
G2 checkpoint kinase (WEE1), which then phosphorylates
CDK1, reducing its activity and preventing entry into mito-
sis [72]. In addition, CHK1 modulates the S-phase check-
point by facilitating degradation of CDC25A phosphatase,
whose activity is critical for removing the suppressive phos-
phate groups of CDK4 and CDK2 kinases and ensuring cell
cycle progression [73].

Another important kinase responding to DNA dam-
age is the catalytic subunit of DNA-dependent protein

kinase (DNA-PKcs), one of three related kinases in the
phosphatidylinositol 3-kinase-related kinase (PIKK) fam-
ily. These kinases are activated after DNA damage and
phosphorylate many downstream targets to activate DNA
damage checkpoints and stimulate DNA repair [74–76].
PIKKs function in overlapping DNA damage signaling net-
works. Regarding DSB repair, despite extensive crosstalk
between PIKKs, the generally accepted view is emerging
that DNA-PKcs play a direct and central role in DNA repair
through nonhomologous end-joining (NHEJ), while ATM
and ATR play a critical role in promoting repair through
homologous recombination (HR) of open DSBs and DSBs
at collapsed replication forks, respectively (summarized in
[77]).

DNA repair pathways to eliminate IR-induced DNA
damage

Double-strand breaks are mainly repaired by two processes:
NHEJ and HR. NHEJ joins ends without requiring a repair
template; therefore, it is error prone and typically results in
small deletions or insertions at repair sites. NHEJ functions
throughout the entire cell cycle and is the dominant DSB
repair pathway [78]. HR requires a homologous repair tem-
plate and is thought to be generally error free [79–81]. HR
is largely restricted to the S/G2 phases of the cell cycle and
is mediated by the recombinase RAD51, which is loaded
onto the DNA by interaction with the BRCA1, BRCA2, and
partner and localizer of BRCA2 (PALB2) complex [82, 83].
HR is important for precise repair of open DSBs, those di-
rectly induced by IR, and is critical for repair of replication-
associated DSBs, including those that arise when replica-
tion forks encounter radiation-induced single-strand lesions
[84].

In addition to HR and NHEJ, a “backup” DSB repair
pathway has been discovered in tumors. It has similar mech-
anisms to the two main DSB repair pathways but is ge-
netically distinct and referred to as alternative end-joining
(a-EJ) or microhomology-mediated end-joining [85]. The
a-EJ engages similar initiation processes and factors to HR
or NHEJ regarding the connection of open DNA ends, as
the MRN complex is involved in a-EJ initiation. The poly-
merase theta has been shown to be essential for this pathway
[86], as well as poly(ADP-ribose) polymerase 1 (PARP1)
[3]. These backup repair pathways cause gene deletions,
translocations, and rearrangements in cancer cells. Cur-
rently, there is increasing interest in a-EJ signaling path-
ways as potential therapeutic targets due to cancer cell
specificity [86, 87].

Irradiation-induced base damage and SSBs are rapidly
and efficiently repaired by base excision repair (BER).
X-ray cross-complementing protein 1 is the facilitator of
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BER, as it interacts with DNA ligase III, polymerase β, and
PARP1 [88].

Nucleotide excision repair (NER) is conducted by the
cell to remove bulky DNA lesions [89]. Removal of these
lesions is mediated by several different complexes, and de-
ficiencies of involved proteins lead to severe diseases like
xeroderma pigmentosa or Cockayne syndrome [90].

The MMR pathway is required to detect and repair
base–base mismatches of the DNA during replication or in
response to induced DNA damage. The MSH heterodimers
of MSH2/MSH6, detecting base–base mismatches and
small insertions or deletions, and MSH2/MSH3, detecting
also larger insertions or deletions, together with PMS1,
PMS2, MLH1, and MLH3 are the recognition sensors of
MMR [91]. Interactions with additional proteins like pro-
liferating-cell nuclear antigen, exonuclease 1, RPA, and
RFC then cause excision of the mismatches and repair.
Mutations of proteins involved in MMR have been shown
to lead to MSI [91].

