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Abstract
Objective To identify delivery error type and predict associated error magnitude by image-based features using machine
learning (ML).
Methods In this study, a total of 40 thoracic plans (including 208 beams) were selected, and four error types with different
magnitudes were introduced into the original plans, including 1) collimator misalignment (COLL), 2) monitor unit (MU)
variation, 3) systematic multileaf collimator misalignment (MLCS), and 4) random MLC misalignment (MLCR). These
dose distributions of portal dose predictions for the original plans were defined as the reference dose distributions (RDD),
while those for the error-introduced plans were defined as the error-introduced dose distributions (EDD). Both distributions
were calculated for all beams with portal dose image prediction (PDIP). Besides, 14 image-based features were extracted
from RDD and EDD of portal dose predictions to obtain the feature vectors. In addition, a random forest was adopted for
the multiclass classification task, and regression prediction for error magnitude.
Results The top five features extracted with the highest weight included 1) the relative displacement in the x direction,
2) the ratio of the absolute minimum residual error to the maximal RDD value, 3) the product of the maximum and
minimum residuals, 4) the ratio of the absolute maximum residual error to the maximal RDD value, and 5) the ratio of
the absolute mean residual value to the maximal RDD value. The relative displacement in the x direction had the highest
weight. The overall accuracy of the five-class classification model was 99.85% for the validation set and 99.30% for the
testing set. This model could be applied to the classification of the error-free plan, COLL, MU, MLCS, and MLCR with an
accuracy of 100%, 98.4%, 99.9%, 98.0%, and 98.3%, respectively. MLCR had the worst performance in error magnitude
prediction (70.1–96.6%), while others had better performance in error magnitude prediction (higher than 93%). In the error
magnitude prediction, the mean absolute error (MAE) between predicted error magnitude and actual error ranged from
0.03 to 0.33, with the root mean squared error (RMSE) varying from 0.17 to 0.56 for the validation set. The MAE and
RMSE ranged from 0.03 to 0.50 and 0.44 to 0.59 for the test set, respectively.
Conclusion It could be demonstrated in this study that the image-based features extracted from RDD and EDD can be
employed to identify different types of delivery errors and accurately predict error magnitude with the assistance of ML
techniques. They can be used to associate traditional gamma analysis with clinically based analysis for error classification
and magnitude prediction in patient-specific IMRT quality assurance.
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Introduction

With the extensive application of intensity-modulated radia-
tion therapy (IMRT) in radiotherapy, the treatment modality
provides highly conformal and complex dose distributions
through multiple beams. This contributes to forming steep
dose gradients to shield critical organs at risk (OARs) from
adjacent high-dose regions [1, 2], thus leading to complex-
ity in planning and delivery [3, 4]. Delivery parameters such
as gantry, monitor unit (MU), multileaf collimator (MLC)
position, and collimator are different from the planned pa-
rameters, which will cause dose differences among patients
[5]. Therefore, it is required to ensure the accuracy and
safety of patient-specific quality assurance (QA) prior to
treatment [6–9].

The patient-specific QA is commonly performed by
measurement, and, subsequently, dose distribution is evalu-
ated through gamma analysis that combines dose difference
(DD) and distance-to-agreement (DTA) [10, 11]. Despite
its universal prevalence in the clinical environment, it has
been reported that gamma analysis is insensitive to some
errors [12–14]. Besides, gamma analysis results show the
rate of the number of points that meet established criteria
but cannot exhibit the correlation with the clinical dose
differences [15]. For failed plans, it is difficult for users to
obtain clear insight into the error source, error magnitude,
and so forth.

Recently, much attention has been paid to the applica-
tion of radiomics and ML to the detection and classifica-
tion of errors in IMRT QA [2, 16–20]. Landon S adopted
gamma radiomics to improve the detection of errors [16].
Nyflota et al. used convolutional neural networks to iden-
tify MLC errors in radiotherapy delivery by radiomics anal-
ysis of gamma images [17]. Madoka et al. detected MLC
modeling errors using radiomics-based ML and fluence dif-
ference maps [18]. Kimura et al. evaluated the application
of dose difference maps with a convolutional neural net-
work (CNN) in an attempt to detect MLC positional errors
in patient-specific QA for volumetric modulated radiation
therapy (VMAT) [19]. Potter proposed a dual neural net-
work method to achieve simultaneous error detection and
classification by extracting the dose difference histogram
(DDH) for the low-dose gradient region and two signed
DTA maps [20]. Ma et al. performed radiomics analysis on
structural similarity (SSIM) sub-index maps and developed
ML models to classify delivery errors in patient-specific
dynamic IMRT QA [2].

