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Abstract
Objective This study aimed to improve the image quality and CT Hounsfield unit accuracy of daily cone-beam computed
tomography (CBCT) using registration generative adversarial networks (RegGAN) and apply synthetic CT (sCT) images
to dose calculations in radiotherapy.
Methods The CBCT/planning CT images of 150 esophageal cancer patients undergoing radiotherapy were used for
training (120 patients) and testing (30 patients). An unsupervised deep-learning method, the 2.5D RegGAN model with
an adaptively trained registration network, was proposed, through which sCT images were generated. The quality of
deep-learning-generated sCT images was quantitatively compared to the reference deformed CT (dCT) image using mean
absolute error (MAE), root mean square error (RMSE) of Hounsfield units (HU), and peak signal-to-noise ratio (PSNR).
The dose calculation accuracy was further evaluated for esophageal cancer radiotherapy plans, and the same plans were
calculated on dCT, CBCT, and sCT images.
Results The quality of sCT images produced by RegGAN was significantly improved compared to the original CBCT
images. ReGAN achieved image quality in the testing patients with MAE sCT vs. CBCT: 43.7± 4.8 vs. 80.1± 9.1; RMSE
sCT vs. CBCT: 67.2± 12.4 vs. 124.2± 21.8; and PSNR sCT vs. CBCT: 27.9± 5.6 vs. 21.3± 4.2. The sCT images generated
by the RegGAN model showed superior accuracy on dose calculation, with higher gamma passing rates (93.3± 4.4,
90.4± 5.2, and 84.3± 6.6) compared to original CBCT images (89.6± 5.7, 85.7± 6.9, and 72.5± 12.5) under the criteria of
3mm/3%, 2mm/2%, and 1mm/1%, respectively.
Conclusion The proposed deep-learning RegGAN model seems promising for generation of high-quality sCT images
from stand-alone thoracic CBCT images in an efficient way and thus has the potential to support CBCT-based esophageal
cancer adaptive radiotherapy.
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In the initial stage of radiotherapy, a high-quality planning
CT scan is obtained and the tumor and various organs at
risk (OAR) are delineated by experienced radiation oncolo-
gists. The planning CT is then used to design radiotherapy
plans. In image-guided radiotherapy for esophageal cancer,
a low-quality cone-beam CT (CBCT) scan acquired weekly
or daily is used for patient positioning and qualitative as-
sessment of tumor and OARs. A series of scattering and
noise artifacts reduce the image quality of CBCT and make
it unsuitable for quantitative evaluation (e.g., because of the
low soft tissue resolution of CBCT, it is difficult to visually
distinguish the boundary between tumor and OARs such as
the esophagus and trachea).

Due to the limitation of CBCT image quality, dosimet-
ric advantages derived from MRI-guided adaptive radio-
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therapy have been confirmed for esophageal cancer in sev-
eral studies. Boekhoff et al. [1] used T2-weighted phase
MRI to find that 27 of 29 patients with esophageal can-
cer could achieve dose coverage by simulating an online
bone-match image-guided radiotherapy treatment for each
patient, whereas the other 2 patients needed to be resched-
uled to achieve dose coverage due to extreme interfractional
changes in esophageal position. Defize et al. [2] also used
MRI to discover that nearly 20% and 30% tumor regression
occurred in the third and fifth weeks in neoadjuvant radio-
therapy and chemotherapy for esophageal cancer patients,
and suggested adopting adaptive strategies. Hoffmann et al.
[3] proposed that compared with bone registration, soft tis-
sue registration and an adaptive strategy could reduce the
tumor expansion boundary by 2–3mm.

As the shape and position of the tumor and OARs
changes during radiotherapy of esophageal cancer, an
adaptive strategy driven by CBCT, which has been most
widely used in image-guided radiotherapy (IGRT), could
also ensure dose coverage of the tumor and further reduce
the radiation dose of OARs under the condition that CBCT
image quality is greatly improved. In addition, CBCT could
prevent OARs from receiving an additional planning imag-
ing dose to a certain extent. However, the image quality of
CBCT limits accurate segmentation of tumor and OARs,
and inaccurate Hounsfield unit (HU) mapping may also
bring uncertainty into the dose calculation, which limits
the wide application of CBCT in adaptive radiotherapy,
especially for esophageal cancer. Therefore, many studies
[4–11] have tried to improve the image quality of CBCT
by X-ray scatter correction using the traditional physical
model method, so as to meet the requirements of accurate
segmentation and dose calculation in adaptive radiotherapy.

