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Abstract

Objective Stereotactic radiotherapy near serial organs at
risk (OAR) requires special caution. A novel intensity-mod-
ulated radiotherapy (IMRT) prescription concept termed si-
multaneous integrated protection (SIP) for quantifiable and
comparable dose prescription to targets very close to OAR
is described.

Materials and methods An intersection volume of a plan-
ning risk volume (PRV) with the total planning target
volume (PTV) defined the protection volume (PTVgp).
The remainder of the PTV represented the dominant PTV
(PTVgom). Planning was performed using IMRT. Dose was
prescribed to PTVym according to ICRU in 3, 5, 8, or
12 fractions. Constraints to OARs were expressed as abso-
lute and as equieffective doses at 2 Gy (EQD2). Dose to
the gross risk volume of an OAR was to respect constraints.
Violation of constraints to OAR triggered a planning it-
eration at increased fractionation. Dose to PTVgp was
required to be as high as possible within the constraints to
avoid local relapse.

Results SIP was applied in 6 patients with OAR being
large airways (n = 2) or bowel (n = 4) in 3, 5, §, and
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12 fractions in 1, 3, 1, and 1 patients, respectively. PTVs
were 14.5-84.9 ml and PTVgp 1.8-3.9 ml (2.9-13.4 % of
PTV). Safety of the plans was analyzed from the abso-
lute dose—volume histogram (dose to ml). The steepness of
dose fall-off could be determined by comparing the dose
constraints to the PRVs with those to the OARs (Wilcoxon
test p = 0.001). Constraints were respected for the corre-
sponding OARs. All patients had local control at a median
9 month follow-up and toxicity was low.

Conclusion SIP results in a median dose of =100 % to
PTYV, to achieve high local control and low toxicity. Longer
follow-up is required to verify results and a prospective
clinical trial is currently testing this new approach in chest
and abdomen stereotactic body radiotherapy.

Keywords Stereotactic body radiation therapy - Intensity-
modulated radiotherapy - Efficacy - Toxicity - Organs at
risk

Simultan integrierte Protektion
Ein neues Konzept fiir die Hochprizisionsbestrahlung

Zusammenfassung

Zielsetzung Die stereotaktische Radiotherapie nahe seriel-
ler Risikoorgane (OAR) erfordert besondere Vorsicht. Wir
beschreiben ein neues Konzept fiir die intensitdtsmodulierte
Strahlentherapie (IMRT), genannt simultan integrierte Pro-
tektion (SIP), das die Dosisverschreibung auf Zielvolumina
in unmittelbarer Nidhe von OAR quantifiziert.

Material und Methoden Das Uberschneidungsvolumen
eines Planungsrisikovolumens (PRV) mit dem gesamten
Planungszielvolumen (PTV) definierte das Protektions-
volumen (PTVgp). Der Rest des PTV reprisentierte das
dominierende PTV (PTV4om). Die Planung erfolgte mittels
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IMRT. Nach ICRU wurde die Dosis auf PTVgm in 3, 5, 8
oder 12 Fraktionen verschrieben. OAR-Grenzdosen wur-
den als absolute und dquieffektive Dosen zu 2 Gy (EQD2)
iiberpriift. Die Dosis auf das makroskopische Risikovo-
lumen eines OAR musste die Constraints einhalten. Eine
Verletzung der OAR-Constraints triggerte eine Planungs-
wiederholung mit hoherer Fraktionszahl. Die PTVsmp.posis
sollte so hoch wie moglich sein, aber innerhalb der Cons-
traints, um Lokalrezidive zu vermeiden.