Through the abovementioned studies, it can be demon-
strated that radiomics-based methods and ML could be em-
ployed to detect errors effectively, which provides a di-
rection for ML and deep learning (DL) in error classifi-
cation. However, an error classification model with higher
accuracy and clinical significance is expected to be estab-

lished by integrating the following factors: 1) Since the
influence of absolute dose and distance cannot be prop-
erly balanced by the input based on dose difference, DTA
maps, or gamma images, in which partial information be-
tween dose and distance may be ignored, the input with
more information about dose and distance may be taken
into account. 2) Most existing studies are conducted based
on error types, without considering the influence of error
magnitude. Nithiyanantham et al. analyzed the clinical con-
sequence of MLC positional errors [21]. The results show
that the average change of dose D95% to the planning tar-
get volume (PTV) for ±1mm, ±0.5mm, and ±0.3mm was
5.15%, 2.58%, and 0.96% for brain cases; 7.19%, 3.67%,
and 1.56% for head and neck cases; and 8.39%, 4.5%, and
1.86% for prostate cases, respectively. It was concluded
that the average changes in dose increased with the amount
of MLC positional error. As dose distribution is related to
different levels of error magnitude, it is necessary to per-
form an investigation of the prediction models containing
error types and error magnitude. 3) It is expected that the
accuracy of classification will be improved through more
effective prediction models.

Our research team has adopted the DL technique to pre-
dict dose distribution based on reference dose distributions
of portal dose predictions [22]. Furthermore, the above three
factors were integrated into this study to predict error types
and error magnitude. In addition, different magnitude lev-
els were introduced into the reference plans to simulate the
delivery errors. Portal dose (PD) images were calculated
for all the beams with and without introduced errors. The
dose distribution of original plans was defined as RDD and
that of error-introduced plans was defined as EDD. Ad-
ditionally, the feature vectors that can describe different
errors were extracted from the RDD and EDD of portal
dose predictions. In most radiomic studies to date, tradi-
tional radiomics features have been employed to establish
the model, such as the previously described texture fea-
tures [2, 16, 18]. Different from those studies, the image-
based features representing the underlying error types were
extracted in this study.

Moreover, the random forest algorithm was adopted to
establish a model for error detection and classification in
delivery and predict error magnitude under different error
types before treatment. This study on error classification
and error magnitude prediction based on RDD and EDD of
portal dose predictions is expected to improve the accuracy
of error detection and provide support for the analysis of
the reason for clinically failed plans in the future.
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Table 1 Plan characteristics

Plan type Lung Postoperative esophageal Simultaneous integrated boost

No. of patients 25 3 12

No. of fractions 25/30 28 28

Dose (Gy) 50/60 50.4 60.2 and 50.4

No. of fields (median) 5 4 6

Total MU (mean± SD) 511.48± 131.20 378.67± 55.41 593± 141.95

Volume of PTV (cc) 277.53± 139.33 244.88± 104.67 188.17± 123.21

MCS (mean± SD) 0.5495± 0.08 0.6192± 0.10 0.5511± 0.08

MU monitor unit, SD standard deviation, PTV planning target volume, MCS modulation complexity score

Materials andmethods

Clinical plans

A total of 40 thoracic IMRT plans (including 208 beams)
delivered by a Varian EDGE (TrueBeam; Varian Medical
Systems, Palo Alto, CA, USA) linear accelerator equipped
with a Millennium 120 MLC from December 2019 to May
2020 were randomly selected. The characteristics of these
plans are listed in Table 1. The modulation complexity score
(MCS) was selected to quantify plan complexity, which
was found to be the most sensitive to delivery and plan
parameters [23]. The MCS score ranges from 1 for a sim-
ple unmodulated field and decreases towards 0 with in-
creasing inherent plan complexity. The delivery mode for
these IMRT plans was step-and-shoot. Patient-specific dose
verification was performed prior to treatment using portal
dosimetry. Whereas 30 plans were used for model training
and validation, the remaining 10 plans were used for test-
ing. All plans were generated in Eclipse (version 11, Varian
Medical Systems). The dose distribution of each plan was
calculated through Acuros External Beam (AXB, version
11.0.31, Varian Medical Systems), with a dose calculation
grid of 2.5mm.