The traditional methods of CBCT image calibration are
realized by complex X-ray scattering simulation (such as
software improvement through iterative filtering [4], ray
tracing [5], model-based method [6], or Monte Carlo [MC]
modeling [7, 8]) or hardware change (such as adding an
anti-scattering grid [9], an X-ray beam blocker with a strip
pattern [10], or a lead beam blocker with a lattice shape
[11]). These methods are difficult to popularize due to phys-
ical model calculation efficiency or hardware limitations.

Instead of trying to fix particular noise artifacts in CBCT
images, a more recent line of research using convolutional
neural networks (CNNs) attempts to directly generate
higher-quality synthetic CT (sCT) from CBCT images by
correcting the HU values of CBCT images. This method
establishes a complicated mapping between CBCT and CT
by training CNNs, thus allowing sCT images to be gen-
erated from CBCT directly. sCT have the same anatomic
structure as CBCT, and the HU values of tissues are close
to those of the reference CT. Many CNN-based architec-
tures have been proposed for image synthesis, the most

popular being the U-net [12–14] and generative adversar-
ial networks (GANs) [15–19], which were used for sCT
generation in the current study.

U-net was adopted mainly because it exploits both global
and local features in the image spatial domain, matching
the task to suppress global scattering artifacts and local ar-
tifacts such as noise in CBCT. In the simplest GAN archi-
tecture, two networks compete, including a generator that
is trained to obtain synthetic images similar to the input
set and a discriminator that is trained to classify whether
synthetic images are real or fake, thus improving the gener-
ator’s performance. GANs learn a loss that combines both
tasks, resulting in realistic sCT images.

At present, two kinds of GAN architectures have mainly
been used for sCT generation: the supervised pix2pix
method [15, 16] and the unsupervised cycle consistency
method [17–19]. These two methods were originally pro-
posed based on natural image datasets [20–23] and are not
ideal for medical images, especially for the thoracic site.
The pix2pix method has excellent performance but requires
well-paired images aligned at the pixel level, which may
not always be available due to respiratory movement and
anatomic changes during the scanning gap. The paired
images obtained by deformable registration are often used
for model training. Although the image quality of sCT
has been improved by the pix2pix method, accurate pixel
alignment of CBCT-CT images for the thoracic site has not
yet been fundamentally solved, and it has been observed
that the organ boundary was blurred or discontinuous [16].
The cycle consistency method is not so strict in terms of the
training data, and could be effective on paired images with
pixel misalignment. Due to no unique solution in the solv-
ing process for the unsupervised model, its performance is
not the best.

Recently, Kong et al. [24] proposed a new image conver-
sion method called RegGAN, aiming at tackling the above
problems in medical image-to-image translation. RegGAN
regards the misplaced target image as noisy labels, and the
image conversion training becomes an unsupervised learn-
ing, where the generator is trained with an additional reg-
istration network to fit the misaligned noise distribution
adaptively. RegGAN aims to search for a common opti-
mal solution to both registration task and image conversion,
which makes it a better option for a wide range of scenar-
ios, especially for medical image conversion tasks in which
aligned data at the pixel level are not achievable.

The purpose of this study was to improve the image
quality of standalone thoracic CBCT to the CT level using
RegGAN, in which the registration network was only used
for training, while for testing, another deformable registra-
tion algorithm was used to generate deformed CT (dCT)
as a reference. The similarity of the sCT generated by the
RegGAN model and the CBCT was compared with dCT.
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Dose calculation was completed on synthetic CT, CBCT,
and the reference dCT using the same radiotherapy plan
to further verify the accuracy of sCT in esophageal cancer
adaptive radiotherapy.

