Skip to main content

Advertisement

Log in

Changes in serum uric acid, serum uric acid/serum creatinine ratio, and gamma-glutamyltransferase might predict the efficacy of neoadjuvant chemoradiotherapy in patients with locally advanced rectal cancer

  • Original Article
  • Published:
Strahlentherapie und Onkologie Aims and scope Submit manuscript

Abstract

Purpose

The purpose of this study was to investigate the predictive value of changes in serum uric acid (SUA), the ratio of serum uric acid to serum creatinine (SUA/SCr), and serum gamma-glutamyltransferase (GGT) from before to after therapy in patients with locally advanced rectal cancer (LARC).

Methods

Data from 114 LARC patients from January 2016 to December 2021 were included in this retrospective study. All patients received neoadjuvant chemoradiotherapy (nCRT) and total mesorectal excision (TME). The change in SUA was calculated as a ratio: (SUA level after nCRT–SUA level before nCRT)/SUA level before nCRT. The change ratios of SUA/SCr and GGT were calculated in the same way. The efficacy of nCRT was evaluated by magnetic resonance (MR) and postoperative pathological response. A nonlinear model was used to evaluate whether the change ratios of SUA, SUA/SCr, and GGT were associated with the efficacy of nCRT. The predictive power of the change ratios of SUA, SUA/SCr, and GGT was assessed by receiver operating characteristic (ROC) curves. Univariate and multivariate Cox regression analyses were employed to measure the associations between disease-free survival (DFS) and other predictive indicators. The Kaplan–Meier method was used to further compare DFS between groups.

Results

The nonlinear model indicated that the change ratios of SUA, SUA/SCr, and GGT were associated with the efficacy of nCRT. The change ratios of SUA, SUA/SCr, and GGT were used to predict the area under the ROC curve of efficacy for nCRT (0.95, 0.91–0.99), which was better than the prediction by the change ratio of SUA (0.94, 0.89–0.99), SUA/SCr (0.90, 0.84–0.96), or GGT alone (0.86, 0.79–0.93; p < 0.05). The optimal cut-off values of SUA, SUA/SCr, and GGT change were 0.02, 0.01, and 0.04, respectively. The Kaplan–Meier method indicated that patients with SUA, SUA/SCr, or GGT changes greater than the cut-off values had shorter DFS (p < 0.05).

Conclusion

Change ratios of SUA, SUA/SCr, or GGT greater than the cut-off values implied a risk of poor pathological response after nCRT and shorter DFS in LARC patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Rödel C, Graeven U, Fietkau R, Hohenberger W, Hothorn T, Arnold D et al (2015) Oxaliplatin added to fluorouracil-based preoperative chemoradiotherapy and postoperative chemotherapy of locally advanced rectal cancer (the German CAO/ARO/AIO-04 study): final results of the multicentre, open-label, randomised, phase 3 trial. Lancet Oncol 16(8):979–989

    Article  PubMed  Google Scholar 

  2. Sauer R, Liersch T, Merkel S, Fietkau R, Hohenberger W, Hess C et al (2012) Preoperative versus postoperative chemoradiotherapy for locally advanced rectal cancer: results of the German CAO/ARO/AIO-94 randomized phase III trial after a median follow-up of 11 years. J Clin Oncol 30(16):1926–1933

    Article  CAS  PubMed  Google Scholar 

  3. Sauer R, Becker H, Hohenberger W, Rödel C, Wittekind C, Fietkau R et al (2004) Preoperative versus postoperative chemoradiotherapy for rectal cancer. N Engl J Med 351(17):1731–1740

    Article  CAS  PubMed  Google Scholar 

  4. Ballonoff A, Kavanagh B, McCarter M, Kane M, Pearlman N, Nash R et al (2008) Preoperative capecitabine and accelerated intensity-modulated radiotherapy in locally advanced rectal cancer: a phase II trial. Am J Clin Oncol 31(3):264–270

    Article  CAS  PubMed  Google Scholar 

  5. Gérard J, Conroy T, Bonnetain F, Bouché O, Chapet O, Closon-Dejardin M et al (2006) Preoperative radiotherapy with or without concurrent fluorouracil and leucovorin in T3‑4 rectal cancers: results of FFCD 9203. J Clin Oncol 24(28):4620–4625