Error simulation

In the plan delivery, most dose differences originate from
collimator angle misalignment, MU variation, systematic
MLC misalignment, and random MLC misalignment. In
this study, an in-house program based on Python was de-
veloped and four types of errors with different magnitude
levels were introduced into the original plan. The original
parameters in all control points described in the DICOMRT
plan file were modified with a specified shift, and the files
were imported back into the TPS. The dose distributions
of portal images for error-free plans and error-introduced
plans were calculated with portal dose image prediction
(PDIP; v. 13.5.35, Varian Medical Systems). Gamma anal-
ysis between the RDD and EDD of portal dose predictions

were performed based on the criteria 3%/3mm, 3%/2mm,
2%/3mm, and 2%/2mm, with a 10% threshold.

As for the model training and validation, a total of
151 RDD maps and 2567 EDD maps were generated for
30 plans.

Error-free plans

Error-free plans comprised the unmodified beam.

Collimator error plans

In collimator error plans (denoted COLL error), each con-
trol point of the clinical plan was modified to introduce
collimator angle errors of 1°, 2°, and 3°. Each clinical plan
generated three plans with different collimator error mag-
nitude levels.

Monitor unit error

The MU of each control point of the clinical plan was mod-
ified by ±1%, ±3%, and ±5%, respectively. Each clinical
plan generated six plans with different MU error magni-
tude levels.

Systematic misalignment of MLC

For the systematic misalignment of MLC (denoted MLCS
error), all open leaves in both banks were offset by 1mm,
2mm, 3mm, and 5mm in the same direction at every con-
trol point. Each clinical plan generated four plans with dif-
ferent MLCS error magnitude levels.

Randommisalignment of MLC

For the random misalignment of MLC (denoted MLCR er-
ror), all open leaves in both banks were modified by an in-
house Python script describing that the distribution of the
values follows a Gaussian distribution with a standard de-
viation of 1mm, 2mm, 3mm, and 5mm. Meanwhile, the
maximum position of the MLC that can be shifted satisfied
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Table 2 Feature description and index

Feature Definitions Index

rE=R The ratio between the proportion of the maximum gradient direction to all gradient direc-
tions in G0 corresponding to EDD and RDD

(9)

b� The displacement corresponding to the maximum overlap (10)

�max1 The maximum NCC value corresponding tob� (11)
bdx The relative displacement in the x direction (12)
bdy The relative displacement in the y direction (12)

�max2 The maximum NCC value between TE and TR (13)

dmax1 The maximum residual (S-2)

dmin1 The minimum residual (S-3)

dmax�min The product of the maximum and minimum residuals (S-4)

dmean1 The mean value of residual (S-5)

dmax2 The ratio of the absolute maximum residual error to the maximal RDD value (S-6)

dmin2 The ratio of the absolute minimum residual error to the maximal RDD value (S-7)

dmean2 The ratio of the absolute mean residual error to the maximal RDD value (S-8)

dratio The ratio of the mean residual error to the mean RDD (S-9)

NCC normalized cross correlation

the constraints of the MLC bracket and the leaf gap to en-
sure a deliverable position of the leaf. Each clinical plan
generated four plans with different MLCR error magnitude
levels.

Moreover, the error plans including COLL (1.5°, 2.5°),
MU (1.5%, 2.5%), MLCS (1.5mm, 2.5mm), and MLCR
(1.5mm, 2.5mm) were generated for the testing set, and
the dose distribution of portal dose predictions for these
plans were calculated.