Materials andmethods

Image acquisition and preprocessing

CBCT and planning CT images of 150 patients with
esophageal cancer who received radiotherapy under free-
breathing conditions were collected in our hospital; 120 pairs
as training datasets and 30 pairs as testing datasets. The
planning CT images of the patients were acquired using
a Siemens CT (Siemens medical systems, Erlangen, Ger-
many) and the CBCT images were scanned by the Varian
OBI system equipped with an EDGE linac (Varian, Palo
Alto, USA). The scanning and reconstruction parameters
of CT and CBCT are shown in Table 1.

The CBCT images were used as the reference sequence
and the planning CT as the secondary sequence for 3D
rigid registration, and then planning CT was served as the
ground truth for CBCT training. All CBCT images were re-
sized to the same size, and the excess parts were cut off. The
HU values of CBCT and CT were clipped to the range of
[–1000, 2000] to prevent the ultra-high HU values of some
bones from affecting the training, and then normalized to
[–1, 1]. For the testing dataset, a deformable registration

Table 1 Scanning and reconstruction parameters of CBCT and
planning CT

Tube
voltage
(kVP)

Tube
current
(mA)

Spatial
resolution
(mm2)

Slice
thickness
(mm)

Image
size

Planning CT 120 220 0.97× 0.97 2 512× 512

CBCT 125 15 0.91× 0.91 2 512× 512

CBCT cone-beam computed tomography

Fig. 1 Model diagrams of three
kinds of generative adversarial
networks: a pix2pix, b cycle
consistency, c RegGAN

was performed on the planning CT to pair it to the corre-
sponding CBCT by a multiresolution B-spline algorithm,
and the deformed CT images were used as a reference to
assess the similarity of the generated synthetic CT images.

Image synthesis with RegGAN

In our question, a pair of misaligned images are equiva-
lent to noisy labels, and the noise is mainly caused by the
misalignment of spatial positions; thus, the type of noise
distribution is relatively clear and can be expressed as a dis-
placement error generated by a random deformation field
which generates random displacement for each pixel. A reg-
istration network R based on U-net is used to correct the
result from the generator, and the correction loss is defined
as correction loss (LCorr). To evaluate the smoothness of
the deformation field, we define the smooth loss (LSmooth)
to minimize the gradient of the deformation field. In addi-
tion, adversarial loss (LAdv) is added between the generator
and the discriminator. The total loss (LTotal) is defined as the
sum of the three loss functions above. More details about
the loss functions are included in the Appendix.

As shown in Fig. 1c, the loss source of the generator has
two parts: one is the adversarial loss conducted by discrim-
inator D, which is the same as in the previous two modes in
Fig. 1a,b, and the other is the correction loss between label
image y and R (G (x), y) obtained by passing the generated
image G (x) through a registration network R. Registration
network R is used to correct the noise between x and y
caused by spatial positions.

Two down-sampling convolution blocks, nine residual
blocks, and two up-sampling de-convolution blocks are
used in the generator of the RegGAN model, while four-
layer full convolution is designed in the discriminator. Con-
volution is used to map the input to an N×N matrix. Each
point in the N×N matrix represents a small area evaluation
value in the original image. The size of the deformation
field output from the registration network must be the same

K



488 Strahlentherapie und Onkologie (2023) 199:485–497

Table 2 Loss (L) function weight setting

Loss LAdv LSmooth LCorr

Weight 1 10 20

as that of the input image. Thus, we use the simplest U-net
structure.

The training conducted on 2D slices was translated and
then stacked into 3D volumes; therefore, the network archi-
tecture is referred to in this work as 2.5D.

All experiments were carried out in the 64-bit Ubuntu
Linux system using PyTorch software (Facebook, Menlo
Park, USA), which has 96GB RAM and 24GB NVIDIA
Titan RTX GPU. All images were normalized to [–1, 1]
and then resampled to 512× 512. All methods were trained
using the Adam optimizer with a learning rate of 1e-4 and
(β1, β2)= (0.5, 0.999). The batch size was set to 1 and the
weight attenuation was 1e-4. The training process included
50 epochs in total and more than 640,000 iterations. Dif-
ferent weights were also set for different loss functions, as
shown in Table 2.

