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Radiotherapy, tumor mutational burden, and immune checkpoint
inhibitors: time to do the math
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Immune checkpoint inhibitors (ICI) are revolutionizing
lung and skin cancer therapy [1–7], and there is accumu-
lating evidence for a further significant and highly relevant
boost of progression-free and overall survival once these
substances are combined with radiotherapy (RT) [8, 9].

The tumor mutational burden (TMB) and the correspond-
ing increase in neoantigen formation subsequent to exon
mutations correlate with response after treatment with ICI
[10, 11]. Large studies of mutational patterns have shown
the highest TMB in melanoma, lung, and bladder cancers,
although considerable variation is present within individ-
ual tumor entities [12, 13]. In this regard, the CheckMate
227 trial recently established a TMB of ≥10 mutations per
106 bases (=1 megabase; Mb) as a robust and independent
biomarker of response [14]. These data recently led radia-
tion oncologists to speculate whether the improved efficacy
of ICI plus RT may be caused by radiation-induced TMB.

We propose to take a closer look at this hypothesis by
performing a simple calculation: Assume that 40 DNA dou-
ble-strand breaks (DSBs), 1000 DNA single-strand breaks
(SSBs), and 3000 base lesions are induced per Gy in the
genome [15]. SSBs and base lesions arise in their thousands
every day as a result of physiological processes in all cells
and are repaired with extremely high efficiency. Even the
vast majority of DSBs are repaired so that less than one
DSB remains (per cell) after a daily fraction size of 2Gy.
However, induced mutations adding to the TMB result from
incorrectly repaired rather than unrepaired lesions. Approx-
imately 15% of DSBs are repaired by error-free homolo-
gous recombination (HR) and the rest by non-homologous
end joining (NHEJ) which may introduce small deletions or
insertions (“indels”) if simple end joining is not possible.
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This may result if end resection occurs or spurious homolo-
gies are present. Furthermore, misrepair may join unrelated
DSB ends and fuse different genes or chromosomes. As-
suming a probability of 10% for indels and a ratio of 8:1
base substitutions [16], a typical RT scheme of 60Gy in
30 fractions of 2Gy might produce 8× 30= 240 indels and
approximately 2000 base substitutions. In the worst case,
where most DSBs repaired by NHEJ would lead to in-
dels, 50× 30= 1500 indels and thus 12,000 base substitu-
tions might be produced. The range of 240–1500 indels is
consistent with the range of 135–943 indels and 6–321 rear-
rangement break points found per genome in 12 radiation-
induced tumors [16]. Considering that the genome contains
6.6× 109 bases, a standard RT scheme is unlikely to intro-
duce more than 1 mutation per Mb.

Thus, in standard-fractionated RT, it is unlikely that ra-
diation-induced DNA modifications sufficiently raise the
MTB above the critical limit of 10 per Mb.

In the case of RT using very large doses per fraction
(such as in Stereotactic Body Radiotherapy [SBRT], Stereo-
tactic Radiosurgery [SRS], brachytherapy or Intraoperative
Radiotherapy [IORT]), error-free DNA damage repair be-
comes increasingly saturated and the rate of misrepaired
DNA alterations may be considerably higher [17]. In line
with this, clinical evidence arises from studies on ICI com-
bined with SRS or SBRT that showed impressive responses
and improved overall survival rates [18–23]. However, un-
til quantitative yields of misrepair after high single doses
become available, it is not possible to assess whether the
MTB is high enough to explain these results. An alternative
interpretation of the data is the function of RT as an im-
munological adjuvant creating an anti-tumor vaccine based
on existing tumor antigens via necrotic or immunogenic cell
death associated with an inflammatory response [24–29].

RT increases TMB, but the math does not support the hy-
pothesis that conventionally fractionated RT increases the
MTB enough to induce exploitable tumor antigens. The
increase in TMB after a course of conventionally fraction-
ated RT is one magnitude below the proposed threshold
of 10 mutations per Mb for the induction of immune ef-
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fects in combination with ICI, indicating that other factors
may be relevant for RT-induced immune stimulation [30].
It is plausible that the picture is different after high single
doses of RT, where alternative mechanisms may explain the
interaction of RT and ICI.
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