Feature extraction

By analyzing the generating mechanism of different types
of errors, 14 features were extracted from RDD and EDD
of portal dose predictions with specific errors, as shown in
Table 2.

The details of feature extraction are outlined in the fol-
lowing sections.

In terms of COLL

In terms of COLL, the relative rotational parameters be-
tween EDD and RDD of portal dose predictions were es-
timated, and the corresponding feature extraction methods
that could characterize the rotation were constructed. The
steps are presented as follows:

The gradient between EDD and RDD in the y direction
can be calculated as follows:

Ix.x; y/ = I.x + 1; y/ − I.x − 1; y/ (1)

Iy.x; y/ = I.x; y + 1/ − I.x; y − 1/ (2)

G.x; y/ = arctan.Iy.x; y/=Ix.x; y// (3)

where I(x,y) represents the image matrix of EDD or RDD,
respectively, and the subscript x or y denotes the gradient in
the respective direction; G represents the gradient direction
image, arctan is the four-quadrant inverse tangent function
([− ;+ ]).

To avoid the adverse effects of low-value noise on the
statistical results, the gradient threshold is set to 10% of
the maximum value of the original image, namely th1 =
0.1 � max.I/. These points with corresponding gradients
higher than th1 are selected to form G0:

G0 =
fG.x; y/j. Ix.x; y/ >= th1 or Iy.x; y/ >= th1/g (4)

The histograms of G0 for EDD and RDD can be calcu-
lated as follows,

HR = hist.G0
R/ (5)

HE = hist.G0
E / (6)

where G0
R and G0

E represent the corresponding G0� of
RDD and EDD, respectively; “hist” (*) represents his-
togram statistics; and HR and HE represent the histograms
of gradient directions corresponding to RDD and EDD,
respectively. As for the histogram, 1° is taken as the bin
size and there are 360 bins in total. The gradient direction
histograms corresponding to RDD and EDD are shown in
Fig. 1.

The proportion of the maximum gradient direction to
all gradient directions in G0 corresponding to EDD and
RDD, and the ratio between these two proportions can be
calculated as follows:
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rR = max.HR/=sum.HR/ (7)

rE = max.HE /=sum.HE / (8)

rE=R = rE =rR (9)

A recurrent shift was performed on HE within a certain
angle range (e.g.,± 10°) to obtain the histogram of HE(θ),
and the normalized cross correlation (NCC) was calculated
with HR. Besides, the displacement of the maximum NCC

Fig. 1 Histograms of the gradient direction. a Cartesian coordinate system, b polar coordinate system (red and blue curves represent HR and HE,
respectively. In order to make the curve in the polar coordinate system more intuitive, the polar radius is processed by the common logarithm
log10)

Fig. 2 Residual image of monitor unit (MU) error. a Dose difference with +5% MU error, b dose difference with –5% MU error

was searched, which can be used as the estimated value of
the rotation angle:

b� = argmax
�

.NCC.HE .�/; HR// (10)

�max1 = NCC.HE .b�/; HR/ (11)
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Fig. 3 Comparison of the dose distribution of portal dose predictions after partial magnification. a Dose distribution with error free, b dose
distribution with 5mm multileaf collimator misalignment error

where b� represents the displacement corresponding to the
maximum overlap of the blue curve and the red curve in
Fig. 1a, or the rotation angle corresponding to the maximum
overlap of the blue curve and the red curve in Fig. 1b.
Meanwhile, the maximum NCC value corresponding to b�

can also be obtained.

In terms of MU error

In terms of MU error, the residual image was obtained by
subtracting EDD from RDD, as shown in Fig. 2. The pixel
value information of the residual image was counted as
the feature to evaluate MU error. The features of dmax1,
dmin1, dmax�min, dmean1, dmax2, dmin2, dmean2, and dratio were
calculated as shown in the supplementary material.