Ergebnisse Die SIP-Technik wurde bei 6 Patienten mit den
OARs grofie Atemwege (n = 2) und Darm (n=4)in 3, 5, 8
und 12 Fraktionen bei jeweils 1, 3, 1 und 1 Patienten ange-
wendet. PTVs maflen 14,5-84,9 ml und PTVsp 1,8-3,9 ml
(2,9-13,4 % des PTV). Die Vertriglichkeit der Plidne wurde
durch die Analyse der absoluten Dosisvolumenhistogram-
me (Dosis auf ml) iiberpriift. Die Steilheit des Dosisabfalls
wurde durch den Vergleich der Dosis-Constraints mit der
Dosis auf die PRVs gegeniiber der Dosis auf die OARs
abgelesen (Wilcoxon-Test p = 0,001). Die Constraints fiir
die OARs wurden eingehalten. Alle Patienten zeigten eine
Lokalkontrolle bei einem medianen 9-monatigen Nachbe-
obachtungszeitraum und niedrige Toxizitit.
Schlussfolgerung SIP ermoglichte eine mediane Dosis von
>100 % auf das PTV und ergab eine hervorragende Lokal-
kontrolle bei niedriger Toxizitdt. Die Verifikation der Er-
gebnisse erfordert eine ldngere Nachbeobachtungszeit. Eine
prospektive klinische Studie testet derzeit diesen neuen An-
satz fiir die thorakale und abdominelle Korperstereotaxie.

Schliisselworter Stereotaktische Korperbestrahlung -
Intensitdtsmodulierte Strahlentherapie - Effizienz -
Toxizitdt - Risikoorgane

Introduction

Over the past two decades stereotactic radiotherapy (SRT)
has evolved to a powerful tool to control lesions especially
in the brain, lungs, and liver [11, 12, 19, 21, 23]. How-
ever, reports of high-grade toxicities after stereotactic body
radiotherapy (SBRT) of central lung tumors and of lesions
near the bowel or stomach on the other hand demonstrated
the difficulties to safely administer SBRT in these situa-
tions despite multimodal imaging, accurate motion manage-
ment, intensity-modulated radiotherapy (IMRT), and im-
age-guided radiotherapy (IGRT) [9, 22, 26].

The concept of SRT relies on avoiding organs at risk
(OARs) through high spatial precision. Inherently, limita-
tions of SRT and SBRT were encountered when the target
lesions were too close to OARSs and this is the clinical prob-
lem stipulating the development of the currently described
novel concept of simultaneous integrated protection (SIP).
For example, perforation of central airways, bronchial hem-

orrhage, perforations of the esophagus, stomach, or small
bowel were observed [7, 14, 26]. Strategies to reduce the
risk of high-grade toxicities often rely on the prescription
of reduced total dose to the entire planning target volume
(PTV). However, reduction of the total dose comes at the
price of lowered local tumor control [8, 20]. Another strat-
egy is to increase the number of fractions to exploit the
differential radiosensitivity of tumor and OARs as defined
by their o/f ratios [1, 3]. While this will help to overcome
some of the limitations in more critical locations, there are
still a significant number of cases where neither reduction of
the total dose nor increasing the number of fractions within
the limits of significant hypofractionation enables the appli-
cation of an adequate radiation dose. The above mentioned
clinical reports of high-grade and even fatal complications
after SBRT illustrate the consequences of nonadherence to
these rules [14, 26]. The tradition of prescribing SBRT
not according to ICRU but to individually chosen isodoses
(typically 60—-80 %) aggravates the problem due to steep
dose gradients which make even small setup errors highly
risky. In summary, there is no standard approach to over-
come such obstacles of the safe application of SBRT at this
time.

When change of dose or fractionation is not sufficient,
this problem is often addressed by individual dose reduc-
tions at the interface of target lesions with a critical organ
at risk (OAR) at the discretion of the treating physician.
However, in addition to the lack of data in the literature,
such compromises derived from the fear of normal tissue
complications may lead to the application of insufficient tu-
mor doses and impair local control [20]. Furthermore, the
lack of interobserver and interinstitutional comparability is
a cardinal factor of inconsistencies, and it is a problem for
prospective trials.

Our aim was therefore to develop a prescription method
maximizing consistency of SBRT hypofractionation plans
for targets near OARs [5] which deliberately and in a cal-
culated way lowers the dose to a part of the PTV that is
close to critical OARs. We present a method named si-
multaneous integrated protection (SIP) in analogy to the
simultaneous integrated boost (SIB) intensity-modulated ra-
diotherapy (IMRT) technique. It is based on the definition
of a subvolume being the intersection of the PTV and the
PRV of a critical OAR to which the highest possible dose
respecting the dose constraints for this OAR is planned and
delivered.