    Article  PubMed  Google Scholar 

  6. Bosset J, Collette L, Calais G, Mineur L, Maingon P, Radosevic-Jelic L et al (2006) Chemotherapy with preoperative radiotherapy in rectal cancer. N Engl J Med 355(11):1114–1123

    Article  CAS  PubMed  Google Scholar 

  7. Bosset J, Calais G, Mineur L, Maingon P, Radosevic-Jelic L, Daban A et al (2005) Enhanced tumorocidal effect of chemotherapy with preoperative radiotherapy for rectal cancer: preliminary results—EORTC 22921. J Clin Oncol 23(24):5620–5627

    Article  CAS  PubMed  Google Scholar 

  8. Bosset J, Calais G, Daban A, Berger C, Radosevic-Jelic L, Maingon P et al (2004) Preoperative chemoradiotherapy versus preoperative radiotherapy in rectal cancer patients: assessment of acute toxicity and treatment compliance. Report of the 22921 randomised trial conducted by the EORTC radiotherapy group. Eur J Cancer 40(2):219–224

    Article  CAS  PubMed  Google Scholar 

  9. Rades D, Kuhn H, Schultze J, Homann N, Brandenburg B, Schulte R et al (2008) Prognostic factors affecting locally recurrent rectal cancer and clinical significance of hemoglobin. Int J Radiat Oncol Biol Phys 70(4):1087–1093

    Article  CAS  PubMed  Google Scholar 

  10. Matsuyama T, Yamauchi S, Masuda T, Kikuchi A, Tokunaga M, Sugihara K et al (2021) Treatment and subsequent prognosis in locally recurrent rectal cancer: a multicenter retrospective study of 498 patients. Int J Colorectal Dis 36(6):1243–1250

    Article  PubMed  Google Scholar 

  11. Guraya S (2019) Pattern, stage, and time of recurrent colorectal cancer after curative surgery. Clin Colorectal Cancer 18(2):e223–e8

    Article  PubMed  Google Scholar 

  12. Westberg K, Palmer G, Hjern F, Johansson H, Holm T, Martling A (2018) Management and prognosis of locally recurrent rectal cancer—a national population-based study. Eur J Surg Oncol 44(1):100–107

    Article  PubMed  Google Scholar 

  13. Baird D, Kontovounisios C, Simillis C, Pellino G, Rasheed S, Tekkis P (2020) Factors associated with metachronous metastases and survival in locally advanced and recurrent rectal cancer. BJS Open 4(6):1172–1179

    Article  PubMed  PubMed Central  Google Scholar 

  14. Jörgren F, Johansson R, Damber L, Lindmark G (2010) Risk factors of rectal cancer local recurrence: population-based survey and validation of the Swedish rectal cancer registry. Colorectal Dis 12(10):977–986

    Article  PubMed  Google Scholar 

  15. Horvat N, Veeraraghavan H, Khan M, Blazic I, Zheng J, Capanu M et al (2018) MR imaging of rectal cancer: radiomics analysis to assess treatment response after neoadjuvant therapy. Radiology 287(3):833–843

    Article  PubMed  Google Scholar 

  16. Horvat N, Carlos Tavares Rocha C, Clemente Oliveira B, Petkovska I, Gollub M (2019) MRI of rectal cancer: tumor staging, imaging techniques, and management. Radiographics 39(2):367–387

    Article  PubMed  Google Scholar 

  17. Leijssen L, Dinaux A, Amri R, Taylor M, Deshpande V, Bordeianou L et al (2019) Impact of intramural and extramural vascular invasion on stage II-III colon cancer outcomes. J Surg Oncol 119(6):749–757

    Article  PubMed  PubMed Central  Google Scholar 

  18. Kim Y, Kim C, Kim J, Kim J, Ro J, Lee J et al (2022) Clinical implication of perineural and lymphovascular invasion in rectal cancerpatients who underwent surgery after preoperative chemoradiotherapy. Dis Colon Rectum 65(11):1325–1334. https://doi.org/10.1097/DCR.0000000000002219

    Article  PubMed  Google Scholar 

  19. Sun Q, Liu T, Liu P, Luo J, Zhang N, Lu K et al (2019) Perineural and lymphovascular invasion predicts for poor prognosis in locally advanced rectal cancer after neoadjuvant chemoradiotherapy and surgery. J Cancer 10(10):2243–2249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Yang C, Lin L, Lin Y, Tian Y, Lin C, Sheu M et al (2019) Higher nuclear EGFR expression is a better predictor of survival in rectal cancer patients following neoadjuvant chemoradiotherapy than cytoplasmic EGFR expression. Oncol Lett 17(2):1551–1558