In terms of MLCS error

In terms of MLCS error, the EDD is equivalent to the trans-
lation of the RDD, as shown in Fig. 3. Therefore, the trans-
lation rotation features were extracted to estimate the rel-
ative displacement between EDD and RDD. The steps are
presented as follows:

The pixel value higher than th1 in RDD was obtained
as the external rectangle. The external rectangle was ex-
panded by two pixels outward in the upper, lower, left, and
right directions, and the image template TR in RDD was cut
out. The same size TE was obtained in EDD. Subsequently,
the displacement generating the maximum NCC between

TE and TR was traversed and searched as the relative dis-
placement estimation between EDD and RDD:

bd x; bd y = argmax
dx ;dy

.NCC.TR; TE Œdx; dy �// (12)

�max2 = NCC
�

TR; TE

h

bd x; bd y

i�

(13)

where dx and dy represent the relative displacement between
TE and TR, and the corresponding maximum NCC value can
be obtained.

In terms of MLCR error

In terms of MLCR error, no feature extraction method could
be employed to accurately characterize the type and mag-
nitude of this error. The type and magnitude of the MLCR
error were estimated by combining the feature vectors cor-
responding to other types of errors.

A series of features extracted as described above was
employed to form 14-dimensional feature vectors as fol-
lows: �max1, rE=R, b� , �max2, bd x , bd y , dmax1, dmin1, dmax�min,
dmean1, dmax2, dmin2, dmean2, and dratio.

Model construction

The architecture of this study is shown in Fig. 4. The fea-
tures extracted from RDD and EDD were employed to train
the classification model by the random forest algorithm.
Meanwhile, the prediction model can be applied to the
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Fig. 4 Architecture of this study
(training and validation sets are
blue, testing sets are yellow).
MU monitor units, MLC multi-
leaf collimator

classification and error magnitude prediction with feature
vectors.

The random forest algorithm used in the model was im-
plemented by the scikit-learn library (V0.24.1) of Python
(V3.7), based on its default parameter configuration. The
datasets for model development were randomly divided into
the training set and the validation set at a ratio of 3:1. The
random division was repeated 100 times and the average re-
sults were calculated. MAE and RMSE calculated as below
were utilized to evaluate the performance of this prediction
model:

MAE =

Pn
i=1

ˇ

ˇyp_ yaj
n

(14)

RMSE =

s

Pn
i=1

�

yp − ya

�2

n
(15)

where yp and ya represent the predicted error magnitude and
the actual error magnitude, respectively, i and n represent
the ith field and the total number of fields, respectively.

Results

Feature importance

In this study, a total of 14 features were included in the ran-
dom forest classification model. This established model can
be considered well tuned and effective in distinguishing the
error-free condition from other types of errors. In the clas-
sification model, the top-ranked features for MLC was the
relative displacement in the x direction of EDD and RDD.
In terms of the COLL error, the most important feature was
the change in the main gradient direction of EDD and RDD.
In terms of the MU error, the most important feature was
the product of the maximum and minimum residuals. The
top 10 features based on their importance as obtained by
random forest regression are presented in Fig. 5. The fea-
ture importance values were normalized with a range from
0 to 1.0. The top 5 features included the relative displace-
ment in the x direction, the ratio of the absolute value of
the minimum residual to the maximum RDD, the product
of the maximum and minimum residual, the ratio of the
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Fig. 5 The top 10 features based

on their importance (bdx the
relative displacement in the
x direction; dmin2 the ratio of
the absolute minimum residual
error to the maximal RDD
value; dmax�min the product of
the maximum and minimum
residuals; dmax2 the ratio of
the absolute maximum residual
error to the maximal RDD value;
�max1 the maximum NCC value

corresponding to b� ; rE=R the
ratio between proportion of the
maximum gradient direction
to all gradient directions in
G0 corresponding to EDD and
RDD; �max2 the maximum NCC
value between TE and TR; dmin1

the minimum residual; dmax1 the
maximum residual)

Fig. 6 Results of the two-di-
mensional linear discriminant
analysis. COLL collimator mis-
alignment, MU monitor units
variation, MLCS systematic
multi-leaf collimator misalign-
ment, MLCR random MLC
misalignment

absolute value of the maximum residual to the maximum
RDD, and the ratio of the absolute value of the mean resid-
ual to the maximum RDD. The relative displacement in the
x direction had the highest weight.