Evaluation

A side-by-side comparison of dCT, CBCT, and sCT im-
ages generated by RegGAN was performed for the testing
patients. CBCT and sCT images were quantitatively eval-
uated by calculating the MAE, RMSE, and PSNR, with
deformed CT images as the reference. The metrics such as
MAE, RMSE, and PSNR were calculated within the pa-
tient outline by an in-house MATLAB script (MATLAB
R2016a, MathWorks Inc., MA, USA). MAE measured ab-
solute HU differences of every single pixel between the
target and CBCT/sCT image, with lower values indicating
closer similarity to the target. RMSE was similar to MAE,
which indicated the root of the mean square error. PSNR
measured the maximum possible power of a signal, with
higher values indicating better image quality.

The HU parameters (mean value, standard deviation, me-
dian value, HU integral, HU total count, max HU, and min

Fig. 2 The iterative curves of adversarial loss (a), correction loss (b), and smooth loss (c)

HU) were acquired from the regions of interest (ROIs; clin-
ical target volume [CTV], planning target volume [PTV],
left lung, right ling, total lung, heart, and spinal cord) on
each kind of image, which were rigidly copied from the
planning CT in the MIM maestro system (MIM Software
Inc, USA). These metrics were used to evaluate the similar-
ity of the HU distribution within each ROI on CBCT/sCT
images and the reference dCT images. The image quality
indices were compared by paired Wilcoxon signed-rank test
and the statistical significance level was set at p< 0.05.

To verify the dose calculation accuracy, the treatment
plans of the 30 testing patients were transferred to dCT,
CBCT, and sCT images, and the dose calculation was
directly performed without optimization on these images
in the Pinnacle 9.10 planning system (Philips Radiation
Oncology Systems, Fitchburg, WI). All treatment plans
(50.4Gy/28 fractions) included 4–5 step-and-shoot IMRT
fields with 6-MV X-rays, and a Varian EDGE linac was
used for treatment plans. The dose distribution of the entire
treatment plan calculated on deformed CT images was
served as reference, the gamma passing rates of the dose
distribution calculated on CBCT and sCT images were an-
alyzed using three different criteria (1mm/1%, 2mm/2%,
and 3mm/3%).

Results

Development of loss values during training

The loss results of each epoch are plotted in Fig. 2. The
adversarial loss between the discriminator and the generator
is obviously negatively correlated (Fig. 2a), i.e., the more
authentic the generated image from the generator is, the
more the discriminator cannot distinguish. On the contrary,
with a stronger discriminator’s discrimination ability, the
loss of the generator will also rise.

The correction loss shows a downward trend as a whole
in Fig. 2b, which indicates that the registration network
plays a positive role in correcting noise. With the increase
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Fig. 3 Quality comparison of
deformed CT (dCT), cone-bean
CT (CBCT), and synthetic CT
(sCT) images generated by
RegGAN for the same patient
in axial or sagittal images.
The image types are marked
with numbers: 1 stands for
dCT, 2 for CBCT and 3 for
sCT. Respectively, in the upper
right corner of the image, the
same axial or sagittal planes are
labeled as a, b, c, d, e, and f
in turn. Blue arrows serious
artifacts, red arrows good tissue
continuity. The display window
in second the column is [–1200
300] Hounsfield units (HU;
lung window), and the display
window in other rows is [–400
400] HU

a1

a2

a3

b1

b2

b3

c1

c2

c3

d1

d2

d3

e1

e2

e3

f1

f2

f3

in epoch training, the generated sCT becomes closer and
closer to the real CT images.

The smooth loss is shown in Fig. 2c. Generally speaking,
the stronger the noise, the stronger the noise correction abil-
ity required by the registration network, i.e., the lower the

smoothness. We can see that the smooth loss has a certain
value from beginning to end, which indicates that there is
a certain noise phenomenon in the training data of medical
images.
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All experiments were implemented in Pytorch software
in a 64-bit Ubuntu Linux system with 96GB RAM and
24GB Nvidia Titan RTX GPU. As the generated CT images
are synthesized from 2D images and the network structure
is relatively simple, the training and testing speed will not
be too slow. Under the conditions of 50 epochs, the training
duration is about 6h. In the actual test, the translation for
one patient was completed in about 15s.