    CAS  PubMed  Google Scholar 

  21. Meng X, Wang R, Huang Z, Zhang J, Feng R, Xu X et al (2014) Human epidermal growth factor receptor‑2 expression in locally advanced rectal cancer: association with response to neoadjuvant therapy and prognosis. Cancer Sci 105(7):818–824

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. El Otmani I, El Agy F, El Baradai S, Bouguenouch L, Lahmidani N, El Abkari M et al (2020) Analysis of molecular pretreated tumor profiles as predictive biomarkers of therapeutic response and survival outcomes after neoadjuvant therapy for rectal cancer in Moroccan population. Dis Markers 2020:8459303

    Article  PubMed  PubMed Central  Google Scholar 

  23. Ye S, Cheng Y, Zhang L, Zou Y, Chen P, Deng Y et al (2020) Association of mismatch repair status with survival and response to neoadjuvant chemo(radio)therapy in rectal cancer. NPJ Precis Oncol 4:26

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. de Rosa N, Rodriguez-Bigas M, Chang G, Veerapong J, Borras E, Krishnan S et al (2016) DNA mismatch repair deficiency in rectal cancer: benchmarking its impact on prognosis, neoadjuvant response prediction, and clinical cancer genetics. J Clin Oncol 34(25):3039–3046

    Article  PubMed  PubMed Central  Google Scholar 

  25. Xing Y, Qin F, Zhai Y, Yang J, Yan Y, Li D et al (2022) Association of clinical features of colorectal cancer with circulating tumor cells and systemic inflammatory markers. Dis Markers 2022:5105599

    Article  PubMed  PubMed Central  Google Scholar 

  26. Pietrzyk Ł (2016) Biomarkers discovery for colorectal cancer: a review on tumor endothelial markers as perspective candidates. Dis Markers 2016:4912405

    Article  PubMed  PubMed Central  Google Scholar 

  27. Walkiewicz K, Strzelczyk J, Waniczek D, Biernacki K, Muc-Wierzgoń M, Copija A et al (2019) Adamalysines as biomarkers and a potential target of therapy in colorectal cancer patients: preliminary results. Dis Markers 2019:5035234

    Article  PubMed  PubMed Central  Google Scholar 

  28. Sung S, Son S, Park E, Kay C (2017) Prognosis of locally advanced rectal cancer can be predicted more accurately using pre- and post-chemoradiotherapy neutrophil-lymphocyte ratios in patients who received preoperative chemoradiotherapy. PLoS ONE 12(3):e173955

    Article  PubMed  PubMed Central  Google Scholar 

  29. Bottarelli L, De’ Angelis G, Azzoni C, Di Mario F, De’ Angelis N, Leandro G et al (2018) Potential predictive biomarkers in locally advanced rectal cancer treated with preoperative chemo-radiotherapy. Acta Biomed 89:102–106

    CAS  PubMed  Google Scholar 

  30. Rodrigues D, Simões J, Teixeira L, Aires F, Fernandes C, Rey C et al (2021) Baseline anaemia increases locally advanced rectal cancer mortality in older patients undergoing preoperative chemoradiation. Support Care Cancer 29(3):1403–1411

    Article  PubMed  Google Scholar 

  31. Sakin A, Sahin S, Karyagar S, Karyagar S, Atci M, Akboru M et al (2022) The predictive value of baseline volumetric PET/CT parameters on treatment response and prognosis in locally advanced rectal cancer treated with neoadjuvant chemoradiotherapy. J Gastrointest Cancer 53(2):341–347. https://doi.org/10.1007/s12029-021-00608-y

    Article  CAS  PubMed  Google Scholar 

  32. Pang X, Wang F, Zhang Q, Li Y, Huang R, Yin X et al (2021) A pipeline for predicting the treatment response of neoadjuvant chemoradiotherapy for locally advanced rectal cancer using single MRI modality: combining deep segmentation network and radiomics analysis based on “suspicious region”. Front Oncol 11:711747

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Nikolouzakis T, Vakonaki E, Stivaktakis P, Alegakis A, Berdiaki A, Razos N et al (2021) Novel prognostic biomarkers in metastatic and locally advanced colorectal cancer: micronuclei frequency and telomerase activity in peripheral blood lymphocytes. Front Oncol 11:683605