To obtain some in-depth insights into the relationship
between these data, linear discriminant analysis (LDA) was
applied for visualization. As shown in Fig. 6, the product
of the maximum and minimum residuals and the relative

displacement in the x direction were projected down to
a two-dimensional scatterplot. The COLL error, MU error,
MLCS error, and MLCR error were properly separated into
different groups, except for slight overlapping in collimator
error and MLCS error. This indicated that the imaged-based
features of the four error types were highly distinguishable.

K



506 Strahlentherapie und Onkologie (2023) 199:498–510

Fig. 7 The normalized confusion matrixes of five-class (error-free, collimator error, MU error, MLCR, and MLCS) classification (a validation
set, b test set). COLL collimator misalignment, MU monitor units variation, MLCS systematic multi-leaf collimator misalignment,MLCR random
MLC misalignment

Accuracy of five-class classification results

The classification model based on a random forest showed
a favorable performance in error detection and classifica-
tion, with an overall accuracy reaching 99.85% in the vali-
dation set and 99.3% in the testing set. The confusion matrix
of five-class experiments for the validation set and testing
set are shown in Fig. 7, and the diagonal represents the accu-
racy of different errors. As for the validation set, this model
had the highest accuracy for the error-free condition, with
an accuracy reaching 100%. The classification accuracy for
the COLL error, MU error, MLCR error, and MLCS er-
ror was 98.4%, 99.9%, 98.3%, and 98.0% respectively. In
the test set, the classification accuracy for the error-free,
COLL error, MU error, MLCR error, and MLCS error was
100.0%, and 97.7% for the MLCR error.

Classification results of error magnitude

The error magnitude for different errors was classified, and
the results were plotted into the confusion matrixes, as
shown in Fig. 8. In terms of the COLL error, the accuracy of
classification ranged from 93.5% to 96.9%. In terms of the
MU error, the classification accuracy was higher than 99%.
In terms of the MLCS error, the classification accuracy
ranged from 97.0% to 99.9%. In terms of the MLCR error,
the accuracy of classification ranged from 70.1% to 96.6%.
Among these classifications with different error magnitude
levels, MU had the best performance, while MLCR had the
worst performance.

Regression analysis of error magnitude

In the regression analysis of different error magnitudes, the
MAE and RMSE of the validation set and testing set were
adopted to evaluate the regression error (Table 3). The MAE
between predicted error magnitude and actual error ranged
from 0.03 to 0.33, with the RMSE varying from 0.17 to 0.56
for the validation set. The MAE and RMSE ranged from
0.38 to 0.50 and 0.44 to 0.59 for the test set, respectively.

Gamma analysis for the testing set

Table 4 lists the results of the gamma analysis in the test-
ing set, in which the gamma value decreased with stricter
gamma criteria and higher level of error magnitude. How-
ever, the gamma analysis could not distinguish different
types of error and indicate the error magnitude compared
to the machine learning model.

Table 3 The MAE and RMSE of error magnitude under different error
types

Validation set Testing set

MAE RMSE MAE RMSE

COLL 0.2 0.52 0.43 0.59

MU 0.03 0.19 0.5 0.5

MLCS 0.06 0.17 0.42 0.44

MLCR 0.33 0.56 0.38 0.45

MAE mean absolute error, RMSE root mean squared error, COLL col-
limator misalignment, MU monitor units variation, MLCS systematic
multi-leaf collimator misalignment, MLCR random MLC misalign-
ment
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Fig. 8 The normalized confusion matrixes of different error magnitude under different error types. a COLL errors of 1°, 2°, and 3°; b MU errors
of ±1%, ±3%, and ±5%; c MLCS errors of 1mm, 2mm, 3mm, and 5mm; d MLCR errors of 1mm, 2mm, 3mm, and 5mm. COLL collimator
misalignment, MU monitor units variation, MLCS systematic multi-leaf collimator misalignment,MLCR random MLC misalignment

Table 4 Gamma result of the testing set (%)