Comparison of sCT and CBCT images

The sCT images generated from CBCT by the RegGAN
model are shown in Fig. 3 for the same testing patient.
Serious shading and streaking artifacts were observed at
the chest wall, heart, lung, and other sites of the original
CBCT images (blue arrows in a2, b2, c2, d2, e2, and f2), due
to the influence of patients’ respiratory movement during
scanning. The lung window shows that serious distortion
occurred in the lung HU value in CBCT, which makes lung
seem relatively dark. Most of the artifacts in the sCT images
were eliminated (blue arrows shown in a3, b3, c3, d3, e3,
and f3), and the anatomic structure was well maintained
compared to the original CBCT images (red arrows in a3,
b3, c3, and e3). Good tissue continuity of small-volume
tissues such as the spinal cord was also revealed in the
sagittal images (red arrow in f3).

The results in the testing dataset compared to several pre-
vious studies [12–14] on thoracic sites are summarized in
Table 3. sCTs generated by deep-learning-based RegGAN
showed improved image quality with fewer discrepancies
(smaller MAE) to reference dCTs. The results of the pro-
posed model had a similar performance in terms of the
improvement of sCT image quality compared to the re-
sults of Gao et al. [13] and Qiu et al. [14]. The mean
MAE was improved from 80.1± 9.1HU (CBCT vs. dCT)
to 43.7± 4.8HU (sCT vs. dCT), and the PSNR also in-

Table 3 Comparison of several studies on the improvement of sCT image quality

MAE RMSE PSNR

CBCTa 80.1± 9.1 124.2± 21.8 21.3± 4.2

sCT (RegGANa) 43.7± 4.8 67.2± 12.4 27.9± 5.6

CBCT [Gao] [16] 92.8± 16.7 / 21.6± 2.8

sCT (pix2pix) [Gao] [16] 53.4± 9.3 / 26.8± 2.7

sCT (cycleGAN) [Gao] [16] 47.1± 6.5 / 28.3± 2.0

sCT (AGGAN) [Gao] [16] 43.5± 6.7 / 29.5± 2.4

CBCT [Qiu] [19] 110.0± 24.9 / 23.0± 4.0

sCT (cycleGAN) [Qiu] [19] 82.0± 17.3 / 28.3± 6.9

sCT (cycleGAN+ Perceptual+MaxInfo) [Qiu] [19] 66.2± 8.2 / 30.3± 6.1

CBCT [N Dahiya] [15] 162.8± 53.9 328.2± 84.7 22.2± 2.4

sCT (pix2pix) [N Dahiya] [15] 43.6± 22.7 102.8± 42.9 32.8± 3.8

MAE mean average error, RMSE root mean square error, PSNR peak signal-to-noise ratio
aresults from the current study

creased significantly from 21.3± 4.2 (CBCT vs. dCT) to
27.9± 5.6 (sCT vs. dCT) in the testing dataset. In addi-
tion, the mean RMSE was improved from 124.2± 21.8HU
(CBCT vs. dCT) to 67.2± 12.4HU (sCT vs. dCT).

Residual images derived from CBCT/sCT minus dCT are
shown in Fig. 4 for one patient from the testing dataset. This
shows that sCT image quality was improved, with HU much
closer to the reference dCT. Fig. 4a–c show the same axial
slice of the lung window display and Fig. 4d and e show
the HU difference images between CBCT, sCT, and the
reference dCT. Fig. 4a, b, and c display the reference dCT,
CBCT, and sCT images, respectively. Serious streaking and
shading artifacts could be observed at the heart, chest wall,
and bone in the original CBCT images, due to the influence
of patients’ respiratory movement during CBCT scanning.
Most of the artifacts on the sCT images were eliminated,
especially at the heart and chest wall. However, there seems
to be quite large error in the sCT at the tissue interfaces,
which may essentially be caused by the small alignment
error between the CBCT and the real CT.

The HU parameters mean value, median value, HU inte-
gral, and HU total count are much closer between sCT and
the reference dCT compared to CBCT and dCT within the
ROIs. The HU parameters mean value, median value, HU
integral, and HU total count of CBCT and sCT images are
similar to those of dCT images within the ROIs of left lung,
right lung, and total lung, and these parameters of sCT im-
ages seem to be closer to those of dCT images compared
to CBCT images (more details are shown in Table 6 in the
Appendix).