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Dovell F, Boffetta P (2018) Serum uric acid and cancer mortality and incidence: a systematic review and meta-analysis. Eur J Cancer Prev 27(4):399–405

    Article  CAS  PubMed  Google Scholar 

  35. Huang C, Huang J, Mi N, Lin Y, He Q, Lu Y et al (2020) Associations between serum uric acid and hepatobiliary-pancreatic cancer: a cohort study. World J Gastroenterol 26(44):7061–7075

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Xiao Y, Yang H, Lu J, Li D, Xu C, Risch H (2019) Serum gamma-glutamyltransferase and the overall survival of metastatic pancreatic cancer. BMC Cancer 19(1):1020

    Article  PubMed  PubMed Central  Google Scholar 

  37. Taylor F, Swift R, Blomqvist L, Brown G (2008) A systematic approach to the interpretation of preoperative staging MRI for rectal cancer. AJR Am J Roentgenol 191(6):1827–1835

    Article  PubMed  Google Scholar 

  38. Beets-Tan R, Lambregts D, Maas M, Bipat S, Barbaro B, Curvo-Semedo L et al (2018) Magnetic resonance imaging for clinical management of rectal cancer: updated recommendations from the 2016 European society of gastrointestinal and abdominal radiology (ESGAR) consensus meeting. Eur Radiol 28(4):1465–1475

    Article  PubMed  Google Scholar 

  39. Beets-Tan R, Lambregts D, Maas M, Bipat S, Barbaro B, Caseiro-Alves F et al (2013) Magnetic resonance imaging for the clinical management of rectal cancer patients: recommendations from the 2012 European society of gastrointestinal and abdominal radiology (ESGAR) consensus meeting. Eur Radiol 23(9):2522–2531

    Article  PubMed  Google Scholar 

  40. Patel U, Blomqvist L, Taylor F, George C, Guthrie A, Bees N et al (2012) MRI after treatment of locally advanced rectal cancer: how to report tumor response—the MERCURY experience. Ajr Am J Roentgenol 199(4):W486–95

    Article  PubMed  Google Scholar 

  41. Patel U, Taylor F, Blomqvist L, George C, Evans H, Tekkis P et al (2011) Magnetic resonance imaging-detected tumor response for locally advanced rectal cancer predicts survival outcomes: MERCURY experience. J Clin Oncol 29(28):3753–3760

    Article  PubMed  Google Scholar 

  42. Bates D, Homsi M, Chang K, Lalwani N, Horvat N, Sheedy S (2022) MRI for rectal cancer: staging, mrCRM, EMVI, lymph node staging and post-treatment response. Clin Colorectal Cancer 21(1):10–18

    Article  PubMed  Google Scholar 

  43. Inoue A, Sheedy S, Heiken J, Mohammadinejad P, Graham R, Lee H et al (2021) MRI-detected extramural venous invasion of rectal cancer: multimodality performance and implications at baseline imaging and after neoadjuvant therapy. Insights Imaging 12(1):110

    Article  PubMed  PubMed Central  Google Scholar 

  44. Vecchio F, Valentini V, Minsky B, Padula G, Venkatraman E, Balducci M et al (2005) The relationship of pathologic tumor regression grade (TRG) and outcomes after preoperative therapy in rectal cancer. Int J Radiat Oncol Biol Phys 62(3):752–760

    Article  PubMed  Google Scholar 

  45. Huh J, Kim H, Kim S, Park Y, Cho Y, Yun S et al (2019) Tumor regression grade as a clinically useful outcome predictor in patients with rectal cancer after preoperative chemoradiotherapy. Surgery 165(3):579–585

    Article  PubMed  Google Scholar 

  46. Trakarnsanga A, Gönen M, Shia J, Nash G, Temple L, Guillem J et al (2014) Comparison of tumor regression grade systems for locally advanced rectal cancer after multimodality treatment. JNCI J Natl Cancer Inst 106(10):dju248. https://doi.org/10.1093/jnci/dju248

    Article  CAS  PubMed  Google Scholar 

  47. Hofheinz R, Wenz F, Post S, Matzdorff A, Laechelt S, Hartmann J et al (2012) Chemoradiotherapy with capecitabine versus fluorouracil for locally advanced rectal cancer: a randomised, multicentre, non-inferiority, phase 3 trial. Lancet Oncol 13(6):579–588