DNA crosslinks between and within DNA strands rep-
resent a dangerous form of damage that blocks vital cel-
lular processes such as transcription and replication. The
Fanconi anemia (FA) pathway is responsible for repairing
these aberrations in the DNA structure [92, 93]. Fanconi
anemia is a heterogeneous genetic disease involving 22 dif-
ferent genes that can be divided into three main groups: the
FA core complex, the I-D2 complex, and the downstream
FA proteins [94]. The FA pathway allows for unblocking
of the replication fork by inducing formation of a DSB and
coordinating the action of three critical repair mechanisms:
translesion synthesis bypasses the lesion, and after removal
of toxic adducts by NER, the gap is closed by HR [93].

Translational aspects of DNA repair and
immune signaling connection

Several studies indicate a correlation between DNA damage
and the immune response. Particularly in tumor cells with
deficiencies in the DNA repair pathways HR and MMR,
increased immunogenicity has been shown to correlate with
response to ICIs [95, 96]. MMR deficiency, which is known
to lead to MSI, has already been identified as a prognostic
marker for the use of ICIs [95]. However, MSI is mainly
observed in three cancer entities: endometrial, gastric, and
colorectal cancer. Identification of additional DNA repair
defects to predict response to ICIs is pending.

These observations further imply that targeting the DDR
in combination with ICI may be a promising target for in-
tensified therapy. Triple combinations of DDR inhibitors,
ICI, and RT are currently being investigated, as RT-induced
DNA damage could be even more effective in causing can-

cer cell death when DDR is inhibited and immune response
signaling is maximized.

Combined therapy of ICI with PARP inhibition

Mutations in the HR protein BRCA1 were associated with
higher infiltration of T lymphocytes in a cGAS/STING
pathway-dependent manner in breast cancer cells [59]. This
was due to increased release of the chemokines CXCL10
and CCL5 upon cGAS/STING activation. The same study
showed that PD-L1 expression was enhanced by DNA dam-
age in S phase, also dependent on cGAS/STING [59]. Loss
of BRCA2 was observed to lead to increased activation of
innate immune signaling. This led to chronic upregulation
of ISG expression and could be enhanced by PARP1 inhi-
bition [9]. However, it was also observed that a deficiency
in BRCA1 or 2 did not lead to the same modulation of
the immune response, indicating the complexity of the con-
nection between the DDR and the immune response [97].
Inhibition of PARP1 has been shown to be effective in treat-
ment of tumors carrying mutations in the BRCA1 or BRCA2
genes due to synthetic lethality. In these tumors, the accu-
mulation of SSBs upon treatment with PARP1 inhibitors
leads to blockage of replication forks and the formation of
DSBs [98–100]. More recently, it has become evident that
PARP1 inhibition can directly activate the cGAS/STING
pathway independent of the BRCA status of the tumor
[101]. PARP1 inhibition caused a time-dependent upreg-
ulation of the chemokines CXCL10 and CCL5, which was
reversed in cells with knockdowns in the key proteins of
the cGAS/STING pathway. These observations in cell lines
were confirmed by in vivo studies, where CXCL10 and
CCL5 upregulation led to increased CD8+ T cell infiltra-
tion. A combination treatment of PARP1 inhibition and ICI
potentiated the therapeutic effects in colon and ovarian can-
cer mice models [101]. Another study investigating the ef-
fects of PARP1 inhibition on intracellular immune signal-
ing revealed that activation of cGAS/STING is dependent
on PARP1 trapping, as treatment of PARP1-deficient cells
with the PARP1 inhibitor talazoparib did not show any ac-
tivation of the cGAS/STING pathway [102].