The HU value and the number of occurrences of HU
values are denoted for one test patient in Fig. 5. The HU
value distributions of the CBCT and reference dCT im-
ages clearly differed, while the sCT images generated by
RegGAN showed a similar HU distribution to the dCT im-
ages. Due to the large volume of total lung, there was an
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Fig. 4 Results of residual im-
ages: a deformed CT (dCT),
b cone-beam CT (CBCT), c syn-
thetic CT (sCT), d residual
image between CBCT and de-
formed CT, e residual image
between synthetic CT and de-
formed CT; the generated sCT
showed much closer Hounsfield
units to the reference dCT

a b c

d e

Fig. 5 Histogram distribution
curves of the Hounsfield unit
(HU) values of deformed CT
(dCT), cone-beam CT (CBCT),
and synthetic CT (sCT) images
from one test patient

a b c

Fig. 6 The isodose lines shown on the same transverse slice of (a) deformed CT (dCT), (b) cone-beam CT (CBCT), and (c) synthetic CT (sCT)
calculated by the same treatment plan for one testing patient
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Fig. 7 Dose–volume histograms
(DVHs) of the same treat-
ment plan calculated on the
deformed CT (dCT), cone-beam
CT (CBCT), and synthetic CT
(sCT). The solid line is the DVH
calculated on dCT, the dotted
line is the DVH calculated on
sCT, and the long-dashed line is
the DVH of the CBCT images.
CTV clinical target volume,
PTV planning target volume,
Lung L left ling, Lung R right
lung, TL total lung

Table 4 Dode–volume histogram parameters of treatment plans calculated on dCT, CBCT, and sCT

PTV D98 Total lung V5 Total lung V20 MLD Spinal cord Dmax Heart V30 MHD

dCT 49.14± 0.32 54.17± 6.61 21.95± 3.15 11.63± 1.43 43.32± 2.02 27.35± 10.38 21.52± 6.71

CBCT 47.87± 2.48 54.82± 6.24 22.13± 3.21 11.72± 1.42 43.73± 1.99 27.92± 10.58 21.87± 6.88

sCT 48.32± 0.97 54.12± 6.55 22.12± 3.31 11.66± 1.42 43.58± 2.03 27.18± 10.74 21.42± 6.89

V5, V20, and V30 represents as percentage volume of 500cGy, 2000cGy, 3000cGy dose coverage
dCT deformed CT, CBCT cone-beam CT, sCT synthetic CT, PTV planning target volume, MLD mean lung dose, Dmax maximum dose,
MHD mean heart dose

Fig. 8 The gamma analysis in-
dex distribution calculated on
original cone-beam CT (CBCT;
a, b, c) and generated synthetic
CT (sCT; d, e, f) images, with
dose on the deformed CT image
as reference using entire inten-
sity-modulated radiation therapy
fields for one test patient using
three criteria

1mm/1% 2mm/2%

95.7% 98.5% 99%

1mm/1% 2mm/2% 3mm/3%

3mm/3%

87.1% 95.8% 95.8%

a b c

d e f
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Table 5 The gamma passing rates of dose distribution in CBCT and
sCT images for patients

Gamma criteria

1mm/1% 2mm/2% 3mm/3%

CBCT (%) 72.5± 12.5 85.7± 6.9 89.6± 5.7

RegGAN (%) 84.3± 6.6 90.4± 5.2 93.3± 4.4

CBCT cone-beam CT, sCT synthetic CT

obvious peak at about –900 on the HU distribution of dCT
and sCT images, but this was not the case in the HU distri-
bution of CBCT images.

Dose calculation

The absolute dose distributions calculated on dCT, CBCT,
and sCT images by the same treatment plan are shown in
Fig. 6 for one test patient. It can be seen that the 48Gy
isodose line displayed on sCT images is much closer to
that on dCT, while the 48Gy isodose line shown on CBCT
has significant distortion.