    Article  CAS  PubMed  Google Scholar 

  48. Roh M, Colangelo L, O’Connell M, Yothers G, Deutsch M, Allegra C et al (2009) Preoperative multimodality therapy improves disease-free survival in patients with carcinoma of the rectum: NSABP R‑03. J Clin Oncol 27(31):5124–5130

    Article  PubMed  PubMed Central  Google Scholar 

  49. Fini M, Elias A, Johnson R, Wright R (2012) Contribution of uric acid to cancer risk, recurrence, and mortality. Clin Trans Med 1(1):16

    Article  Google Scholar 

  50. Xie Y, Xu P, Liu K, Lin S, Wang M, Tian T et al (2019) Hyperuricemia and gout are associated with cancer incidence and mortality: a meta-analysis based on cohort studies. J Cell Physiol 234(8):14364–14376

    Article  CAS  PubMed  Google Scholar 

  51. Dai X, He Q, Jing Z, Yuan J (2020) Serum uric acid levels and risk of kidney cancer incidence and mortality: a prospective cohort study. Cancer Med 9(15):5655–5661

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Mi N, Huang J, Huang C, Lin Y, He Q, Wang H et al (2022) High serum uric acid may associate with the increased risk of colorectal cancer in females: a prospective cohort study. Int J Cancer 150(2):263–272

    Article  CAS  PubMed  Google Scholar 

  53. Yue C, Feng P, Yao Z, Yu X, Lin W, Qian Y et al (2017) High serum uric acid concentration predicts poor survival in patients with breast cancer. Clin Chim Acta 473:160–165

    Article  CAS  PubMed  Google Scholar 

  54. Wu L, Yang W, Zhang Y, Du X, Jin N, Chen W et al (2021) Elevated serum uric acid is associated with poor survival in advanced HCC patients and febuxostat improves prognosis in HCC rats. Front Pharmacol 12:778890

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Mao L, Guo C, Zheng S (2018) Elevated urinary 8‑oxo‑7,8‑dihydro-2′-deoxyguanosine and serum uric acid are associated with progression and are prognostic factors of colorectal cancer. Onco Targets Ther 11:5895–5902

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Yiu A, Van Hemelrijck M, Garmo H, Holmberg L, Malmström H, Lambe M et al (2017) Circulating uric acid levels and subsequent development of cancer in 493,281 individuals: findings from the AMORIS Study. Oncotarget 8(26):42332–42342

    Article  PubMed  PubMed Central  Google Scholar 

  57. Louthrenoo W, Kasitanon N, Wichainun R, Sukitawut W (2002) Effect of minidose aspirin on renal function and renal uric acid handling in healthy young adults. J Clin Rheumatol 8(6):299–304

    Article  PubMed  Google Scholar 

  58. Gao X, Curhan G, Forman J, Ascherio A, Choi H (2008) Vitamin C intake and serum uric acid concentration in men. J Rheumatol 35(9):1853–1858

    CAS  PubMed  PubMed Central  Google Scholar 

  59. MacFarlane L, Liu C, Solomon D (2015) The effect of initiating pharmacologic insulin on serum uric acid levels in patients with diabetes: a matched cohort analysis. Semin Arthritis Rheum 44(5):592–596

    Article  CAS  PubMed  Google Scholar 

  60. Hisamatsu E, Kawai K, Hinotsu S, Miyanaga N, Shimazui T, Akaza H (2005) Serum creatinine and cholesterol levels of testicular cancer patients in long-term follow up. Int J Urol 12(8):751–756

    Article  CAS  PubMed  Google Scholar 

  61. Schwameis R, Postl M, Bekos C, Hefler L, Reinthaller A, Seebacher V et al (2019) Prognostic value of serum creatine level in patients with vulvar cancer. Sci Rep 9(1):11129

    Article  PubMed  PubMed Central  Google Scholar 

  62. Lafleur J, Hefler-Frischmuth K, Grimm C, Schwameis R, Gensthaler L, Reiser E et al (2018) Prognostic value of serum creatinine levels in patients with epithelial ovarian cancer. Anticancer Res 38(9):5127–5130

    Article  CAS  PubMed  Google Scholar 

  63. Yang M, Zhang Q, Ruan G, Tang M, Zhang X, Song M et al (2021) Association between serum creatinine concentrations and overall survival in patients with colorectal cancer: a multi-center cohort study. Front Oncol 11:710423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. das Neves W, Alves C, de Souza Borges A, de Castro G (2021) Serum creatinine as a potential biomarker of skeletal muscle atrophy in non-small cell lung cancer patients. Front Physiol 12:625417