Materials and methods
The stepwise procedure to define the SIP approach is sum-

marized in Table 1, while a flowchart is shown in Supple-
mental Fig. 1. The SIP concept was required for SBRT
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Table 1 Standardized definition of the simultaneous integrated protection (SIP) concept in the treatment planning algorithm

1. Indication: The use of the technique is
indicated when

— First, the standard indications for stereotactic radiotherapy are given (not further specified in the
framework of this manuscript) and

— Second, there is overlap of the planning target volume (PTV) with a critical organ at risk (OAR)
or with the planning risk volume (PRV) of this OAR

2. Definitions of volumes (Fig. 1): — For the tumor: standard volumes GTV, CTV, ITV, and PTV are used (ICRU 50, 62)

For the OAR: gross risk volume (OAR), planning risk volume (PRV) is used;

— For OARs with significant motion an internal risk volume (IRV) may be used to define the PRV

theory notation):

Nomenclature of volumes (expressed in set

— Total PTV: PTV

— Simultaneous protection volume: PTVsip =
PTV N PRV

— Dominant PTV: PTV4om = PTV \ PTVspp

3. Prescription: — By definition the SIP concept is an application of IMRT

Dose is prescribed according to ICRU (report 83) to PTVgom reporting Dimedian, Dos, and Doz

— Dumedian in PTV4om should have a table mount-like dose profile as typical for stereotactic radio-

therapy

— Within PTV4om a classical simultaneous integrated boost volume (SIB) may be planned after
definition of a respective SIB volume

— For PTVsip, the transition volume from
PTVdom to OAR, the planning instructions

are twofold:

— (1) Stay within the boundaries of the given
dose constraints for the OAR

— (2) Within (1), make use of the maximum
possible dose to the OAR to minimise dose
inhomogeneity for PTV

— Report Dmedian, Dog, and Doz

4. Dose constraints for OARs: dose constraints as published by QUANTEC or other are employed in biologically equivalent form, e. g., as EQD2
calculated with the appropriate a/f} values. These need to be at the highest level of evidence available and have to be updated accordingly

5. Analysis:
the OAR

— If constraints are violated:

— Individual RTQA is performed if all boundaries are met at plan analysis for the PTVgom and for

— Planning iterations with a higher number of
fractions up to a specified maximum (e. g.,
12 fractions) are performed

— Here, prescribed doses and dose constraints
are recalculated to the equieffective dose at
2 Gy (EQD2) using the respective o/f values
of tumor and OAR aiming to deliver the
maximum possible EQD2 to the tumor with
acceptable toxicity

— If the limits of the normal tissue constraints
cannot be kept hereby, SBRT should not be
given but rather conventionally fractionated
treatment

6. IGRT: cutting edge patient positioning and IGRT is mandatory for the use of the SIP concept

treatment planning in case where there was an unaccept-
able high dose to an OAR, i. e., if there was overlap of the
PTV with either the OAR or its expansions (IRV, PRV).
This represented the key inclusion criterion for this report.
Patients with an indication for SBRT where the SIP con-
cept did not achieve adequate protection of the OAR at the
highest planned fraction number, i.e., 12 fractions, were
not eligible as described below.

This approach requires accurate definitions of the vol-
umes to be treated. For the tumor, these were defined as
GTV, CTV, ITV, and PTV in accordance with the ICRU
reports 50 and 62. For the OAR, we used terms that are
analogous with those for the tumors, i.e., OAR, IRV, and
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PRV. We defined the OAR as the volume segmented in the
planning CT, and the IRV as the volume derived from 4D-
CT. Describing the relation of PTV and the PRV to each
other (Fig. 1), we defined the nomenclature of volumes in
set theory notation to be 1) PTV for the total PTV, 2) the
simultaneous protection volume (PTVgp) for the intersec-
tion of the PTV and the PRV, PTVgp = PTV N PRY, and 3)
the PTV without intersection with the PRV as the dominant
PTV, PTV4om = PTV\PTVsp. The term dominant was cho-
sen to imply that the SIP approach is only valid for small
volumes of PTVgyp.