Dose–volume histograms (DVHs) of the same treatment
plan calculated on the dCT, sCT, and CBCT scans are dis-
played for the same patient in Fig. 7. DVHs of the CTV,
PTV, heart (>45Gy), and spinal cord (>40Gy) show closer
profiles calculated on dCT and sCT images.

DVH parameters for targets and OARs are shown in
Table 4, which were calculated on dCT, CBCT, and sCT for
30 testing patients. It can be seen that compared with the
DVH parameters calculated on CBCT, the DVH parameters
calculated on sCT are much closer to those calculated on
dCT.

Using the dose distribution calculated on dCT images
as a reference, the absolute gamma analysis distribution of
the corresponding CBCT and sCT images under the criteria
3mm/3%, 2mm/2%, and 1mm/1% are shown for one test-
ing patient in Fig. 8. The dose distributions on the original
CBCT images remained highly divergent compared with the
reference. There are large regions where the gamma index
is greater than 1 on CBCT images. The dose distributions
on the sCT images are close to the reference, and the areas
with a gamma index greater than 1 are greatly reduced.

The statistical analysis of gamma passing rates with dif-
ferent standards for the 30 testing patients are shown in
Table 5. The gamma passing rates of sCT images gener-
ated from RegGAN were significantly improved under all
criteria compared to those of the original CBCT (p< 0.05).
In conclusion, the sCT images generated by RegGAN ob-
tained more accurate dose calculations in radiotherapy for
testing patients.

Discussion

Weekly and daily CBCT images are currently only used for
patient positioning during IGRT. Due to poor HU mapping
and low soft tissue contrast due to more obvious motion
artifacts caused by respiratory movement at the thoracic
site, CBCT images are not suitable for esophageal cancer
adaptive radiotherapy at present.

Compared with the traditional complex physical model
used to simulate X-ray scattering or hardware modification
to improve the quality of CBCT images, several kinds of
GAN model based on deep learning to improve the qual-
ity of CBCT images have been reported for their high
efficiency and feasibility, especially for the thoracic site
[15–19]. As can be seen from the current results, the image
quality as improved by GAN models was not only deter-
mined by the image quality of the training data, but also by
the method of image pre-processing, the model framework,
and parameter settings.

As the image quality of CBCT for the thoracic site is
affected by even more uncertain factors, whether it can be
effectively improved seems to have become a stress test
to verify the efficiency and accuracy of the image conver-
sion models based on deep learning. Several studies [15,
16] used supervised learning methods such as the pix2pix
method to generate synthetic images of the thoracic site,
which significantly reduced artifacts and improved soft tis-
sue resolution on sCT images. As the pixel-alignment ac-
curacy of paired CBCT-CT images was mainly affected
by deformable registration, it is also observed from these
results that the anatomic structures on the sagittal/coronal
plane of the generated synthetic images were discontinuous
or the segmentation of small organ structures was inaccu-
rate. In short, pix2pix can only generate high-quality sCT
images under the premise of accurate alignment between
CBCT and CT images.

For unsupervised learning methods, such as cycleGAN-
type methods, generating sCT for the thoracic site [17, 18],
it has been demonstrated that the generated sCT could main-
tain the anatomic structures well, and sagittal/coronal im-
ages have continuous structures due to the non-necessity of
CBCT-CT deformable registration, while several artifacts
may get propagated into the final sCT images. As thoracic
CBCT images usually have more artifacts due to patients’
respiratory motion, it is difficult to inhibit serious artifacts,
especially at the chest wall and heart for cycleGAN-type
methods. Qiu et al. [19] proposed the cycleGAN method
combined with histogram matching; perceptual supervision
was adopted to minimize blurring of tissue interfaces by
using paired planning CT and deformed CBCT.

We also found that sCT looks more consistent with the
reference in the axial plane than in the sagittal plane, which
may be because the training we conducted was on 2D slices
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in the RegGANmodel. It could also be observed that greater
error occurred at the tissue interfaces (Fig. 4), which could
be explained by the fact that when CBCT is converted to
sCT, HU will approach the HU of real CT (HU becomes
larger), while in fact, the original CBCT image cannot be
perfectly aligned with the real CT. In the area with small
alignment error, a larger error of HU values which is not
caused by CT synthesis will appear at the tissue interfaces
between CBCT and the real CT.