    Article  PubMed  PubMed Central  Google Scholar 

  65. Mazidi M, Katsiki N, Banach M (2021) Α higher ratio of serum uric acid to serum creatinine could predict the risk of total and cause specific mortality- insight from a US national survey. Int J Cardiol 326:189–193

    Article  PubMed  Google Scholar 

  66. Al-Daghri N, Al-Attas O, Wani K, Sabico S, Alokail M (2017) Serum uric acid to creatinine ratio and risk of metabolic syndrome in saudi type 2 diabetic patients. Sci Rep 7(1):12104

    Article  PubMed  PubMed Central  Google Scholar 

  67. Wang A, Tian X, Wu S, Zuo Y, Chen S, Mo D et al (2021) Metabolic factors mediate the association between serum uric acid to serum creatinine ratio and cardiovascular disease. J Am Heart Assoc 10(23):e23054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Silva N, Gonçalves C, Gonçalves D, Cotta R, da Silva L (2021) Association of uric acid and uric acid to creatinine ratio with chronic kidney disease in hypertensive patients. BMC Nephrol 22(1):311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Mok Y, Son D, Yun Y, Jee S, Samet J (2016) γ‑Glutamyltransferase and cancer risk: the Korean cancer prevention study. Int J Cancer 138(2):311–319

    Article  CAS  PubMed  Google Scholar 

  70. Kunutsor S, Laukkanen J (2017) Gamma-glutamyltransferase and risk of prostate cancer: findings from the KIHD prospective cohort study. Int J Cancer 140(4):818–824

    Article  CAS  PubMed  Google Scholar 

  71. Long Y, Zeng F, Shi J, Tian H, Chen T (2014) Gamma-glutamyltransferase predicts increased risk of mortality: a systematic review and meta-analysis of prospective observational studies. Free Radic Res 48(6):716–728

    Article  CAS  PubMed  Google Scholar 

  72. Cho H, Choi H, Lee K, Cho N (2021) Gamma-glutamyltransferase and the risk of head and neck cancer mortality. J Oral Pathol Med 50(8):803–811

    Article  CAS  PubMed  Google Scholar 

  73. Franzini M, Corti A, Fierabracci V, Pompella A (2014) Helicobacter, gamma-glutamyltransferase and cancer: further intriguing connections. World J Gastroenterol 20(47):18057–18058

    Article  PubMed  PubMed Central  Google Scholar 

  74. Ishiyama Y, Kondo T, Tachibana H, Ishihara H, Fukuda H, Yoshida K et al (2021) Predictive role of γ‑glutamyltransferase in patients receiving nivolumab therapy for metastatic renal cell carcinoma. Int J Clin Oncol 26(3):552–561

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the Basic Scientific Research Operating Expenses of Wenzhou Medical University in 2019 (KYYW201923).

Author information

Authors and Affiliations

Authors

Contributions

RX, XZ, and CZ participated in study design, data analysis, and manuscript review. YX and ZS participated in data collection, data analysis, and manuscript writing. All authors reviewed the manuscript and revision and provided final approval for submission.

Corresponding authors

Correspondence to Changlin Zou or Raoying Xie.

Ethics declarations

Conflict of interest

Z. Shao, Y. Xu, X. Zhang, C. Zou, and R. Xie declare that they have no competing interests.

Ethical standards

The study was carried out in accordance with the ethical standards of the World Medical Association Declaration of Helsinki. The study involving human participants was reviewed and approved by the Ethics Committee of the First Affiliated Hospital of Wenzhou Medical University. The ethical number is KY2020-R190. A waiver of written consent was requested for this study and the Ethics Committee approved.

Additional information

The authors Zhenyong Shao and Yuyan Xu contributed equally to the manuscript.

Data Availability Statement

The authors will provide the raw data supporting the conclusions of this study without reservation.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shao, Z., Xu, Y., Zhang, X. et al. Changes in serum uric acid, serum uric acid/serum creatinine ratio, and gamma-glutamyltransferase might predict the efficacy of neoadjuvant chemoradiotherapy in patients with locally advanced rectal cancer. Strahlenther Onkol 200, 523–534 (2024). https://doi.org/10.1007/s00066-023-02096-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00066-023-02096-4

Keywords

Navigation