Third, we defined the prescription of dose to the above
volumes. The concept inherently requires an IMRT ap-
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Fig. 1 Contouring and planning using the simultaneous integrated
protection (SIP) concept. Scheme of a critical organ at risk (OAR; blue,
left side) with its planning risk volume (PRV) overlapping with the
planning target volume (PTV, pink). The dominant PTV (PTVdom =
PTV\PRV; orange) is the prescribed dose in the conventional way,
whereas the PTVsip (=PTV N PRV; purple) is prescribed a lower dose
to stay within the dose constraints for the OAR

proach for simultaneous administration of different doses
to PTVgom and to PTVgp. Dose was prescribed according to
ICRU report 83 to PTV4om indicating Dpedian, Dos, and Do.
As typical for SBRT, we were asking for a table mount-
like dose profile in PTV4om and a Dy, being up to 120 %
of the prescribed dose [25]. In addition, the SIP concept
was combined with a simultaneous integrated boost (SIB)
in some of the patients. For PTVgyp, i.e., the volume that
contains the dose gradient from PTV4om to the OAR(s), the
planning instructions were twofold:

e to stay within the boundaries of the given dose con-
straints for the OAR itself, and

e to make use of the maximum possible dose to PTVgpp to
minimize dose inhomogeneity for PTV.

In order to ensure this, the dose gradient between the
dose to the OAR and the dose prescribed to the PTVuom
typically localizes to the PRV volume around the OAR. We
also reported Dmedian, Dos, and Dy, for PTVgp to quantify
the dose sacrifice that was made for the PTV of a distinct
lesion.

Fourth, we carefully chose available dose constraints
for the OARs following the recommendations published
by QUANTEC and other published recommendations com-
monly used for SBRT [1, 5, 12, 16, 27, 28]. For the re-
spective fractionation schedules, dose constraints for OAR
were calculated as equieffective doses in 2 Gy fractions
(EQD2) with corresponding o/f ratios (a/f 3 for large air-
ways, bowel structures).

Fifth, plans were checked for all boundaries as defined
above prior to individual RTQA (Fig. 2). In cases where

the dose constraints were violated at a chosen number of
fractions, planning iterations with a higher number of frac-
tions up to a specified maximum of 12 fractions were per-
formed. Prescribed doses and dose constraints were recal-
culated to the EQD?2 using the respective o/f ratios of tumor
and OAR, and aiming to deliver iso-effective doses to the
tumor with lower toxicity by protracted dose delivery. If
the normal tissue constraints could not be fulfilled by in-
creasing the number of fractions to the maximum number,
SBRT was not given but conventionally fractionated treat-
ment performed instead. Sixth, we excluded lesions with
large absolute PTVsp volumes, with very small PTV as
well as for single fraction radiosurgery from the use of the
SIP concept. Seventh, we required high-precision patient
positioning, motion management, and IGRT for the use of
the SIP concept.

For the analysis descriptive statistics were used and the
Wilcoxon test for paired differences was used for the com-
parison of dose to the PRVs with dose to the respective
OARs to evaluate the plans for given dose constraints. Ka-
plan—Meier statistics were employed to calculate local con-
trol after therapy.

Results

In this article, we describe the clinical application of the SIP
concept. Six patients with indications for SBRT of targets
close to OAR underwent 4D treatment planning imaging
with high-precision positioning. Two had lesions in the
chest, one in the liver, two in the pancreas and one in the
left kidney. One patient (# 3) was treated with a non-SIP
SBRT plan with reduced dose (5 fractions of 6 Gy to 60 %
isodose of ITV) for a central lung metastasis close to the
right hilum but had an in silico SIP plan to full dose for
PTVaom. All other patients were treated with the SIP plan.
The size of the PTVs (PTV) ranged from 14.5-84.9 ml
(median 49.15 ml, mean 49.57 ml; Fig. 3). Sizes of PTV
protection subvolumes (PTVgp) ranged from 1.0-3.9 ml
(median 2.65 and mean 2.60 ml). Relative PT Vg ranged
from 2.9-13.4 % of the size of PTV (median 5.9 %). Note-
worthy, the largest ratio, 13.4 %, was an absolute volume
of 2 ml, only. D, of the PTVgp tended to be lower in
patients 1, 2, and 6 due to air within the PTVgp volumes
compared with the other patients. Safety of the plans was
analyzed from the absolute volume DVHs as summarized in
Supplemental Table 1 showing the comparison of the dose
constraints with the doses in the plans to the OARs of the
OARs and to the PRVs. The steepness of dose fall off can
be read off by the comparing the doses to the PRVs with
those to the OARs. Expectedly, the dose constraints for
the respective OARs in the PRV volumes were violated for
some of the PRVs but the constraints were respected for the