Error type Error magnitude 3%/3mm 3%/2mm 2%/3mm 2%/2mm

COLL 1.5° 100.00± 0.02 98.14± 1.40 100.00± 0.03 98.86± 1.86

2.5° 98.06± 2.23 91.18± 5.33 97.69± 2.60 89.63± 5.95
MU 1.50% 100± 0.00 100± 0.00 100± 0.00 100± 0.00

2.50% 100± 0.00 100± 0.00 94.71± 6.48 92.16± 8.49
MLCR 1.5mm 99.99± 0.04 99.90± 0.13 99.98± 0.06 99.85± 0.16

2.5mm 99.70± 0.19 98.45± 0.59 99.57± 0.27 97.97± 0.71
MLCS 1.5mm 100± 0.00 100.00± 0.00 100.00± 0.00 99.99± 0.02

2.5mm 99.98± 0.03 88.29± 2.90 99.94± 0.06 85.91± 3.39

COLL collimator misalignment,MUmonitor units variation,MLCS systematic multi-leaf collimator misalignment,MLCR random MLC misalign-
ment
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Discussion

In this study, an error classification and error magnitude
prediction model was established, including the collimator
error, MU error, MLCS error, and MLCR error. The random
forest algorithm and error-related features from the RDD
and EDD were adopted during model establishment. The
overall accuracy of the classification model was 99.85% for
the validation set and 99.3% for the testing set. Based on
the error-related features, the accuracy of the error detection
and classification model in this study was higher than that in
previous studies. In the error magnitude prediction for the
testing set, the MAE and RMSE of error magnitude for the
testing set were 0.38–0.50 and 0.44–0.59, respectively. The
error classification and error magnitude prediction model
established in this study is expected to become a powerful
instrument for IMRT QA.

Although gamma analysis has been extensively applied
to patient-specific QA, there are some disadvantages to it.
Due to its poor correlation with delivery errors, gamma
analysis is considered to be insensitive to some errors
[10–12]. Although stricter gamma criteria could achieve
better performance in error detection, it is impossible for
them to be applicable under all circumstances [24]. In some
studies, even 2%/2mm gamma criteria could not improve
the performance of error detection [20]. In addition, it is
impossible to determine the specific reason for the failure
field of gamma analysis [25]. Although 3D gamma anal-
ysis and/or delivery DVHs based on anatomical structure
provide more evaluation methods by many 3D verification
systems [26], the retrospective error review cannot be per-
formed on plan delivery. The model in this study provides
a novel method for error classification and error magni-
tude prediction in delivery, and it is expected to eliminate
the limitations of the well-known conventional IMRT QA
method.

During delivery, there may be deviations of actual param-
eters of collimator, MU, MLC, and gantry from the plan. In
this study, the collimator error, MU error, MLCS error, and
MLCR error were simulated by modifying corresponding
parameters in the original plan. The position of EPID is op-
posite to the head of the accelerator, and it rotates with the
gantry during the treatment of patients, so that EPID cannot
measure the effect of gantry error on the planar dose distri-
butions. In this study, the gantry error was not considered.
The dose distribution of the error-introduced plan was cal-
culated in this study, different from the QA measurement of
dose distribution in other studies. The effectiveness of EDD
generated by the calculation method plays an important role
in this study. It can be maintained that for a plan without
any errors, the actual dose distribution should be similar to
RDD. Once the plan with one type of error is delivered,
there may be mixed errors, which may affect the features

of the specific type of error. Therefore, the same algorithm
as RDD was adopted to calculate EDD, rather than mea-
suring the dose distribution of the error-introduced plans,
with the aim of learning the specific features of each error.
In the selection of error magnitude, it was proposed in the
AAPM TG142 report that the tolerance of MU, collimator,
and MLC is 1%, 1°, and 1mm, respectively [27]. In order to
explore the accuracy difference among different error mag-
nitude levels, the error in this study included 1°, 2°, or 3°
of collimator rotation error. MU variations can reach up to
5%. MLC positioning errors included 1, 2, 3, and 5mm. In
addition, due to the similar processing method, research on
the inverse error of collimator and MLC was not included
in this study.