In the study from Sato et al. it was shown that PD-L1
upregulation was caused in an ATM/ATR/CHK1-dependent
manner [58]. Cells deficient in BRCA2 or Ku80 showed
increased PD-L1 expression after IR or PARP1 inhibition,
but this effect was suppressed again upon CHK1 inhibi-
tion. They further revealed that the upregulation required
signaling via STAT1/3 and IRF1 [58].
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Combined therapy of ICI with DDR inhibition and
radiation

Increasingly, the combination of DDR inhibitors and ICIs
with radiation is being investigated in preclinical tumor
models (Fig. 1). Current progress in the clinical imple-
mentation of immunostimulatory DNA-damaging treatment
regimens in combination with radio-/chemotherapy and the
necessary future directions to optimize the immunosensi-
tizing potential of DNA damage response inhibitors were
summarized by [103].

Combined therapy of ICI with ATR inhibition and radiation

Because of its exclusive importance in regulating the repli-
cation stress level, most of the available studies involve in-
hibition of ATR. The ATR kinase inhibitor AZD6738 was
observed to attenuate radiation-induced CD8+ T cell de-
pletion and enhance CD8+ T cell activity in mouse mod-
els of KRAS-mutated cancer in combination with confor-
mal RT. Mechanistically, ATR inhibition by AZD6738 ap-
pears to block radiation-induced PD-L1 upregulation on
tumor cells, thereby reducing the number of tumor-infil-
trating regulatory T cells (Tregs). Of note, AZD6738 in
combination with conformal RT can induce immunological
memory in treatment-responsive mice [104]. Feng et al. ob-
served that inhibitors of the DNA damage response kinase
ATR can significantly enhance innate immune responses
triggered by IR. They showed that both the cGAS/STING-
dependent DNA-sensing pathway and the MAVS-depen-
dent RNA-sensing pathway are responsible for type I IFN
signaling induced by IR. The authors suggested that DNA
fragments released due to DNA damage may either activate
the cGAS/STING pathway or be transcribed, thereby initi-
ating MAVS-dependent RNA sensing and signaling. Both
observations suggest that different pathways are involved in
type I IFN signaling in response to DNA damage and may
thus represent a promising new combination therapy against
cancer [105]. Also, an enhanced tumor-inhibitory effect of
ATR inhibition in combination with fractionated RT was
shown in an immunocompetent mouse model for human
papillomavirus (HPV)-positive malignancies. Here, signifi-
cant radiosensitization by the ATR inhibitor AZD6738 was
observed, accompanied by a marked increase in DNA dam-
age and immune cell infiltration. In parallel, increased num-
bers of CD3 and NK cells were observed. ATR inhibition
plus IR resulted in a gene expression signature consistent
with the observed type I/II IFN response. Increased MHC I
levels were monitored on tumor cells, with transcriptional
level data indicating increased antigen processing and pre-
sentation in the tumor. In vivo, significant modulation of
cytokine gene expression (particularly CCL2, CCL5, and
CXCL10) was observed. In vitro data also indicate that

CCL2, CCL5, and CXCL10 were increasingly expressed
by tumor cells after ATR inhibition plus RT [106]. In an
HPV-negative mouse model of oral squamous cell carci-
noma, Patin et al. observed that inhibition of ATR enhanced
IR-induced inflammation of the tumor microenvironment,
with NK cells playing a central role in maximizing treat-
ment efficacy. It was found that ICI can further enhance the
antitumor activity of NK cells [107].

Sheng et al. also observed immune-stimulatory effects of
the ATR inhibitor AZD6738 in combination with IR and ICI
in hepatocellular carcinoma. It was found that AZD6738
increased IR-stimulated CD8+ T cell infiltration and re-
versed the immunosuppressive effect of IR on the number
of Tregs in mouse xenografts. Moreover, the addition of
AZD6738 enhanced infiltration; increased cell proliferation
and the ability to produce IFN-γ from CD8+ T cells derived
from TILs; and caused a decreasing trend in the number of
TILs and Tregs, and depleted T cells in mouse xenografts.
This significantly improved the immunological microenvi-
ronment of the tumor [108].