@ Springer



890 Strahlenther Onkol (2016) 192:886-894

Dose (%) Dose (%)

Fig. 2 a The planning target volume (PTV, (light pink) intersects with planning risk volume (PRV, green) and organs at risk (OAR), small bowel
(orange), in a patient with recurrent pancreatic cancer after resection. b The PRV is subtracted from PTV to define PTVdom (yellow). ¢ The
PTVsip is defined as the intersecting region of PTV with the PRV (PTV N PRV; magenta). d,e An intensity-modulated radiotherapy (IMRT) plan
is developed to deliver full dose according to ICRU to PTVaom and a lower dose to PTVsip respecting the dose constraints for small bowel in
12 fractions (Dmax = 47.4 Gy, Do.smi =44.5 Gy, Dsm1 = 44.4 Gy). Isodose levels as stated on the left side. f Relative dose—volume histogram (DVH).
Protection of the 9.2 ml PTVsip (left solid) compared with PTV (middle solid), ITV (bold dotted) and with PTVaom (right solid); gut (dashes).
g Absolute DVH respecting the constraints for gut

corresponding OARs as an indirect sign for the successful ~ for the 19 dose constraint values shown in Supplemental
application of the SIP concept (Supplemental Table 1). To  Table 1 (p = 0.001, Wilcoxon test). None of these pa-
quantify this, a comparison of the given dose constraints  tients showed severe toxicity within a median follow-up of
with the actual doses to the OAR volumes and the PRV 8.6 months (range 3.1-26.2 months) with favorable local
volumes was performed by analyzing the difference of the  control (100 %).

ratio D (OAR)/D (constraint) with D (PRV)/D (constraint)
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Patient 1 2 3 4 5 6
OAR trachea bronchus stomach biliodig. small colon
anastom bowel
Table 2 Relative dose parameters for all planning target volume (PTV) types in 6 patients
Patient Target lesion PTV type Dimean Dhin Dimax Dos (%)  Dos (%) Doz (%) Vos (%)  Vior(%)
1 M_pul (CRC)  PTV 106.0 52.7 128.3 66.7 77.1 125.3 81.8 54.68
PTVdom 108.19 72.7 128.3 85.9 89.8 125.4 86.96 58.09
PTVsip 70 52.7 86.5 56.3 58.5 81.2 0 0
2 NSCLC PTV 110.2 60.7 125.4 70.2 73.3 122.8 87.4 79.1
PTVdom 115.2 87.1 125.4 101.8 105.7 123 99.8 92.7
PTVsip 79.5 61.6 110.4 67.7 68.9 100.6 8.7 0.03
3 HCC PTV 99.5 67.3 106.1 89.7 95.8 103.8 95.96 0
PTVdom 100 90 106.1 96.5 97.8 102.7 99.4 0
PTVsip 67.3 75.9 102.3 85.5 88.9 101.0 75.56 0
4 LR-PDAC PTV 108.4 75.9 126.9 94.1 96.5 124.7 97.02 60.65
PTVdom 110.8 81.7 126.9 97.5 101.6 124.8 99.18 67.02
PTVsip 85.5 75.9 101.2 81.9 85.8 94.6 88.06 0
5 LR-PDAC PTV 97.8 60.4 108.9 65.1 69.3 105.0 84.07 0.11
PTVdom 100.5 84.4 108.9 92.7 93.4 105.1 93.33 0.12
PTVsip 66.4 60.4 78.6 62.1 62.6 74.8 0 0
6 Renal cancer PTV 120.6 51.5 145.6 91.5 94.8 143.0 94.85 78.16
PTVdom 121.6 82.7 145.6 93.4 96.3 143.1 96.43 80.35
PTVsip 87.7 51.5 115.1 57.2 61.0 109.3 39.6 5.04

Maximal doses were prescribed either with a table-mount profile (patients 1, 2, 4, 6) or without (patients 3, 5)
HCC hepatocellular carcinoma, LR-PDAC locally relapsed pancreatic cancer, M_pul (CRC) lung metastasis from colorectal cancer,