In this study, several feature vectors were selected to
describe the errors more appropriately from the perspective
of image processing. In terms of the collimator angle error,
the rotational features were constructed to estimate relative
rotational parameters between RDD and EDD. In terms of
the MLC error, the translational features were constructed to
estimate the relative translational parameters between RDD
and EDD. In terms of the MU error, the pixel value change
of the EDD was similar to that of the RDD in the effective
area. The residual image was obtained by subtracting EDD
from RDD, and the gray-level information of the residual
image was counted as the relevant feature for evaluating
the MU error. Through the analysis of feature importance
in the random forest model, it could be found that the most
important feature for the collimator angle error was the
change of the main gradient direction. As for the MU error,
the most important feature was the product of the maximum
and minimum residuals. As for MLCR and MLCS errors,
the most important feature was the relative displacement in
the x direction. The important features of different errors
were closely related to the mechanism of error types.

The overall accuracy of the validation and testing set in
this study was 99.3%. Wootton et al. performed radiomics
analysis on gamma distributions for two-class classification
[16]. The AUC of MLC random error was 0.761, and the
AUC of MLC systematic error was 0.717. Based on gamma
images, Nyflota et al. adopted the DL technique to train the
MLC error classification model [17]. The overall accuracy
of two-class classification was 77.3%, and the accuracy of
three-class classification was 64.3%. Yuto et al. combined
dose difference with a convolutional neural network (CNN)
to detect the three types of errors in the VMAT plan, with an
overall accuracy reaching 94.4% [19]. Ma et al. adopted the
SSIM to extract features to perform classification for three
types of errors in IMRT, with the highest accuracy reach-
ing 86% [2]. An error detection and classification model
with a dual neural network was developed by Potter based
on dose-difference histogram (DDH) and distance-to-agree-
ment (sDTA) maps [20]. The accuracy of ANN for two-
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class classification was 98.3%, and the accuracy of CNN
for four-class classification was 95.6%. Different DL archi-
tectures and validation methods were adopted in some stud-
ies. Although it is difficult to evaluate the relative benefits
of one approach versus another, all models could achieve
a good performance, which presents a promising prospect.
In this study, many new features were extracted from EDD
and RDD for radiotherapy QA. The results of this study
may further improve the clinical application of the error
detection and classification model.

In the classification analysis of error magnitude, as
shown in Fig. 8, MLCR has a relatively low accuracy
among different magnitude levels. It can be explained by
the fact that the ability to capture features is relatively
poor due to the uncertainty of leaf errors for the MLCR
error. Although MLCR represents a more realistic error
condition that merits investigation, the dosimetric effect of
random displacement is small [28, 29]. The dose changes
introduced by random leaf errors tend to be small, localized
clusters [18]. In this study, MLCR was selected as an error
type to assess the performance of the proposed method in
error detection and classification.

It is important to note that the method proposed in this
study is used for dose verification before treatment. As in-
ter- and intrafractional organ motion management is an im-
portant task in radiation therapy, Moustakis et al. investi-
gated the feasibility of EPID for online verification of lung
SBRT treatment. The method has the potential for in vivo
EPID dosimetry in the near future [30]. The prediction is
represented in the modeling of this study by including the
classification of error types and the prediction of error mag-
nitude, while the “prediction” during treatment means dose
distribution prediction based on an algorithm. In this study,
the focus is placed on a limited subset of errors, namely
only those involving COLL, MU, and MLC. Other types
of machine or modeling errors might be more impactful
or prevalent in clinical practice, and the method proposed
in this study should be expanded to other error types. Be-
sides, the delivery errors involved in this study are not real
cases in clinical practice but simulated ones. It is difficult to
collect adequate PD images with multiple errors in clinical
practice. Since multiple types of errors may occur simul-
taneously in cases, in which the radiomics features of one
type of error are masked by one or more other types of error,
it is necessary to construct an error-detection system that
can detect mixed errors. This study is limited to thoracic
plans of IMRT; future studies will explore the universality
of the model to other techniques/sites/plans.

Conclusion

In this study, image-based features were used in machine
learning to achieve discrimination between delivery errors
and predict error magnitude for patient-specific IMRT QA.
These features can be employed to accurately detect and
discriminate the collimator error, MU error, MLCS error,
and MLCR error. Besides, they can also be applied to error
magnitude prediction. Therefore, it can be expected that
they will be applied to patient-specific IMRT QA in the
future.
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