Combined therapy of ICI with ATM inhibition and radiation

For inhibition of DDR signaling via ATM, it was shown that
activation of the innate immune response through enhanced
induction of DNA damage could increase the efficacy of
ICI [109]. The inhibition of ATM alone was already able
to increase tumoral type I IFN expression independently
of the cGAS/STING pathway. This was done in a TBK1
and proto-oncogenic tyrosine protein kinase Src-dependent
manner. The combination of ATM inhibition and IR in-
creased TBK1 activity even more markedly and, accord-
ingly, increased IFN production and antigen presentation.
In addition, silencing of ATM increased PD-L1 expression
and enhanced the sensitivity of pancreatic tumors to PD-L1-
blocking antibodies. This was associated with an increase in
tumor CD8+ T cells and established immune memory [109].
The authors also found that low ATM expression inversely
correlated with PD-L1 expression in patients’ pancreatic
tumors. Overall, these results indicate that the efficacy of
ICI in pancreatic cancer is enhanced by ATM inhibition
and further enhanced by IR, depending on the increased
immunogenicity of the tumor [109].

Combined therapy of ICI with DNAPKcs inhibition and
radiation

Inhibition of the DDR sensor kinase DNA-PKcs, which is
responsible for NHEJ, was also demonstrated to have an
immunomodulatory effect [110]. The combination of IR
and DNA-PKcs inhibition was shown to enhance cytosolic
dsDNA and tumor-associated type I IFN signaling indepen-
dently of cGAS and STING. In parallel, PD-L1 expression
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was stimulated upon DNA-PKcs inhibition and IR. Simulta-
neous use of anti-PD-L1 in combination with IR and DNA-
PKcs inhibitors potentiated antitumor immunity in pancre-
atic cancer models [110].

Combined therapy of ICI with WEE1 inhibition and radiation

As another interesting DDR protein for stimulating the im-
mune response, WEE1 was investigated in combination
with IR regarding its effects for cell killing by T lympho-
cytes and a sensitizing effect for ICI. In several models
it was observed that the WEE1 inhibitor AZD1775 led
to DNA damage accumulation and that the combination
treatment improved tumor control in a syngeneic mouse
model of oral cavity cancer (MOC1) in vivo. Combination
treatment enhanced granzyme B-dependent T lymphocyte
killing by reversing additive G2/M cell cycle blockade. The
combination of IR and AZD1775 improved CD8+ T cell-
dependent control of MOC1 tumor growth and the rate of
complete eradication of established tumors in the context of
the PD-axis ICI. Functional assays demonstrated enhanced
tumor antigen-specific immune responses in sorted T lym-
phocytes. The combination of IR and AZD1775 not only in-
creased tumor-specific cytotoxicity, but also improved sus-
ceptibility to killing by T lymphocytes and response to PD-
axis ICI [111].

Combined therapy of ICI with STING antagonists and
radiation

Very recent data in a preclinical model showed that not only
cell surface ligands such as PD-L1 or PD-L2 are suitable
for combined therapy of ICI and DDR inhibitors for en-
hanced radiation sensitization. It was observed that intracel-
lular immune response proteins like STING antagonists also
resulted in significant radiation sensitization with improved
survival in a syngeneic genetically engineered mouse model
and human pediatric high-grade glioma cells [112]. Signif-
icantly improved survival was observed when the PARP
inhibitor pamiparib was combined with the STING antag-
onist H151 after IR. The CHK1 inhibitor was also shown
to prolong survival in a mouse model when combined with
H151 and IR [112].

Perspective

Defects in the DDR can trigger intracellular immune
signaling endogenously. This effect can be enhanced by
exogenously induced DNA damage via DDR inhibition,
chemotherapeutics, or RT. The combination of DDR in-
hibitors and RT may be able to force tumors, which are
not endogenously inflamed, to activate proinflammatory

signaling. The intracellular immune signals are then trans-
mitted to the tumor microenvironment by release of IFNs
and chemokines, leading to recruitment of immune effector
cells. This suggests that the combination of the recently
tested inhibitors of DDR and immune response in preclin-
ical models opens new options for radiation sensitization
and thus represents an attractive option for promising use
in cancer therapy.
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