NSCLC non-small cell lung cancer

On the other hand, the dose trade-off to the PTVs due
to SIP was also quantified. Mean doses to the PTVs
were compared between the three volumes (PTV, PTVyom,
PTVsp) as shown in Table 2. Comparing Duean, prv With
Duean, PTVaom, the difference was just about significant at
p = 0.043 whereas the difference was more significant be-
tween Duean, prv With Diean, PTVsip at p = 0.028 (Wilcoxon
test). Mean and median relative doses to 95 % (D95 vol.-
%) of the volumes PTVyom, PTV, and PTVgsp were 122,

105, and 90 %, as well as 120, 107, and 93 %, respectively.
This reflects that the dose sacrifice to PTVgp was kept to
a minimum. Maximum BED (o/f 10) doses in the PTV
for the 6 patients were 124, 135, 93, 92, 114, and 154 Gy,
respectively. Fig. 4 and Supplemental Table 2 show further
examples of applications of the SIP concept for conven-
tionally fractionated IMRT for cerebral and extracerebral
target volumes.

@ Springer



892 Strahlenther Onkol (2016) 192:886-894

PTV,

Dom

\
\
\
'

Fig. 4 Examples for a simultaneous integrated protection (SIP) for the optic nerve, the brainstem, and the brachial plexus with dose parameters in
Supplementary Table 2. a Axial planning CT of a patient with sinonasal squamous cell carcinoma who was treated with chemoradiotherapy after
positive margin resection at the left optic nerve. As she refused left orbital exenteration, PTVgom is treated with 64.8 Gy in 36 fractions. A 0.4 ml
SIP volume is employed to respect a 60 Gy constraint to the left optic nerve. b The coronal plane visualizes the yellow 61.5 Gy isodose line around
the nerve. ¢ Absolute dose—volume histogram (DVH). d Axial and e sagittal planning CT of a patient with undifferentiated main nasal cavity
carcinoma with initially direct contact to the brainstem which was shifted dorsally. Tumor shrinkage after two courses of induction chemotherapy
with paclitaxel/cisplatin, then chemoradiotherapy with SIP-IMRT to 54 Gy during phase 1 followed by an adaptive sequential boost (not shown)
during phase 2. f Isodoses at the interface between the PTV and the brainstem. g The brainstem constraint of 53 Gy is met as shown in the absolute
DVH. h—j Hippocampus protection. h Delineation of the right (sky blue) and left (blue-green) hippocampus with the respective PRVs (yellow) that
are generated by a 7 mm isotropic margin to the hippocampi. PTVsip corresponds to the PRV of the hippocampus minus the hippocampus itself
(PTVsip = PRV(side]\hippocampusside]). 1 A total dose of 35 Gy in 14 fractions was prescribed to the PTVgom. Note the 28.0 Gy (green) and the
17.5 Gy (cornflower blue) isodoses at the two SIP volumes. j In the absolute DVH, the hippocampi receive a mean dose of <10 Gy. PRV planning
risk volume, PTV planning target volume

Discussion

The described technique of the SIP concept proposes a fully
quantified method to protect OARs and to avoid toxicity in
a deliberate and reproducible way, while keeping the dose
to the remaining PTV at effective levels. The main advan-
tage of this approach is the high level of transparency which
makes it a suitable tool for multicenter trials in SBRT min-
imizing interinstitutional technical differences as a source
of error. However, the concept is not restricted to SBRT
but could also be used for conventional IMRT or even
brachytherapy. In contrast to the SIB method where a small
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subvolume inside a PTV is prescribed to receive an esca-
lated dose to enhance local control, the SIP concept pre-
scribes a lower dose to a subvolume of a PTV with a high
risk of severe toxicity.

The SIP concept is proposed for serial OARs according
to the model of functional subunits (FSU) [29]. For serial
organs, e. g., spinal cord, esophagus, and bowel, the defect
of a few FSUs has a high likelihood for toxicity compared
to parallel OARs such as the lung or the liver.