This study proposes a new image translation model
(RegGAN). RegGAN regards the misplaced target im-
age as noisy labels and transforms the image conversion
training into an unsupervised learning process with noisy
labels. The paired images trained in RegGAN do not need
deformable registration, which could be adaptively com-
pensated by a well-trained registration network to fit the
misaligned noise distribution. RegGAN could find a com-
mon optimal solution to both the registration network and
image conversion, which could effectively reduce the un-
predictable changes of anatomic tissue position on sCT
images while maintaining the image quality of the original
planning CT. The sCT images have clear and continuous
anatomic structure boundaries in the sagittal and coronal
planes, especially for small-volume anatomic structures
such as esophagus and spinal cord.

In general, 4D-CBCTs showed considerably lower image
quality than 3D-CBCTs. This difference can be attributed to
the low number of projections available for a single phase
of the 4D-CBCT. Thummerer A [25] verified the feasibility
of deep-learning-based 4D sCTs from sparse-view CBCTs
for dose calculations in adaptive proton therapy. In addi-
tion, MR-guided radiotherapy treatment planning utilizes
the high soft tissue contrast of MRI to reduce uncertainty
in delineation of the target and organs at risk. Replacing 4D-
CT with MRI-derived synthetic 4D-CT would support treat-
ment plan adaptation on hybrid MR-guided radiotherapy
systems for inter- and intrafractional differences in anatomy
and respiration [26, 27]. We mainly focus on using deep
learning to decrease CBCT image noise, acquired in CBCT
imaging, which belongs to estimating the noise transition
matrix, and simplify the problem to obtain a prior distri-
bution of noise. CBCT image quality can be significantly
improved in the image-to-image translation using a regis-
tration network, and this work can also be transferred to 4D
sCT (MR) image translation.

For the unpaired training images, no additional man-
ual deformation registration is required, which could be re-
solved by the combination of the registration network and
GAN approach, and further reduce the labor cost. As we
synthesize from 2D images and the network structure is
relatively simple, the training and testing speed will not be
too slow. Under the conditions of 50 epochs, the training
duration is about 6h. In the actual test, the translation for

one patient was completed in about 15s. RegGAN may be
an effective option for a wide range of scenarios, especially
for the thoracic site for which aligned data at the pixel level
are not achievable.

Conclusion

Unpaired thoracic CBCT and CT images were trained by
RegGAN. The synthetic high-quality CT images main-
tained the anatomic structures well and reduced most
artifacts. The sCT generated by RegGAN provided high-
accuracy dose calculation and can thus be applied to
esophageal cancer adaptive radiotherapy.
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you give appropriate credit to the original author(s) and the source, pro-
vide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included
in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view
a copy of this licence, visit http://creativecommons.org/licenses/by/4.
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Appendix

Model details

A given training dataset f.xn;eyn/gNn=1 has n noise labels,
where xn;eyn are images from two modes, and it is as-
sumed that yn is a clean label of xn, but is unknown. In
the problem setting, the type of noise distribution is clear,
which could be expressed as displacement error: ey = yoT ,
where, T is represented as a random deformation field which
causes each pixel to have a random displacement. There-
fore, a registration network can be connected after the gen-
erator G as a noise model R to correct the results of the
generator G(x). Thus, the correction loss is obtained:

min
G;R

LCorr .G; R/ = Ex;ey Œjjey − G .x/ oR .G .x/ ;ey/jj1� (1)

R .G .x/ ;ey/ represents the deformation field derived
from G(x), ey registration for fitting T, and E represents
the expectation of the function. Therefore, we also need to
calculate a smooth loss on the deformation field to min-
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imize the gradient of the deformation field to make the
deformation as smooth as possible:

min
R

LSmooth .R/ = Ex;ey

h

�jjR .G .x/ ;ey/jj2
i

(2)

Finally, add the adversarial loss of the generator and the
discriminator to form the whole loss:

min
G

max
D

LAdv .G; D/ =Ey Œlog .D .y//�

+ Ex Œlog .1 − D .G .x///�
(3)

min
G;R

max
D

LTotal .G; R; D/ = LCorr + LSmooth + LAdv (4)
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