Using the SIP concept, the protection of an OAR is
achieved by a protective outer shell around an OAR as
a volume for the steep dose gradient between the tumor
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and the OAR. It is important to be aware that the defini-
tion of the protection volume of an OAR depends critically
on its nature, e.g., PTVgp can be smaller to protect the
chiasm compared to the stomach due to motion. For le-
sions in the chest, respiratory movements of OARs are of
specific importance. Correspondingly, peristalsis of the gut
is important in the abdomen [24]. Oral contrast prior to
each fraction is recommended in upper abdominal SBRT
for IGRT to visualize day-to-day changes. Summarizing,
IGRT is key to verify whether employed margins of OARs
are correct and clinical trials will have to verify whether the
concept is useful and whether the dose constraints were cor-
rect. Adaptive radiotherapy strategies can also be combined
with the SIP concept and we are currently analyzing this
approach in prostate cancer IMRT for the rectum. However,
we felt that this would be too complex in the framework of
this article and therefore we plan to describe this in a sub-
sequent publication.

Excessive contact volumes between the tumor and the
OAR are not thought to be a good indication for SIP. It is
not clear how large the PTVgpp volume can be in absolute
and relative values without a significant loss of tumor con-
trol. However, reporting Diedian, Dos, and D, for all target
volumes can help to recognize the limits of SIP. Meticu-
lous DVH analysis for target volumes and OARs alike is
necessary, but currently, we cannot quantify the risk of lo-
cal recurrence with SIP. Therefore, prospective trials have
to evaluate local relapse and toxicity. The bystander effect
may support local tumor control [18]. But it is advisable
to exhaust the dose constraints to avoid the risk of local
relapse. At this time it is not fully clear yet which dose pa-
rameters are most important for local tumor control, PTV
encompassing dose, or maximum dose [15]. In a recent
analysis of more than 1500 SBRT treatments of primary
and secondary tumors of the lung with a broad range of
primaries, a plateau of the dose—response curve with 90 %
local tumor control probability was reached at 160 Gy BED
when using the PTV maximum dose [13]. Their report sup-
ports the view to aim to a give a high dose to large parts
of the PTV with a maximum dose at the center of the PTV
where the likelihood of tumor location of a moving target is
highest. If this concept is correct, then it might be possible
to use the SIP concept with a lower dose in a peripheral
subvolume of the PTV with lower likelihood of tumor cells
being present without compromising local control. In this
context it is also intriguing that in parotid sparing head and
neck IMRT locoregional recurrences were not observed to
occur predominantly in the spared areas but within the high-
dose regions [1, 25]. The safety of SIP critically depends
on the reliability of the chosen dose constraints which also
need to be validated in prospective trials.

From the point of view of radiation biology, it should
be stressed that the tumor front might harbor especially ra-

dioresistant subvolumes of the tumor. Such a pattern was
described in rectal cancer after neoadjuvant therapy and re-
section [4, 10]. Epithelial mesenchymal transition (EMT)
was described to be more prevalent in residual tumor sub-
volumes at the invasion front [4] which in turn was de-
scribed to be enriched for cancer stem cells [2]. Another
important factor of resistance to radiotherapy is hypoxia
which is not restricted to the tumor core but also is found
in subvolumes of the invasive front again warning from
low doses at the edge of the tumor [6]. At the moment we
cannot adequately image regions of hypoxia, stemness, and
EMT in patients and therefore the dose sacrifices should
always be as small as possible and this is a hallmark of the
here described SIP technique.

In cases where the dose constraints are violated by very
hypofractionated approaches (e. g., 3 or 5 fractions), more
fractions can reduce the EQD2 for late toxicity due to
low a/p values. Therefore, we use SIP up to <12 frac-
tions for targets with intensive contact to OARs [17]. With
the EQD2 formula, isoeffective and isotoxic fractionations
should be calculated.

The prescription technique for SBRT described here al-
lows accurate quantification of the dose delivered to dose
limiting OARs based on the SIP approach. This system has
two advantages: The dose sacrifice to the PTV due to the
proximity to a dose-limiting OAR is fully quantified and
can be used for local control analysis. At the same time the
dose delivered to OARs and to PRVs of OARSs can likewise
be accurately quantified and therefore be used for toxicity
evaluations. This method can be used for SBRT with all
SBRT equipment and is suitable for multicenter trials.

Conclusion

We present a concept for SBRT and IMRT close to high-
risk OARs that is expected to be safe and effective and at
the same time suitable for multicenter clinical testing. We
currently test this approach in a single center phase I trial
in patients with thoracic and abdominal lesions and we are
confident to thereby further increase the safety of SBRT.
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